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Interlaboratory comparisons (IC) present a challenge related to multivariate data analysis. 
ISO 13528:2015 is a reference document for interlaboratory comparisons. This standard does 
not provide descriptions of statistical methods for multivariate analysis and, according to our 
best knowledge, there is no practical guidance for the organizing and evaluation of multivariate 
data analysis for interlaboratory comparisons available. Due to this reason, some researchers 
have made efforts to develop methodologies that make it possible to analyze multivariate data 
in IC. Generally, these approaches are based on dimensionality-reduction methods like principal 
component analysis. This paper proposes a new approach to reduce the dimensionality of large 
data set and check the performance of laboratories based on multidimensional scaling (MDS) and 
robust confidence ellipse/ellipsoid (RCE). MDS is a multivariate analysis technique that allows 
grouping laboratories according to their similarity in a Euclidean space. On the other hand, RCE 
is a statistical method for outlier detection in a multivariate data set. In this work, it is proposed 
to combine MDS and RCE to evaluate laboratory proficiency in interlaboratory comparison. This 
methodology was compared with the multivariate z-score and both methodologies identified the 
same outlying laboratories. This preliminary result indicates that MDS/RCE is promising for 
classifying IC results.
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Introduction

Interlaboratory comparison (IC) seeks to assess the 
performance of a given measurement method. To organize 
an IC, the same or similar items test are sent to each 
participating under predetermined conditions.1 In some 
cases, the reported results by participants are multivariate 
data and univariate techniques are not suitable to analyze 
this kind of data.2 For this situation, multivariate analysis 
techniques can be used for investigating the inherent 
structure of data without losing valuable information of 
measurement.

Multivariate analysis, in a general way, refers to all 
statistical methods that simultaneously analyze multiple 
measures in each individual or object (in this case 
laboratory).3 The official document for interlaboratory 
comparison, ISO 13528:2015,1 does not provide descriptions 
for multivariate analysis. Due to this gap left by the official 
document, some researchers have been proposed many 
ways to realize multivariate data analysis in interlaboratory 

comparison. Sheen et al.2 have proposed multivariate 
z-score to identify outlying laboratory results.

In the proposed methodology by Sheen et al.,2 the 
spectra should be grouped so that the cluster  consists of 
multiple nuclear magnetic resonance (NMR) spectra of 
the k-th sample provided by the participants. From these 
clusters, the interspectral distance matrix Dk is calculated, 
whose elements are the distances Dij,k = d(si,k, sj,k) where 
si,k is the spectrum of laboratory i, sj,k is the spectrum of 
laboratory j (both belonging to the conglomerate Sk) and 
d(.) is a multivariate distance measure. The authors suggest 
Euclidean, Mahalanobis, Hellinger, Kullback-Leibler, 
Jensen-Shannon and Jeffreys distances.2

Based on the values Dij,k, the average distance 
 is computed. The  values need to be 

fitted to a given probability distribution for each laboratory 
i. After this step, the matrix Z is obtained, where Zi is 
the z-score vector of the i-th laboratory. The vector Zi is 
obtained by  where Ck is the cumulative 
distribution function after being fitted to the conglomerate k 
and C* is the corresponding standard distribution function.2

In this approach, the next step is to perform the principal 
component analysis (PCA) on the Z matrix. In the PCA 
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model, T = ZPt where T is the matrix of the scores of the 
principal components and P is the matrix of the loadings. 
The most significant L principal components are identified 
by obtaining TL = ZPL

t. For each participant, the Euclidean 
norm ||Ti,L|| is calculated and these statistical distances are 
adjusted to a new probability distribution with distribution 
function Ĉ.2

This new distribution has a z-score associated with 
it. The authors called the projected statistical score ( ).  
This score is calculated using . If any 

 value falls outside the 95% confidence interval, the 
corresponding laboratory  is considered an outlier and 
removed from the data set. The process is repeated until no 
dataset falls outside the 95% confidence interval.2 In this 
study, 10 participants provide a one-dimensional 1H NMR 
spectrum and three of them were identified as outlying by 
the proposed methodology.

