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This work developed an effective and eco-friendly analytical method to support quality control 
for Brazilian Bill proposal No. 5332/2009. The bill advocates the creation of the “Brazilian bread” 
by mandating the incorporation of cassava byproducts into wheat flour, with the aim of reducing 
Brazil’s external dependency on wheat imports and promoting domestic cassava family farming. 
For this, a handheld near-infrared (NIR) spectrophotometer was utilized for on-site determination of 
cassava starch in commercial wheat flour. The quantitative analysis, which utilized NIR spectra pre-
processed with offset correction (OFF) combined with linear baseline correction (LBC), alongside 
the successive projections algorithm for interval selection in partial least squares (iSPA‑PLS), 
exhibited superior predictive capability, achieving a relative error of prediction below 8%. 
Furthermore, the classification process, which involved NIR spectra pre-processed with LBC and 
iSPA-PLS for discriminant analysis (iSPA-PLS-DA), yielded an impressive 94% overall accuracy, 
with only 3 misclassifications in the test set.
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Introduction

For centuries, bread has been a global cultural staple, 
typically made from wheat flour, water, and yeast, providing 
essential nutrients such as fiber, carbohydrates, and proteins 
in the human diet.1,2 Bread typically uses wheat flour, a mix 
of enzymes, non-starch and starch polysaccharides, lipids, 
and gluten. Starch, a primary element, acts as a stabilizer, 
thickener, and binder in baked goods, replacing fat. Wheat 
flour’s standout feature lies in its gluten proteins, enabling 
it to form a viscoelastic dough with gas retention ability, 
mixing tolerance, stretch resilience, and flexibility, crucial 
for high-quality wheat-based baking.1,3

Concerns about gluten safety in bread and gluten-
containing foods have risen, leading to the promotion 
of gluten-free diets for better health. However, evidence 

disproves a link between gluten intake and appetite 
stimulation or weight gain. While most people can safely 
consume gluten-containing grains without experiencing 
health repercussions, some wheat peptides containing 
toxic epitopes may trigger celiac disease in genetically 
susceptible individuals.4 In such a scenario, to avoid gluten 
intolerance, various ingredients like refined rice flour, 
cornmeal, corn, potato, and cassava starches have been 
alternatively used to prepare commercial gluten-free bread. 
Frequent ingestion of these items may increase health risks, 
such as nutrient deficiencies due to low protein, fiber, and 
micronutrient content, and chronic diseases due to their 
high glycemic impact. Furthermore, gluten-free flours lead 
to subpar bread characterized by rapid staling, poor texture, 
and unsatisfactory taste.1

Alternatively, the partial replacement of wheat flour 
by different cassava byproducts, including refined flour, 
shaving flour, and starch, has been already reported in the 
literature. Bread prepared by the addition of approximately 
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20% cassava flour to wheat flour did not cause adverse 
sensory effects.5,6 In another study,7 the sensory texture 
attributes were not significantly affected when the bread 
contained up to 30% of cassava byproduct mixed with 
wheat flour. More recently, Akintayo et al.8 prepared 
bread from a wheat-cassava blend with added gluten, 
demonstrating similarities to wheat bread in terms of 
volume and firmness. Meanwhile, bread made from cassava 
flour with added gluten exhibited comparable crust color, 
texture, and overall acceptability to wheat bread.

In view of the above, the proposal of Bill No. 5332/2009 
of the Brazilian Chamber of Deputies that creates the 
called “Brazilian bread” by compulsory addition of cassava 
byproducts to wheat flour purchased by the Brazilian 
Government may become viable.9 It foresees the initial 
compulsory addition of 3% until reaching 10% after the 25th 
month of validity of the new law.9 This bill aims to reduce 
the external dependency of Brazil on wheat imports, as 
domestic production remains insufficient to meet internal 
demands. Additionally, it seeks to promote increased 
cassava consumption, thereby supporting family farming. 
Despite nearly doubling wheat production between 2017 
and 2022, Brazil experienced a decline from 10.8 million 
tons in 2022 to 8.1 million tons in 2023, coupled with an 
increase in imports from 4.5 million tons to 6.0 million 
tons.10 This decrease aligns with uncertainties in the global 
wheat market due to the war between Russia and Ukraine, 
which accounted for nearly 30% of global wheat exports 
in 2021.11 Additionally, the post-COVID-19 pandemic 
scenario, an energy crisis, shipping constraints, and recent 
climate-induced extreme events are other relevant factors 
that may lead to soaring wheat prices, reduced trade, and 
severe food insecurity. Therefore, this bill aligns with 
Brazil’s Sustainable Development Goal No. 2, aiming to 
end hunger, achieve food security, improve nutrition, and 
promote sustainable agriculture.11,12

