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Resíduo de pesticida tem sido uma séria ameaça à saúde humana. Métodos de detecção rápida 
são necessários para os vários tipos de pesticidas. Este estudo investigou a viabilidade da combinação 
da espectrofotometria com o método dos mínimos quadrados parciais por boosting (boosting-PLS) 
para determinação simultânea de clorpirifos e carbaril, dois dos mais importantes pesticidas na 
agricultura. Estudou-se o efeito do pH sobre os espectros de absorbância de cada componente, 
sendo pH 5 o ideal. Para construir os modelos boosting-PLS, trinta e seis misturas binárias foram 
usadas e para validar os modelos resultantes, vinte misturas binárias foram empregadas. Resultados 
por boosting-PLS foram comparados com aqueles obtidos por full-spectrum PLS e algoritmo 
PLS acoplado a busca tabu (TS) como ferramenta de seleção de comprimento de onda. Apesar 
da melhoria pelas abordagens por boosting e seleção de comprimento de onda, a capacidade de 
previsão do algoritmo PLS, boosting-PLS mostrou-se superior aos demais modelos. Boosting-PLS 
não só é viável como também pode evitar a seleção de comprimento de onda.

Residue of pesticide has posed a serious threat to human health. Fast detection methods 
are necessary for the various types of pesticide. This study investigated the feasibility of the 
combination of spectrophotometry and boosting partial least squares method (boosting-PLS) for 
the simultaneous determination of chlorpyrifos and carbaryl, two of the most important pesticides 
in agriculture. Effect of pH on the absorbance spectra of each component was studied and pH 5 
was selected as optimum. To build boosting-PLS models, thirty six binary mixtures were used and 
to validate the resulted models, twenty binary mixtures were employed. Results for boosting-PLS 
were compared to ones obtained for full-spectrum PLS and PLS algorithm coupled with tabu search 
(TS) as wavelength selection tool. In spite of the improvement by both boosting and wavelength 
selection approaches, the prediction ability of PLS algorithm, the boosting-PLS is superior to the 
other models. Boosting-PLS is not only feasible but also can avoid doing wavelength selection 
in such a task.
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Introduction

A wide variety of pollutants from industrial, 
agricultural and other human activities can contaminate 
aquatic environments. Among environmental pollutants, 
pesticides are of relevant concern due to their 
toxicity and prevalence of their use. For example, 
chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) 

phosphorothioate] became one of the largest selling 
insecticides in the world and with both agricultural and 
urban uses.1 This insecticide could be purchased for indoor 
use by homeowners, but health-related concerns led United 
States Environmental Protection Agency (US EPA) to 
cancel home indoor and lawn application uses in 2001.2 
Chlorpyrifos is slowly hydrolyzed in alkaline medium, 
but the reaction rate increases with temperature, presence 
of metals and elevated pH values. In soil, it is initially 
degraded to 3,5,6-trichloropyridin-2-ol (TCP) which is 
subsequently degraded to organochlorine compounds.3
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Another widely used pesticide is carbaryl. Carbaryl 
(1-napthyl methylcarbamate), as a broad spectrum 
insecticide, is one of the most widely used carbamate 
insecticides. It is used greatly in agriculture, including home 
gardens where it generally is applied as a dust. Carbaryl 
is not considered to be a persistent compound because it 
is readily hydrolyzed in alkaline medium.4 It is currently 
registered in the US EPA for controlling beetles and 90 
other insects that cause problems in trees and ornamentals.5,6

Although, these pesticides have relatively low 
persistence in the environment, they have high acute 
toxicity to human health and ecosystems.7,8 Therefore, the 
determination of these pesticides is of great interest, forcing 
different researchers to develop methods to analyze them.