Another approach to deal with multivariate data 
was proposed by Viant et al.4 It was proposed principal 
component analysis (PCA) to clustering participating 
results. The items test sent to laboratories were synthetic 
metabolite mixtures and European flounder liver extracts 
(biological) from clean and contaminated sites. The 
goal of the intercomparison exercise was to evaluate 
the effectiveness of 1H NMR metabolomics to generate 
comparable data sets from environmentally derived 
samples and each participant provides a one-dimensional 
spectrum. The associated PCA scores plots were used 
to visually assess if individual laboratories could reveal 
which metabolites discriminated the synthetic mixtures 
and biological samples. In both cases, the PCA approach 
allows concluding that there was a high degree of similarity 
across all laboratories. The comparability and precision of 
the laboratories participating were good, reflecting good 
results from NMR spectra.4

Gallo et al.5 have proposed a new performance index, 
named Qp-score, to assess the laboratory performance in 
multi-component analyses. Eight nuclear magnetic resonance 
signals (3 for aldicarb, 1 for methamidophos, 2 for oxadixyl, 
and 2 for pirimicarb) were obtained by 36 participants in 
interlaboratory comparison. It was proposed the following 
parameter:  where ai is the slope of the 
calibration line determined by the i-th participant,  is 
the consensus slope value, and sslope is the inter-laboratory 
standard deviation on slopes. The Qp -score is considered 
satisfactory when |Qp|  ≤ 2, questionable when 2 < |Qp| < 3  
and unsatisfactory when |Qp| ≥ 3. The proposed methodology 
allows classifying the reported results by participants in 
each NMR signal. In general, 9 laboratories were classified 
as unsatisfactory, 2 were classified as questionable and 25 
were classified as satisfactory.5

Other authors reported multivariate data analysis 
by PCA in interlaboratory comparisons. Danzer et al.6, 
Henrion7 and, Škrbić et al.8 suggested PCA to identify 
outlying laboratories in interlaboratory comparison. 
Minkkinen9 proposes principal components score plot to 
visualize the variation of the results between and within 
laboratories. Heininger et al.10 have proposed PCA to group 
the laboratories and identify the type of method used to 
analyze the samples by each participants. Aoki  et  al.11 
proposed multiple hypothesis testing to assess the 
equivalence among the laboratories measurements with 
respect to the reference laboratory. The authors suggest 
build a confidence regions between each participating and 
reference laboratory based on Wald statistic.11

This paper proposes a new procedure to assess the 
performance of interlaboratory comparisons that are 
different from the methodologies mentioned above. A 
new methodology is derived from the concepts of outlying 
detection in two- and three-dimensional Euclidean space. 
The methodology is based on following steps.

Initially the data (Figure 1a) is arranged as matrix 
Xn×p where n represents the number of variables, that 
is, the chemical shift of the spectrum provided by i-th 
laboratory and p represents the number of participants in 
the interlaboratory comparison (Figure 1b).

The second step refers to performing a multidimensional 
scaling (MDS) on the multivariate data to transform them 
into a dimension that can be used to visualize the results 
of the laboratories in two or three dimensions. After 
that, a confidence limit based on a robust confidence 
ellipse/ellipsoid (RCE) is plotted to identify outlying 
laboratory result (Figures 1c and 1d). Points outside of 
robust confidence ellipse/ellipsoid provide evidence that 
laboratory result is an outlier with a specific confidence 
level (95%, for example). On the other hand, points inside 
of RCE are not considered outlying result with same 
confidence level.

Multidimensional scaling is a multivariate technique 
that allows revealing “hidden” structures in a multivariate 
data set.12 In other words, it is a method that allows 
visualizing the similarity/dissimilarity among laboratories 
participating in an interlaboratory comparison which are 
represented as points in a two- or three-dimensional space.13 
The proximity/distance between the points represents the 
similarity/dissimilarity among laboratories.13

Robust confidence ellipse/ellipsoid is a multivariate 
analysis technique for outlier detection. A confidence region 
is built from the variance-covariance matrix of original 
data set, which allows identifying if there are laboratories 
that differ statistically from the others at some specific 
significance level.14
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The combination of these two techniques (Figure 1) 
constitutes the proposal for evaluating the performance of 
the results reported by the participants.