Regarding the literature, several analytical techniques 
have been explored to authenticate the geographical 
origin, variety, farming type (conventional or organic), 
and discriminate wheat grain and flour from other cereals/
adulterants. These encompass the use of isotopic, multi-
elemental, genetic, omics, spectroscopic, and image 
analysis combined with qualitative and quantitative 
chemometric methods.13 In this context, near‑infrared (NIR) 
spectroscopy, including hyperspectral imaging (HSI), 
stands out in analyzing wheat flour and wheat-based 
products. It is user-friendly, cost-effective, time-saving, 
and environmentally friendly due to its non-destructive 
and chemical-free nature.3,14,15 However, few studies 
involving the addition of cassava by-products to wheat 
flour have been reported elsewhere using hyperspectral 

images,16 handheld microNIR spectrometer,17 and 
benchtop spectrophotometers.18 In such a scenario, the 
primary constraint initially stemmed from the necessary 
laboratory setup for spectral measurements. Therefore, the 
miniaturization of NIR spectrometers gains prominence 
because it expands compact and portable technology for 
on-site and in-field measurements and can extend their 
use to unconventional user environments in line with the 
principles of “true green analytical chemistry”. These 
devices embody characteristics such as compactness, 
affordability, robustness, user-friendliness, portability, 
and ergonomic design. They are favored by users across 
various fields for their efficiency. Their compact size 
facilitates on-the-go measurements, while affordability 
enhances accessibility. Enhanced robustness ensures 
consistent performance, while user-friendly interfaces 
simplify operation. Their portability seamlessly integrates 
into diverse workflows, and ergonomic designs prioritize 
user comfort, rendering them indispensable for efficient, 
cost-effective analyses tailored to specific requirements. As 
a result, this facilitates enhanced precision, efficiency, and 
speed in conducting food integrity checks, thereby ensuring 
the quality, safety, and authenticity of the supply chain, as 
demonstrated in recent reviews.19-23

This work aims to develop an analytical method using 
a handheld NIR spectrophotometer and chemometrics 
for the in  situ determination of cassava starch added to 
commercial bread-making wheat flour. The goal is to 
support quality control for the Brazilian Bill proposal 
No. 5332/2009. Traditional full spectrum quantitative 
partial least squares (PLS) and qualitative partial least 
squares discriminant analysis (PLS‑DA) models will be 
compared with variable selection-based models using the 
successive projections algorithm (SPA). The determination 
of cassava starch content involves selecting individual 
variables in multiple linear regression (SPA-MLR) and 
wavelength intervals in PLS (iSPA-PLS). Discrimination 
between pure and cassava starch-containing wheat 
flour is conducted by selecting individual variables in 
linear discriminant analysis (SPA‑LDA) and interval 
selection in PLS‑DA (iSPA‑PLS‑DA). A comprehensive 
description of these SPA-based methods is provided by  
Vallese et al.24

Experimental

Samples and data acquisition

This study involves a total of 45 pure wheat flour 
samples and 80 mixtures of cassava starch and wheat flour 
at eight levels: 3, 5, 7, 10, 15, 20, 25, and 30 mg kg‑1. This 
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sample collection was obtained by blending randomly 
four batches of commercial wheat flour and two batches 
of cassava starch acquired in supermarkets located in 
João Pessoa city, Paraíba State, Brazil. Representative 
and homogeneous portions of the bulk materials were 
efficiently obtained by a quartering process followed by 
a sieving step. Lastly, they were sealed in plastic bags 
and placed in a vacuum desiccator at room temperature 
until analysis.18

NIR spectra from the studied samples were recorded in 
triplicate using a portable DLP NIRscan Nano Evaluation 
Module (Texas Instruments®, Dallas, Texas, USA) in the 
range from 900 to 1700 nm at a room temperature of 
25  ±  1  ºC. The diffuse reflectance measurements were 
performed using a pattern pixel width of 2 nm, a digital 
resolution of 228 wavelength points, by integrating 
32 scans with a Hadamard transform, and using a 
polytetrafluorethylene powder (Sigma-Aldrich, St. Louis, 
MO, USA) as a blank. Only the average spectrum from 
all replicates of each sample was used to construct the 
chemometric models.