Chromatographic techniques have been the most 
extensively applied to simultaneous analysis of carbaryl and 
chlorpyrifos,9-13 although spectrophotometry combined with 
derivative spectra and with differential kinetic degradation 
has also been employed.11-15

Spectrophotometry is a relatively easy method for 
simultaneous determination of variety components. 
It needs less expensive instrumentation and provides 
high sensitivity. One of the main drawbacks of the 
spectrophotometric methods is its poor selectivity due to the 
high degree of spectral overlapping. Nowadays, quantitative 
spectrophotometry has been greatly improved by the use 
of a variety of multivariate statistical methods, particularly 
the partial least squares regression (PLS).16,17

Multivariate calibration techniques, e.g., PLS, have 
been devised for the analysis of mixtures with overlapping 
spectra.18 The great advantage of multivariate calibration 
approaches is their capability of improving determinations 
in terms of selectivity.19-23 A difficulty when applying PLS 
in multivariate calibration is that overfitting may occur.24 
Moreover, it has been shown that a variable selection in PLS 
is necessary for obtaining a parsimonious and robust model.25 
A variable selection procedure allows the informative 
part of the spectrum related to the variation of the analyte 
concentration to be modeled and other parts of the spectrum 
related to the variation of concentration of other compounds 
and/or background variations to be discarded. Consequently, 
in practice, the wavelength selection continues to be the 
process of interest due to the increase in the prediction 
capacity. Different strategies for wavelength selection in 
multivariate calibration models have been proposed in the 
literature, including the use of ant colony optimization,26-28 
tabu search (TS)29 and genetic algorithm (GA).30

Unlike the traditional calibration techniques based on 
a single model, which sometimes results in unsatisfactory 
accuracy and robustness, ensemble is based on the 
concept of building a series of model. For example, in 

boosting, samples in the training set are picked out with 
the probability obtained by the previous model. For a 
specific sample, if the prediction from the previous model 
is poor, the probability of the sample will increase so 
as to be trained more intensively. The final prediction 
is made by weighted median of the collected numerous 
models. The main advantage of such ensemble techniques 
is that they increase the accuracy and robustness of the 
calibration. Such learning concepts have been introduced 
into the field of chemometrics and shown that the ensemble 
model is more robust and less sensitive to overfitting.31-34 
Previously, boosting-PLS approach was employed in 
quantitative structure-activity/property relationships35 and 
in the determination of some active chemicals in near-IR 
region.35-40 

The aim of the present work was to develop simple, 
rapid, economical, accurate, precise and reproducible 
spectrophotometric methods for determination of 
carbaryl and chlorpyrifos. Due to the advantages 
of boosting, the combination of boosting-PLS and 
spectrophotometry for simultaneous determination of 
these pesticides was investigated. To our knowledge, this 
work is the first report on application of boosting-PLS for 
pesticide determination. Two other approaches including 
full-spectrum PLS and tabu search (TS)-PLS were used 
for comparison.

Tabu search is a meta-heuristic optimization method 
which was used by Hageman et al.29 to solve the 
wavelength selection problem. TS process is initiated 
with a randomly selected solution (i.e., a subset of 
wavelengths). For each solution, a PLS model is built 
based on the selected wavelengths and the corresponding 
root mean squared error (RMSE) is calculated via cross-
validation method as:

 (1)

where ^xi is the predicted concentration of interested 
component in the ith mixture, xi is the real concentration, and 
m is the number of samples in the training set.

This RMSE value is used as fitness value. After 
evaluation of the initial solution, all possible neighbors 
of the solution are investigated. Neighboring solutions 
are slightly different from the initial solution and can 
be reached from the current solution by a simple, basic 
transformation of the current solution.29,41 The new solution 
is the one which yields the best result among all solutions 
considered. To avoid toggling between two solutions in 
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a local optimum, TS uses a tabu list containing solutions 
or steps which are tabu. In this work, four tabu lists were 
employed, including select tabu list, deselect tabu list, move 
to tabu list and move from tabu list. The lengths of all tabu 
lists were optimized by trial and error.