Methodology

Data set

The data used in this study can be obtained from the 
available data set described by Sheen et al.2 In this data set, 
an interlaboratory comparison was carried out to assess the 
effectiveness of 1H NMR metabolomics. Seven laboratories 
from the United States, one from Canada, one from the 
United Kingdom, and one from Australia participated in 
the intercomparison. Mixtures of synthetic metabolites 
and samples of biological origin from liver extracts of 
European flounder from clean and contaminated sites were  
analyzed.4

The data described by Sheen et al.2 refers to adult 
female European flounder collected from Tyne in the 
United Kingdom. This is a biological sample selected from 
a polluted site. The fish were sacrificed, liver tissues were 
dissected, snap-frozen in liquid nitrogen, and stored at 
-80 °C until extraction by IC participating.4 The samples 
were extracted using methanol:chloroform:water method 
and Precellys-24 bead-based homogenizer (Stretton 
Scientific Ltd., U.K.).4

Each participating laboratory obtained a one-
dimensional 1H NMR spectrum. The spectra are reported 
as chemical shift frequencies with a range from 10.0 to 
0.2 ppm. The region from 4.7 to 5.2 ppm was excluded 

due to water solvent suppression artifacts and the NMR 
spectra were renormalized. The spectra were binned with 
a bin width of 0.005 ppm, for a total of 1860 variables in 
each spectrum.2

In this work, the multivariate techniques of multi-
dimensional scaling and robust confidence ellipse/ellipsoid 
(Figures 1c and 1d) were explored to assess the performance 
of laboratories participating in a laboratory intercomparison 
classifying them as outlier or not. The basis for the 
development of this methodology is described below.

Multidimensional scaling

Let p be the number of different laboratories (Figure 1b) 
and dij the dissimilarity between laboratories i and j. The 
coordinates are gathered in the matrix Xn×p where n is the 
dimensionality of the solution to be specified. Thus, the 
column i of Xn×p provides the coordinates of the laboratory i 
(Figure 1b). Let dij(X) be the Euclidean distance (most 
used)15,16 between columns i and j defined as:

 (1)

which is the shortest distance between laboratories i and j. 
In the equation 1, xis is the spectrum of laboratory i and xjs 
is the spectrum of laboratory j.

The Euclidean distance is more favorable in visual 
representations because a more isotropic display is 
obtained using it.17 The purpose of multidimensional 
scaling is to find an Xn×p matrix that dij(X) is equal to dij 
as much as possible.13 

Figure 1. The proposed methodology: (a) multivariate reported spectrum by each participating; (b) multivariate data set organized in matrix where the first 
column contains the chemical shift and the remaining columns contain the spectra reported by each participant; (c) multidimensional scaling combined 
with robust confidence ellipse (MDS/RCE 2D); (d) multidimensional scaling combined with robust confidence ellipsoid (MDS/RCE 3D).
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To obtain this matrix, the least squares MDS model is 
used, which consists of minimizing the equation:

 (2)

where wij is a user defined weight which must be 
nonnegative. The minimization problem of s2(X) is quite 
complex and it is necessary to use interactive algorithms to 
find the matrix Xn×p that minimizes s2(X). The most used 
for the solution of this is the SMACOF algorithm.12,13,18

Robust confidence ellipse

After applied MDS technique, the dimensionality data 
was reduced for two or three dimensions. The following 
step is identifying the outlying laboratories by robust 
confidence ellipse (Figure 1c).

The robust confidence ellipse is built from the matrix 
equation:

  (3)

where  is the vector of robust means; 
F2;(n–1);(1–α)  is the quantile of the Fisher-Snedecor distribution 
with 2 and (n – 1) degrees of freedom and confidence 
level of (1 – α)%; Q is the Cholesky decomposition of the 
robust variance-covariance matrix Srob.18,19 Both  and 
Srob are estimated by the iterative process described in the 
next section.

The matrix U is the unit circle defined by

 (4)
 

where a = [a1 … am] is a vector of size m (0 ≤ a ≤ 2π).

Robust means ( ) and variance-covariance matrix (Srob)

The vector of robust means  and the variance-
covariance matrix Srob, for bi-dimensional data set, 
mentioned in the previous sub-section, are fitted from the 
following iterative process.19 Let (x; y) a bi-dimensional 
data set.

 (5)

Step (i):  and wi = 1 + p/υ ∀ i = 1, …, n where 
p is the number of variables and υ is degree of freedom of 
multivariate t distribution.