Chemometric procedure

Initially, six different pre-processing methods were 
applied to overcome the drawbacks caused by systematic 
variations on the baseline: (i) offset correction (OFF), 
(ii)  linear baseline correction (LBC), (iii)  OFF  +  LBC, 
( iv )   mul t ip l icat ive  scat ter  correct ion  (MSC), 
(v)  standard normal variate transformation (SNV), and 
(vi)  Savitzsky‑Golay first derivative with second-order 
polynomial and 13-points window (SGD).

To determine the cassava starch content in wheat flour, 
56 calibration and 24 prediction samples were chosen 
using the SPXY algorithm. Full spectrum PLS, SPA-MLR, 
and iSPA-PLS (partitioned into 5, 10, 15, and 20 intervals) 
were then assessed. All models underwent validation via 
leave-one-out cross-validation, gauged by the lowest 
root mean square error of cross-validation (RMSECV) 
and the highest correlation coefficient (rcv). Prediction 
samples were solely employed for final data evaluation 
and comparing multivariate calibration models. The 
predictive ability of the models was appraised based on 
root mean square error of prediction (RMSEP), correlation 
coefficient (rpred), relative error of prediction (REP), and 
the ratio performance to deviation (RPD). Additionally, 
an ordinary least squares (OLS) fitting was estimated, and 
the estimated intercept (a) and slope (b) were compared 
(with ideal values of 0 and 1) through the elliptical 
joint confidence region  (EJCR) test to appraise model 
accuracy.25

For qualitative analysis, an exploratory analysis of the 
data was initially performed using principal component 
analysis (PCA). Then, the Kennard-Stone (KS) uniform 
sampling algorithm was used to partition the dataset into 30 
training and 15 test pure wheat flour samples, in addition to 
56 training and 24 test cassava starch-blended wheat flour 
samples.21 The performance of the PLS-DA, SPA-LDA, and 
iSPA-PLS-DA models was compared in terms of sensitivity, 
specificity, efficiency, accuracy, and Matthew’s correlation 
coefficient (MCC):26

	 (1)

	 (2)

	 (3)

	 (4)

	 (5)

where TP: true positive, TN: true negative, FP: false 
positive, and FN: false negative. Sensitivity and specificity 
were calculated, considering the pure wheat flour samples 
as the target class.

All chemometric procedures for data pre-processing, 
data splitting, and multivariate quantitative and qualitative 
modeling were implemented using Matlab 2018b (Natick, 
MA, USA, Mathworks).27

Results and Discussion

Quantification of the cassava starch content in wheat flour
 
Before the construction of the chemometric models, 

NIR spectra of pure wheat flour samples (burgundy lines) 
and wheat flour blended with cassava starch (green lines) 
were pre-processed with offset correction (Figure 1a), linear 
baseline correction (Figure 1b), offset correction coupled 
with linear baseline correction (Figure 1c), multiplicative 
scatter correction (Figure 1d), standard normal variate 
transformation (Figure 1e), and Savitzsky-Golay first 
derivative with second-order polynomial and 13-points 
window (Figure 1f). As can be seen, all pre-processing 
techniques were efficient to remove systematic variations 
on the baseline contained in the NIR spectra. In the 
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following, they were used to construct quantitative PLS, 
SPA-MLR, and iSPA-PLS models for determining the 
cassava starch content added into wheat flour. Table 1 
presents the results of the quantitative analysis obtained by 
the different multivariate calibration models, demonstrating 
the numeric advantage of using these different pre-
processed NIR spectra. 