The original concept of boosting was proposed by 
Schapire42 and has intensively been developed.43 There are 
two methods used to establish the boosting regression model. 
The first one is by forward stage-wise additive modeling, 
which modifies the target values to effectively fit residuals.35 
The second one is by changing sample weights to emphasize 
those which were poorly regressed on previous stages of 
the fitting process.38 In this work, the second approach is 
used. Anyway, at the end of boosting, there is an ensemble 
with T models at the hand which are used to predict analyte 
concentration in a test sample. Considering a training set 
containing m samples, the boosting procedure used in this 
study consists of the following steps:

Step 1: initially, assign equal weights to each sample 
in the training data set:

 (2)

Step 2: for iterations t = 1, 2, …, T:
(i) Calculate probability for each sample:

 (3)

(ii) According to probability distribution p, select m' 
samples (m' < m) from the training set in order to generate 
a so-called boosting set.
(iii) Develop a PLS model on the basis of the boosting set. 
Determine the number of latent variables by the cross-
validation on the current boosting set.
(iv) Use the developed PLS model to predict the 
concentration of the interested analyte in all m' samples.
(v) Calculate a square loss for each sample in the boosting 
set as:

 (4)

Here, the denominator represents the maximum residual 
between all predicted and real concentrations.
(vi) Compute an average loss  and from 
that a confidence index (CI) for the PLS model:

 (5)

This CI is ranging from 0 to 1. Low CI means high 
confidence in the prediction.
(vii) Update weights of the samples by the following 
equation:

 (6)

Note that the weight-updating scheme implies that, 
the smaller the loss, the more the weight is reduced. In the 
other words, the weights of the unsatisfactory predicted 
samples are increased. This causes to pick up this sample as 
a member of the next boosting set with higher probability.
(viii) Renormalized w, so that .
(ix) t = t + 1. If t ≤ T, repeat steps i-viii; otherwise stop. 
After T iterations, there are T PLS models.

Step 3: the performance of the boosting-PLS is 
evaluated by a test set. For a sample j of the test set, the 
final prediction is the combined prediction obtained from 
the T PLS models as shown in equation 7.

 (7)

where s is the normalized inverse of the Mahalanobis 
distance between a test sample and tth boosting set.

Experimental

Reagents and solutions

All reagents were of analytical reagent grade. 
Bidistilled water was used throughout. Stock solutions 
of carbaryl and chlorpyrifos were prepared separately 
by dissolving 0.05 g of either carbaryl or chlorpyrifos in 
DMF (dimethylformamide) and diluting to 50 mL with 
DMF. Working solutions were prepared immediately 
before use by further dilution of the standard solutions 
in water.

Citrate buffer (0.15 mol L-1) was prepared and pH was 
adjusted to pH 5 by using concentrated HCl or NaOH.

Apparatus, software and data processing

Electronic absorption spectra were measured by 
single beam UltraSpec 4000 spectrophotometer (Biotech, 
Pharmacia, England), using 10 mm path length quartz cells. 
The recorded spectra, from 250 to 375 nm, were digitized 
in 1.0 nm. All spectral measurements were performed using 
appropriate blank solution as a reference. A Methrohm 
model 780 pH-meter using combined glass electrode was 
used for pH measurements. The data treatment was done 
in MATLAB 7.0 (Mathw Works, Cochituate Place, MA) 
environments. The TS-PLS and boosting-PLS algorithms 
were written in MATLAB.
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Procedure

To find the linear concentration range of each pesticide, 
one-component calibration was performed. Different 
volumes of a stock solution of the desired pesticide were 
injected, by means of a micro-syringe, into a cell that 
contained 2.0 mL citrate buffer solution (pH 5.0) and the 
absorbance spectra were recorded over the 250-375 nm 
spectral range versus a solvent blank. The linear dynamic 
range for each compound was determined by regressing 
absorbance at the corresponding λmax versus concentration.

Two sets of standard solutions are necessary for 
multivariate calibration. One, called training set, is used 
to develop model and the other to evaluate the model. In 
the present study, the training set contained 36 standard 
solutions and the test set contained 20 standard solutions. 
Although, the concentrations of the analytes in both data 
sets were within the linear concentration range of that 
pesticide, the compositions of the most concentrated 
solutions were selected so that the absorbance values 
were not exceeded the highest absorbance reading of the 
instrument. The composition of the training set was chosen 
by 6 level full factorial design, whereas the composition of 
the test set was chosen randomly. To prepare each solution, 
aliquots of carbaryl or chlorpyrifos solutions containing 
appropriate amount of these pesticides were added to a 
series of 10.0 mL volumetric flasks followed by addition of 
2 mL of citrate buffer solution (pH 5), diluted to the mark 
with double distilled water. UV spectra of the mixtures were 
recorded in the wavelength range of 250-375 nm versus a 
solvent blank, and digitized absorbance was sampled at 
1.0 nm intervals.