Step (ii): compute the matrix:

 (6)

Step (iii): compute the singular value decomposition of 
matrix A, svd(A) = USVT, where:

 (7)

Step (iv): compute the matrix:

 (8)

where,

 (9)

Step (v): compute the vector Q = [Q1  …  Qn] = 
[(w’11)2 + w’12)2  …  (w’n1)2 + w’n2)]

Step (vi): compute the new weights:

    ∀ i = 1, …, n (10)

Step (vii): compute the robust vector of means:

 (11)

Step (viii): the new fitted vector  and the weights 
wi

* are used to obtain new values in step (i) (  and 
wi = wi

* ). This procedure is repeated until the values of wi
* 

converge, that is, |wi – wi
*| < ε.

Step (ix): compute the robust variance-covariance 
matrix Srob.19

 (12)
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Robust confidence ellipsoid

It is recommended to investigate through the robust 
confidence ellipsoid (Figure 1d) the possible presence 
of outliers that were not identified in the 2D analysis 
mentioned in previous sub-section.

The robust confidence ellipsoid is built from an equation 
analogous to the robust confidence ellipse:

 (13)

where  is the vector of robust means; 
F3;(n–1);(1–α) is the quantile of the Fisher-Snedecor distribution 
with 3 and (n – 1) degrees of freedom and confidence 
level of (1 – α)%; Q is the Cholesky decomposition of the 
robust variance-covariance matrix. Furthermore,  and 
Srob are estimated analogous to iterative process described 
in previous sub-section.

The m × 3 matrix U is the sphere of radius 1 defined by:

 (14)

where θ = [θ1  …  θm] is a vector of size m (0 ≤ θ ≤ 2π) and 
φ = [ϕ1  …  ϕm] is a vector of size m (0 ≤ φ ≤ π).18

Software

All statistical analyses were performed using the R 
statistical software, an open-source free environment for 
statistical computing and graph creation.18 The 2D plot 
analysis (Figure 1c) was built using the R packages (CAR 
and STATS).18 In addition, an R code was built to define 
which points obtained in the multidimensional scaling 
technique were outside the robust confidence ellipse. The 
MASS R package18 was necessary for this purpose.

Regarding the 3D analysis (Figure 1d), the plot was built 
using PLOTLY R package18 which is a graphing library 
that makes interactive plots. It is worth pointing out that 
to build the robust confidence ellipsoid it was necessary 
to develop an R code based on the dataEllipse R function 
from CAR R package.18 Moreover, an R code was built to 
identify outlying results. This code also depends on the 
MASS R package.18

Results and Discussion

The results of the participants (Figure 1a) were arranged 
in a matrix with 1860 rows and 10 columns (Figure 1b). 
The columns contain the results of the participants in which 
each column is the spectrum reported by the i-th participant. 
The lines represent the variables (chemical shift in ppm).

It should be noted that this is the first study combining 
multidimensional scaling and robust confidence ellipse/
ellipsoid (MDS/RCE) to evaluate laboratory proficiency 
in interlaboratory comparison. In order to validate the 
methodology suggested in this article, the MDS/RCE 
results will be compared with multivariate z-score results 
obtained by Sheen et al.2

In the proposed methodology, the two-dimensional 
multidimensional scaling provides a location in Euclidean 
space of each laboratory participating according to 
similarity/dissimilarity between 1H NMR spectra. 
Additionally, the two-dimensional robust confidence 
ellipse allows identifying if there is an outlier spectrum 
(Figure 1c). The Figure 2 presents the results obtained by 
two-dimensional approach.

It can be seen in Figure 2 that the laboratory 7042 
is located out of ellipse. This provides evidence that its 
result differs statistically from other participants. At 5% 
significance level (Figure 2) the spectrum reported by 
laboratory 7042 is classified as an outlier when compared 
to other participants. On the other hand, laboratories that 
are located within the robust confidence ellipse do not 
differ statistically from each other. In this case, there is 
no evidence that the results reported by these participants 
are outliers.

The following step is analyzing the three-dimensional 
limit according to Figure 1d. The 3D plot allows seeing an 
outlier result that is “hidden” in the 2D plot. In other words, 
the three-dimensional approach provides more information 
about participating performances.