As observed in Table 1, all PLS models achieved good 
results, regardless of the pre-processing used. They obtained 
RMSECV and RMSEP values consistently well below the 
first level of cassava starch addition of 3 mg kg‑1, while 
the cross-validation and prediction correlation coefficients 
were higher than 0.970. In this context, the OFF + LBC/PLS  
model showed good predictive capability, achieving an 
RMSEP of 1.458 mg kg-1, rcv of 0.984, RPD of 5.511, and 
REP of 8.461%, using 10 latent variables (Figure  2a). 
On the other hand, when individual variable selection is 
performed by SPA-MLR, the predictive capability of all 
generated models is not satisfactory, with RPD values 
below 3 and/or REP values above 16%. An exception 

occurs for the OFF/SPA-MLR model, which, although 
obtaining slightly higher RMSECV and RMSEP values 
than 3 mg kg‑1, achieved the lowest REP value in this study 
(7.058%), along with appropriate rpred of 0.957 and RPD of 
3.204, selecting only 7 individual variables (Figure 2d). For 
iSPA-PLS modeling, all models generally obtained similar 
results in terms of RMSE, r, and latent variables, regardless 
of the pre-processing used. Nevertheless, the selection of 
12 out of 20 intervals by SPA improved the results obtained 
by PLS when OFF+LBC was chosen as pre-processing 
(Figure 2g). In this case, LBC/iSPA-PLS reduced RMSEP 
to 1.376 mg kg-1, REP to 7.987%, and the number of latent 
variables included in the model to 8, while increasing rpred 
to 0.986 and RPD to 5.838. Therefore, the OFF+LBC/
iSPA-PLS model can be defined as the best approach for 
quantifying cassava starch in commercial wheat flour.

For comparison purposes, it is possible to observe that the 
individual variables selected by OFF/SPA-MLR (Figure 2d) 
and the intervals selected by OFF  +  LBC/iSPA-PLS  
(Figure 2g) are in the same regions of the main typical 

Figure 1. NIR spectra of pure wheat flour samples (burgundy lines) and wheat flour blended with cassava starch (green lines) pre-processed with offset 
correction (a), linear baseline correction (b), offset correction coupled with linear baseline correction (c), multiplicative scatter correction (d), standard 
normal variate transformation (e), and Savitzsky-Golay first derivative with second-order polynomial and 13-points window (f).
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vibrational absorption bands assigned to the O–H, N–H, 
and C–H relative to the primary structural components 
of organic compounds present in wheat flour and cassava 
starch, such as water, lipids, and proteins. In both cases, 
most of the selected variables/intervals occur at N–H and 
O–H absorption bands because cassava starch generally 
contains 17% protein (approximate) and 0.1% amylose 
(dry solids), while wheat flour contains 28% protein and 
0.4% amylose, respectively.14,18 Additionally, Figures 2b, 
2e, and 2h illustrate the good distribution of the calibration 
(green circles) and prediction (orange squares) samples 
nearby the bisectrix line in the predicted versus actual 
plots for the quantification of cassava starch in commercial 
wheat flour using OFF + LBC/PLS, OFF/SPA-MLR, and  
OFF  +  LBC/iSPA-PLS, respectively. Undoubtedly, the 

OFF + LBC/iSPA-PLS model provides the most accurate 
result, as confirmed by the smaller size of the joint confidence 
ellipse containing the ideal theoretical point in Figure 2i, 
compared to the others obtained for the OFF + LBC/PLS 
(Figure 2c) and OFF/SPA-MLR (Figure 2f) models. The 
weights obtained from both the OFF  +  LBC/PLS and 
OFF + LBC/iSPA-PLS models (as shown in Figure S1 of 
the Supplementary Information (SI) section) confirmed that 
the enhanced performance of the iSPA-PLS model stems 
from integrating analytical information into the initial eight 
weights. In contrast, the PLS model exhibited increased noise 
in the ninth and tenth weights.

Regarding the literature, Su and Sun16 used hyperspectral 
images (900-1700 nm) for quantitative detection of Irish 
organic wheat flour blended with cassava flour in the 

Table 1. Best results obtained by the different multivariate calibration models for the determination of the cassava starch content in wheat flour using 
different pre-processed NIR spectra

Parameter

RMSECV / 
(mg kg-1)

rCV

RMSEP / 
(mg kg-1)

rPred RPD REP / % LV

Offset correction (OFF)

PLS 1.341 0.989 1.614 0.983 5.440 10.110 9

SPA-MLR (7)a 3.454 0.984 4.631 0.957 3.204 7.058 -

iSPA-PLS (15/8)a 2.381 0.963 1.473 0.989 5.960 9.228 7

Linear baseline correction (LBC)

PLS 1.525 0.986 1.506 0.987 5.470 9.076 8

SPA-MLR (8)a 2.614 0.957 2.807 0.940 2.934 16.921 -

iSPA-PLS (5/4)a 1.634 0.984 1.362 0.989 6.046 8.211 8

Offset correction coupled with linear baseline correction (OFF + LBC)