Results and Discussion

Spectral characterization of the analytes

The chemical structures of carbaryl and chlorpyrifos are 
shown in Figure 1. The absorbance spectra of each chemical 
are shown in Figure 2. As can be seen, carbaryl and 
chlorpyrifos have highly overlapped spectra. Due to 
overlapping spectra, mixtures of these chemicals cannot be 
analyzed by conventional univariate method. Multivariate 
calibration method such as PLS gives a solution to such 
problem.

Optimization of the experimental conditions

The experimental conditions for quantitative estimation 
of both pesticides were optimized via a number of 
preliminary experiments. The influence of pH on the 

spectrum of each compound at a constant concentration 
was studied separately in the pH range of 1-6 because 
carbaryl hydrolyzes in neutral and basic solutions.4 
Hydrochloric acid and sodium hydroxide were used for 
the pH adjustment. It was found that the system is almost 
independent of pH within the range of 1.0-6.0. However, 
to prevent hydrolysis of both carbaryl and chlorpyrifos, 
pH 5 was selected as optimum pH value. A solution of 
0.15 mol L-1 citrate buffer was used for the adjusting pH.

One-component calibration

To find the linear range of each component, calibration 
graphs were obtained. The absorption spectra were 
recorded over 250-375 nm against a solvent blank. For 
each pesticide, the calibration curve was constructed with 
several points as absorbances at its λmax versus sample 
concentration and the graph was evaluated by linear 
regression analysis. The calibration curves were linear 
between 1.60 and 45.0 µg mL-1 for carbaryl and 1.50 and 
50.0 µg mL-1 for chlorpyrifos. The characteristic parameters 
for the regression equations of individual calibration by 
absorption UV spectra are given in Table 1.

Multivariate calibration

The first step in simultaneous determination of binary 
mixtures by multivariate calibration methods involves the 

Figure 1. Chemical structures of carbaryl and chlorpyrifos.

Figure 2. Absorbance spectra of carbaryl (a) and chlorpyrifos (b).
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construction of a training set. In this study, a training set 
consisting of thirty six binary mixtures according to 6-levels 
full factorial design was prepared. Calibration models were 
constructed with the aid of the following chemometrics 
methods: PLS, TS-PLS and boosting-PLS. The resulted 
models were validated against a randomly selected test set 
containing twenty binary mixtures (Figure 3). 

To build full-spectrum PLS model, leave-one-out cross-
validation (LOO-CV) was used to optimize the number 
of latent variables (LVs). The LOO procedure is iterative, 
and, it consists of several steps in each iteration. At each 
iteration, one sample is leaved out from the training set. 
A PLS model with predefined number of latent variables 
(factors) is built based on the remaining samples. Then 
concentration of the hold-out sample is predicted by the 
model. This procedure was iteratively run for each sample 
for each number of factors. The error was expressed as the 
prediction residual error sum of squares of cross validation 
(PRESS-CV) which is given by:

 (8)

where ^xi is the predicted concentration of interested 
component in ith mixture by the model, xi is the real 
concentration, and m is the number of mixtures in 
calibration set.

In boosting-PLS, the two parameters that should be 
optimized were the ensemble size (the number of boosting 
cycles) and boosting set size (the number of samples in each 
boosting set). Again, the number of LVs for each boosting 
set was determined by the LOO-CV procedure. In TS-PLS, 
four parameters need to be optimized: the length of the 
tabu list for the select, deselect, move from and move to 
operators. These parameters were optimized by trial and 
error. For each generated solution in TS, the number of 
LVs was determined by leave-six-out cross validation 
(L6O-CV) procedure.