Figure 2. Multidimensional scaling from 1H NMR spectra reported by 
participating and 95% robust confidence ellipse (2D plot).
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It can be seen from Figure 3 that more laboratories show 
results that differ from the others (at the 5% significance 
level) when compared to the bi-dimensional plot showed 
in Figure 2. Altogether there are three laboratories (0714, 
7042, and 9541) out of ellipsoid which means that their 
results may be considered outliers, that is, statistically 
different from the others. The rest, inside the ellipsoid, do 
not differ statistically from each other. By an analogous 
reasoning followed for the univariate z-score suggested by 
ISO 13528:2015,1 performance assessment by the MDS/
RCE is considered acceptable when results are inside of 
ellipse/ellipsoid and unacceptable when results are outside.

The confidence level adopted to consider the reported 
result as an outlier was 95% in 2D (Figure 2) and 3D 
(Figure 3) plot analysis.

In some cases, two (Figure 1c) and three (Figure 1d) 
dimensional analysis can provide the same conclusions, 
however, there are situations where this does not occur 
(such as Figures 2 and 3). In this situation, the two-
dimensional analysis differs from the three-dimensional 
analysis, thus the latter must be adopted because it offers 
a more comprehensive (and reliable) analysis of the 
participants’ results.

In the multivariate z-score approach suggested by 
Sheen  et al.,2 the interspectral distance matrix Dk was 
obtained from the Kullback-Leibler, Mahalanobis, 
Hellinger and Jensen-Shannon distances. The  values 
were fitted to a lognormal distribution. The choice of 
this probability distribution was based on the Q-Q plot. 
Additionally, according to the authors, the lognormal is 
the maximum entropy distribution for a specified mean 
and standard deviation.2

Each Zi,k value is an indication of where the si,k spectrum 
is in relation to the others in the Sk cluster. In the case of the 
lognormal distribution, Zi,k(1/2) = 1 and Zi,k(0.95) ca. 5. In 

this context, Zi,k = 1 indicates that si,k is closer to the center 
of Sk while Zi,k greater than 5 indicates that si,k is outside the 
range 95% confidence in the conglomerate Sk.2

The ||Ti,L|| values were fitted to a lognormal distribution 
and the projected statistical score  was calculated for each 
data set. The scores calculated from the Kullback-Leibler, 
Mahalanobis, Hellinger, and Jensen-Shannon distances 
showed evidence that participants 0714, 7042 and 9541 
reported results (spectra) are outliers.2

The methodology based on multidimensional scaling 
combined with the robust confidence ellipse/ellipsoid 
(Figure 1) identified the same outlying participant results as 
the multivariate z-score method proposed by Sheen et al.2 
The main advantage of the methodology proposed in this 
article is that it does not depend on choosing a probability 
distribution. This provides evidence that MDS/RCE has 
potential to be considered as performance evaluation 
method in interlaboratory comparisons.

Conclusions

In this paper, it was proposed a new approach to analyze 
multivariate data from interlaboratory comparisons. The 
methodology combines multidimensional scaling and 
robust confidence ellipse/ellipsoid to identify an outlying 
laboratory result. The results obtained by the methodology 
suggested in this work were compared with the results 
obtained by the multivariate z-score method described by 
Sheen et al.2 The MDS/RCE method found the same three 
outlying laboratories (0714, 7042, and 9541) identified in the 
multivariate z-score method. The proposed methodology has 
the advantage in relation to the latter of not depending on the 
choice, sometimes subjective, of a probability distribution.

This approach proved to be promising as a performance 
evaluation method for multivariate data analysis in 
interlaboratory comparison. It should be noted that this 
methodology can be used, in a similar way, to evaluate the 
performance of laboratories participating in proficiency 
testing scheme. In this approach, it is suggested classifying 
the participating laboratory results located outside of 
robust confidence ellipse/ellipsoid as unacceptable and 
inside as acceptable like univariate z-score showed in ISO 
13528:2015.

The proposed method therefore constitutes a valuable 
tool that contribute to filling a gap in the literature 
regarding the multivariate data analysis in interlaboratory 
comparisons and proficiency trials. Other multivariate data 
analysis techniques like factor analysis and Kohonen’s self-
organizing map, for example, are multivariate techniques 
that can be considered in future works for performance 
assessment tool in interlaboratory comparisons.

Figure 3. Multidimensional scaling from 1H NMR spectra reported by 
participating and 95% robust confidence ellipsoid (3D plot).
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