PLS 1.439 0.987 1.458 0.984 5.511 8.461 10

SPA-MLR (11)a 2.266 0.968 4.429 0.837 1.814 25.706 -

iSPA-PLS (20/12)a 2.009 0.975 1.376 0.986 5.838 7.987 8

Multiplicative scatter correction (MSC)

PLS 2.107 0.970 1.805 0.981 5.054 11.665 7

SPA-MLR (7)a 3.295 0.927 3.871 0.906 2.357 25.017 -

iSPA-PLS (10/8)a 1.973 0.974 1.805 0.982 5.054 11.666 7

Standard normal variate (SNV)

PLS 2.107 0.970 1.805 0.981 5.054 11.665 7

SPA-MLR (7)a 3.308 0.926 3.873 0.906 2.356 25.030 -

iSPA-PLS (5/4)a 2.268 0.966 1.772 0.982 5.150 11.449 7

Savitzky-Golay derivative (SGD)

PLS 1.686 0.981 2.009 0.978 4.429 11.958 7

SPA-MLR (10)a 2.045 0.972 2.894 0.955 3.074 17.227 -

iSPA-PLS (20/18)a 1.641 0.982 1.889 0.981 4.711 11.242 7
aNumber of selected intervals or variables by SPA (e.g., SPA-MLR (10) means 10 individual variables selected by the SPA algorithm, or iSPA-PLS (10/6) 
means 5 intervals selected from 10 by the SPA algorithm). RMSECV: root mean square error of cross-validation; rcv: correlation coefficient for cross-
validation; RMSEP: root mean square error of prediction; rpred: correlation coefficient for prediction; RPD: ratio performance to deviation for prediction; 
LV: latent variables used in the model; REP: relative error of prediction; PLS: partial least squares; SPA-MLR: successive projections algorithm for variable 
selection in multiple linear regression; iSPA-PLS: successive projections algorithm for interval selection in partial least squares. 
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range of 3-75% (m/m). For this, partial least squares (PLS) 
coupled with a first-derivative and mean centering iteration 
algorithm and variable selection based on model regression 
coefficients achieved a determination coefficient of 
prediction (R2

pred) of 0.986 and a root mean square error 
of prediction (RMSEP) of 0.026. Other important figures 
of merit such as RPD and REP were not provided. On the 
other hand, Almeida and co-workers18 employed a benchtop 
NIR spectrometer to quantify the cassava starch content in 
commercial wheat flour in the range of 3 to 30 mg kg-1. The 
best result was attained by PLS using spectra preprocessed 
with the first derivative Savitzky-Golay smoothing with 
a second-order polynomial and 21-point window size, 
reaching a rpred of 0.995, RMSEP of 1.004 mg kg-1, RPDpred 
of 9.682, and REP of 8.665%. Therefore, the results of the 
proposed work stand out for having a lower REP value 
(7.987%), in addition to using a cheaper, easy-to-use, and 
portable instrument.

Discrimination between pure and cassava starch-containing 
wheat flour 

To make an initial exploratory analysis of the 
data, Figure 3 shows the score plots obtained by PCA 
using the NIR spectra were pre-processed with OFF 
(Figure 3a), LBC (Figure 3b), OFF + LBC (Figure 3c), 
MSC (Figure 1d), SNV (Figure 1e), and SGD (Figure 1f). 
As can be seen, there is a good trend in separating among 
the studied samples for all pre-processing used, besides 
existing some overlapping between pure and cassava 
starch-containing wheat flour. The observed patterns 
arise from variances in the chemical composition of 
wheat flour and cassava starch, particularly concerning 
the absorption bands of O–H, N–H, and C–H in relation 
to water, lipids, proteins, and amylose contents.14,18 This 
correlation is evidenced in the loading plots depicted 
in Figure S2 (SI  section). To solve this, discriminant 

Figure 2. Best results of the determination of the cassava starch content in commercial wheat flour using the NIR spectra pre-processed with offset 
correction coupled with linear baseline correction (OFF + LBC), OFF, and OFF + LBC for the construction of the PLS, SPA-MLR, and iSPA-PLS models, 
respectively. The selected number of latent variables in PLS, individual variables in SPA-MLR, and intervals in iSPA-PLS are shown in (a,d,g), respectively, 
along with their respective predicted versus reference plots in (b,e,h) containing the calibration (green circles) and prediction (orange squares) samples, 
and confidence ellipses of the prediction models including the theoretical ideal points in (c,f,i).
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PLS‑DA, SPA‑LDA, and iSPA-PLS-DA models were 
then applied, as detailed in Table 2.