Plots of PRESS-CV versus the number of latent 
variables for both pesticides are pictured in Figure 4. 
As may be seen, the optimal number of factors was 2 
for both pesticides. The results of full-spectrum PLS are 
summarized in Tables 2 and 3. As can be seen in Table 3, 
the RMSE and R2 values for both training and test sets were 
used as indexes to evaluate performance of the models.

In another trial, tabu search was used to select more 
informative wavelengths to build PLS model. Figure 5 
shows the selected wavelengths in three different runs 
of TS in the analysis of chlorpyrifos. Note that several 
wavelengths were selected from last part of the spectra 
where the absorbance signals are low. In order to evaluate 
the usefulness of this last part of the spectrum, PLS was 
applied on the last thirty two wavelengths and the results 
revealed R2 values equal to 0.985 and 0.972 for training and 
test sets, respectively. This result clearly demonstrates that 
this part of the spectrum is informative and also indicates 
the ability of TS to choose the proper wavelengths.

The results of the analysis for chlorpyrifos and carbaryl 
by TS-PLS are summarized in Tables 2 and 3. In Table 3, it 
is obvious that TS-PLS resulted in more accurate models in 

Table 1. Parameters of the linear regression equations for each pesticide

Parameter Carbaryl Chlorpyrifos

Sample number 26 17

Linear range / (µg mL-1) 1.60-45.00 1.50-50.00

Intercept −0.0004 0.0033

Slope 0.030 0.044

Correlation coefficient 0.998 0.996

Limit of detection / (µg mL-1) 1.01 0.89

Figure 3. Composition of training and test sets.

Figure 4. Plots of log (PRESS) versus number of latent variables for 
both pesticides.
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Table 2. Composition of the binary mixture samples in the test set and their predicted values by various PLS modelings

Actual value in the test set / 
(µg mL-1)

Predicted values by

Full-spectrum PLS TS-PLS Boosting-PLS

Cha Caa Ch Ca Ch Ca Ch Ca

14.52 17.81 13.02 16.90 16.50 17.54 14.21 19.21

37.89 5.40 37.60 4.30 37.39 3.87 37.81 5.45

9.76 29.38 8.13 27.59 10.31 28.06 9.80 30.92

25.35 9.44 27.18 7.97 25.94 11.15 26.62 8.88

23.62 3.56 26.54 4.62 25.49 4.32 22.85 4.33

15.70 32.99 12.88 35.66 16.26 34.89 14.72 31.97

6.78 16.68 6.99 16.44 7.75 15.94 6.37 16.09

2.51 30.27 0.04 30.31 2.35 31.71 4.03 29.21

16.93 18.26 18.74 21.15 18.55 19.66 17.34 17.71

8.30 28.83 11.24 31.53 7.06 27.63 9.73 27.94

28.02 2.54 25.42 3.90 27.36 3.56 29.11 2.82

15.08 41.12 17.72 44.03 16.79 42.14 17.05 39.71

32.23 36.34 29.34 38.16 33.62 35.47 33.24 36.62

28.33 33.97 29.43 33.64 27.71 32.56 29.16 33.28

22.39 36.89 24.09 38.18 21.04 35.43 23.42 37.05

8.04 18.24 8.24 17.45 8.19 17.13 9.32 19.60

36.45 28.39 38.76 27.86 36.95 29.58 38.41 27.17

11.26 26.58 13.65 27.96 10.01 26.15 13.11 26.73

35.25 24.60 36.01 25.23 35.04 24.06 35.91 24.12

9.75 13.54 7.57 13.58 9.93 14.86 11.67 13.72
aCh and Ca refer to chlorpyrifos and carbaryl, respectively.

Table 3. Statistical parameters of the different PLS modeling

Component Model RMSEtraining RMSEtest R2
training R2

test

Chlorpyrifos

full-spectrum PLS 0.8273 1.8491 0.9958 0.9660

TS-PLS 0.4578 1.0738 0.9987 0.9907

boosting-PLS 0.4526 0.9627 0.9989 0.9928

Carbaryl

full-spectrum PLS 0.9195 1.4138 0.9960 0.9867

TS-PLS 0.5434 1.0791 0.9986 0.9888

boosting-PLS 0.5446 0.7776 0.9975 0.9947

comparison with the case when entire set of data were used 
without wavelength selection. For TS-PLS, the RMSEtest 
values in determination of chlorpyrifos and carbaryl were 
improved by 41.93 and 23.67%, respectively, compared to 
full-spectrum PLS.