Observing Table 2, the PLS-DA models using OFF, 
MSC, and SNV achieved 100% correct classifications in 
the training set. However, they are clearly overfitted due to 
the high number of latent variables included in the models 
(between 9 and 16). Applying the principle of parsimony, 
when NIR spectra pre-processed with SGD were used 
to construct a PLS-DA model with 6 latent variables 
(Figure 4a), sensitivities were 96.7 and 93.3%, specificities 
were 92.9 and 87.5%, efficiencies were 94.7 and 90.4%, 
accuracies were 94.2 and 89.7%, and MCC values were 
0.88 and 0.79 in the training and test sets, respectively. 
The same results were obtained for the training set using 
the SGD/SPA-LDA model, selecting only 10 individual 
variables (Figure 4c). However, its predictive ability was 
lower, achieving 86.7% sensitivity, 83.3% specificity, 
85.0% efficiency, 84.6% accuracy, and 0.69 MCC. All 
other SPA-LDA models using different pre-processing 
techniques exhibited very poor results, as evidenced by low 

MCC values, at most 0.66 for the training set and 0.50 for 
the test set. It is important to emphasize that MCC serves 
as a crucial metric in binary classification, especially when 
handling an imbalanced distribution of samples among 
classes. A value near +1 indicates a highly satisfactory 
sample assignment for these two classes. Conversely, an 
MCC value close to -1 implies complete misrecognition 
of all samples, while zero might suggest random sample 
assignment.22

For iSPA-PLS-DA, models using OFF, OFF + LBC, 
MSC, and SNV also showed overfitting. Excluding 
these models, the highest MCC values among all studied 
models were obtained using LBC/iSPA-PLS-DA, reaching 
0.92 and 0.84 for the training and test sets, respectively, 
employing only 5 latent variables and selecting only 4 out 
of 15 intervals (Figure 4e). This indicates that only 1 and 3 
pure wheat flour samples were misclassified in the training 
and test sets, respectively, while only 2 wheat flour samples 
containing cassava starch were incorrectly identified as 
pure in the training set. On the other hand, all wheat flour 

Figure 3. PCA score plots obtained using the NIR spectra of pure wheat flour samples (burgundy circles) and wheat flour blended with cassava starch (green 
circles) pre-processed with offset correction (a), linear baseline correction (b), offset correction coupled with linear baseline correction (c), multiplicative 
scatter correction (d), standard normal variate transformation (e), and Savitzsky-Golay first derivative with second-order polynomial and 13-points window (f).
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Table 2. Best results obtained by different classification models in discriminating wheat flour (as containing or not containing cassava) starch using 
different pre-processed NIR spectra

Pre-processing technique
PLS-DA SPA-LDA iSPA-PLS-DA

Training Test Training Test Training Test 

Offset correction (OFF)

30 - 11 4 21 9 8 7 30 - 11 4

- 56 2 22 4 52 2 22 - 56 1 23

Variables in the modela 9 6 9 (5/3)b

Sensitivity / % 100 73.3 70.0 53.3 100 73.3

Specificity / % 100 92.9 92.9 91.7 100 95.8

Efficiency / % 100 82.1 80.6 69.9 100 83.8

Accuracy / % 100 84.6 84.9 76.9 100 87.2

MCC 1.00 0.67 0.66 0.50 1.00 0.73

Linear baseline correction (LBC)

28 2 13 2 22 8 11 4 29 1 12 3

4 52 2 22 8 48 7 17 2 54 - 24

Variables in the modela 6 4 5 (15/4)b

Sensitivity / % 93.3 86.7 73.3 73.3 96.7 80.0

Specificity / % 92.9 91.7 85.7 70.8 96.4 100.0

Efficiency / % 93.1 89.1 79.3 72.1 96.5 89.4

Accuracy / % 93.0 89.7 81.4 72.0 96.5 92.3

MCC 0.85 0.78 0.66 0.50 0.92 0.84

Offset correction coupled with linear baseline correction (OFF + LBC)

30 - 11 4 29 1 11 4 30 - 12 3

2 54 3 21 8 48 5 19 1 55 2 22

Variables in the modela 8 7 16 (5/ 3)b

Sensitivity / % 100 73.3 96.7 73.3 100 80.0

Specificity / % 96.4 87.5 85.7 79.2 98.2 91.7

Efficiency / % 98.2 80.1 91.0 76.2 99.1 85.6

Accuracy / % 97.7 82.0 89.5 76.9 98.8 87.2

MCC 0.95 0.62 0.59 0.43 0.97 0.73

Multiplicative scatter correction (MSC)

30 - 10 5 22 8 8 7 30 - 11 4

- 56 1 23 5 51 5 19 - 56 2 22

Variables in the modela 15 3 10 (5/3)b 

Sensitivity / % 100 66.7 73.3 53.3 100 73.3

Specificity / % 100 95.8 91.1 79.2 100 91.7

Efficiency / % 100 79.9 81.7 65.0 100 82.0

Accuracy / % 100 84.6 84.9 69.2 100 84.6

MCC 1.00 0.68 0.66 0.34 1.00 0.67

Standard normal variate (SNV)

30 - 11 4 22 8 8 7 30 - 11 4

- 56 3 21 5 51 5 19 - 56 3 21

Variables in the modela 16 3 9 (20/7)b

Sensitivity / % 100 73.3 73.3 53.3 100 73.3

Specificity / % 100 87.5 91.1 79.2 100 87.5

Efficiency / % 100 80.1 81.7 65.0 100 80.1

Accuracy / % 100 82.0 84.9 69.2 100 82.0

MCC 1.00 0.62 0.66 0.34 1.00 0.62
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Savitzky-Golay derivative (SGD)

29 1 14 1 29 1 13 2 29 1 13 2

4 52 3 21 4 52 4 20 3 53 4 20

Variables in the modela 6 10 6 (5/4)b

Sensitivity / % 96.7 93.3 96.7 86.7 96.7 86.7

Specificity / % 92.9 87.5 92.9 83.3 94.6 83.3

Efficiency / % 94.7 90.4 94.7 85.0 95.6 85.0

Accuracy / % 94.2 89.7 94.2 84.6 95.3 84.6

MCC 0.88 0.79 0.88 0.69 0.90 0.69
aThe number of latent variables in PLS-DA-based models or selected variables in SPA-LDA models; bthe number of selected intervals used for the 
iSPA‑PLS‑DA model construction is indicated in parenthesis (e.g., iSPA-PLS-DA (15/4) means 4 intervals selected from 15 by the SPA algorithm). 
PLS‑DA: partial least squares discriminant analysis; SPA-LDA: successive projections algorithm for variable selection in linear discriminant analysis; 
iSPA-PLS-DA: successive projections algorithm for interval selection in partial least squares discriminant analysis; MCC: Matthew’s correlation coefficient. 

Table 2. Best results obtained by different classification models in discriminating wheat flour (as containing or not containing cassava) starch using  
different pre-processed NIR spectra (cont.)

samples containing cassava starch were correctly classified 
in the test set. In other words, this implies sensitivities 

were 96.7 and 80.0%, specificities were 96.4 and 100%, 
efficiencies were 96.5 and 89.4%, accuracies were 96.5 

Figure 4. Best results of the classification between pure wheat flour samples (burgundy circles) and wheat flour blended with cassava starch (green circles) 
using the NIR spectra pre-processed with Savitzsky-Golay first derivative with second-order polynomial and 13-points window (SGD), SGD, and linear 
baseline correction for the construction of the PLS-DA, SPA-LDA, and iSPA-PLS-DA models, respectively. The selected number of latent variables in 
PLS-DA, individual variables in SPA-LDA, and intervals in iSPA-PLS-DA are shown in (a,c,e), respectively, along with their respective response plots in 
(b,d,f). The orange horizontal line representing the interclass boundary.
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and 92.3%, and MCC values were 0.92 and 0.84 in the 
training and test sets, respectively. For illustration and 
comparison, Figures 4b, 4d, and 4f show the classification 
results obtained by the SGD/PLS-DA, SGD/SPA-LDA, 
and LBC/iSPA-PLS-DA models with the projections of 
the pure (burgundy circles) and cassava starch-containing 
(green circles) wheat flour, with the orange horizontal line 
representing the interclass boundary.