Figure 6 shows the influence of the ensemble size and 
the number of samples in each boosting set on the predictive 
power of boosting-PLS in the analysis of chlorpyrifos. As 
indicated in Figure 6, when the ensemble size is smaller 
than 18, the R2 value drops especially when the number of 
samples in each boosting set is lower than 10. Regardless 
of number of samples, increasing the ensemble size causes 
the decrease in the fluctuation of the R2 values. The best 
results obtained when the ensemble size and the number 
of samples were 35 and 25, respectively.

The predicted concentrations of chemicals in the test 
set by boosting-PLS are given in Table 2. The statistical 

parameters of the resulted boosting-PLS are collected 
in Table 3. In Table 3, it can be found that the precision 
of boosting-PLS was superior to full-spectrum PLS and 
even TS-PLS. The boosting-PLS model performance was 
improved by 47.94 and 10.35% compared to full-spectrum 
PLS and TS-PLS, in determination of chlorpyrifos, 
respectively.

Application

To test the practical application of the proposed method 
to the analysis of the considered pesticides, several tap 
water samples spiked with different amounts of these 
pesticides were analyzed by the PLS and boosting-PLS 
approaches. The spectra of each sample after pH adjusting 
were recorded in the range of 250-375 nm. Five replicate 
measurements were made. The results are shown in Table 4. 
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Figure 5. Absorbance spectra of samples in the training set and the selected wavelength in the analysis of chlorpyrifos by TS in three different runs (a-c)

Figure 6. The influence of the ensemble size and number of samples on R2
training of the boosting-PLS model.

Table 4. Results for the determination of the different concentrations of carbaryl and chlorpyrifos spiked in tap watera

Sample

Actual concentration / 
(µg mL-1)

Carbaryl Chlorpyrifos

PLS Boosting-PLS PLS Boosting-PLS

Chlorpyrifos Carbaryl
Predicted 

concentration / 
(µg mL-1)

Recovery / 
%

Predicted 
concentration / 

(µg mL-1)

Recovery / 
%

Predicted 
concentration / 

(µg mL-1)

Recovery / 
%

Predicted 
concentration / 

(µg mL-1)

Recovery / 
%

1 2.00 3.00 1.60 80.0 1.94 97.00 2.50 83.3 3.20 106.67

2 10.00 9.00 9.70 97.0 10.15 101.50 9.60 106.7 8.86 98.44

3 19.00 20.50 19.01 100.1 19.08 100.42 19.40 94.6 21.04 102.63

4 35.00 45.00 33.02 94.3 34.78 99.37 43.10 95.8 45.16 100.36

5 40.00 45.00 36.10 90.3 40.11 100.28 41.50 92.2 44.75 99.44
aRecovery was calculated by ((^x – x)/x)×100, where x and ^x are real concentration and the estimated one, respectively.
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The good agreement between these obtained results and the 
actual values indicates the successful applicability of the 
boosting-PLS approach for the simultaneous determination 
of carbaryl and chlorpyrifos.

Conclusion

Spectrophotometric methods in conjugation with 
chemometric tools such as multivariate calibration, e.g., PLS, 
provided simple analysis methods with high efficiency and 
low time consumption. These techniques are widely used 
for quantitative analysis of multicomponent mixtures with 
overlapping spectra. In this work, three chemometric tools 
including PLS, tabu search-PLS and boosting-PLS were 
used in the simultaneously determination of chlorpyrifos and 
carbaryl. The results revealed that the boosting-PLS approach 
is the best in terms of several performance measures. It 
seems that in a sense, using boosting-PLS can avoid doing 
a wavelength selection before modeling, therefore making a 
calibration more convenience. However, it is worthy to note 
that these conclusions are valid only for this data set. So, 
further investigations have to be made before any general 
conclusion can be drawn.
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