Regarding the literature, Tao et al.17 employed a 
handheld microNIR spectrometer (1150-2150 nm) to detect 
cassava flour adulteration in wheat flour at five levels of 5, 
10, 20, 30 and 40% using PCA-LDA and PLS-DA. The two-
class discriminant models attained predictive accuracies 
exceeding 95.00% in distinguishing between pure and 
adulterated wheat flour. In the case of six-class discriminant 
models, only wheat flours without cassava flour achieved 
100% accuracy. Samples with additions from 5 to 40% 
cassava flour displayed accuracies ranging from 56.25 to 
100%. Almeida and co-workers18 used a benchtop NIR 
spectrometer (10000 to 4000 cm-1) authenticate wheat flour 
for bread-making against additions of the cassava starch at 
eight different levels (3 to 30% (m m-1)) using data-driven 
soft independent modelling of class analogy (DD-SIMCA) 
as a one-class classifier. The best result was achieved using 
7 principal components, reaching 95.5% sensitivity in the 
training and 100% sensitivity and specificity in the test set. 
Since the cassava starch content is higher (5 to 40%) in the 
study developed by Tao et al.,17 the chemometric approach 
involving class modeling rather than discriminant analysis 
in the work of Almeida and co-workers18 is different, it is 
not suitable to make any comparison with the proposed 
work. However, it is worth emphasizing the advantage of 
using a compact device for this purpose.

Conclusions

This study highlights the potential of a portable NIR 
spectrometer for analyzing commercial bread-making 
wheat flour blended with cassava starch, offering both 
quantitative and qualitative insights. The use of interval 
selection through SPA significantly enhanced the model 
performance of both types of analysis. Exploring spectral 
information in an automatic and unbiased manner, 
particularly in –OH and –NH absorption bands related to 
water, protein, and amylose, proved crucial for success. 
The robust results demonstrated effective cassava starch 
quantification and wheat flour classification (as containing 
or not containing cassava starch), following the principles of 
Green Analytical Chemistry. This contributes to Sustainable 
Development Goal 2 and aligns with the objectives of the 
Brazilian Bill proposal No. 5332/2009, aiming to reduce 

wheat imports and promote domestic production and 
consumption of cassava, thereby supporting family farming. 
The proposed method ensures non-destructive quality 
control for the raw material used in producing the future 
“Brazilian bread,” providing a reliable and environmentally 
conscious analytical solution.

Supplementary Information 

Supplementary data are available free of charge at  
http://jbcs.sbq.org.br as PDF file.

Acknowledgments

Dâmaris N. C. Candeias gratefully acknowledges 
Coordenação de Aperfeiçoamento de Pessoal de Nível 
Superior (Capes, Brazil). David Douglas S. Fernandes is 
thankful to Fundação de Apoio à Pesquisa do Estado da 
Paraíba (FAPESQ, Brazil). Paulo Henrique G. D. Diniz also 
thanks Conselho Nacional de Desenvolvimento Científico 
e Tecnológico (CNPq, Brazil) (grant No. 409246/2023-9).

Author Contributions

Dâmaris N. C. Candeias was responsible for methodology, 

investigation, formal analysis, writing original draft; Sara Regina R. 

C. de Barros for methodology, investigation, visualization, writing 

original draft; Wellington S. Lyra for methodology, investigation, 

visualization, writing original draft; David Douglas S. Fernandes 

for software, formal analysis, validation, visualization, data 

curation, writing original draft; Paulo Henrique G. D. Diniz for 

conceptualization, data curation, supervision, funding acquisition, 

project administration, writing original draft, review and editing.

References

	 1.	 Vinod, B. R.; Asrey, R.; Rudra, S. G.; Urhe, S. B.; Mishra, S.; 

Food Chem. Adv. 2023, 3, 100473. [Crossref]

	 2.	 Dahiya, S.; Bajaj, B. K.; Kumar, A.; Tiwari, S. K.; Singh, B.; 

Process Biochem. 2020, 99, 290. [Crossref]

	 3.	 Badaró, A. T.; Tavares, J. P. H.; Blasco, J.; Aleixos-Borrás, N.; 

Barbin, D. F.; Food Control 2022, 140, 109115. [Crossref]

	 4.	 Brouns, F.; Geisslitz, S.; Shewry, P. R.; J. Cereal Sci. 2022, 105, 

103447. [Crossref]

	 5.	 Begum, R., Rakshit, S. K., Rahman, S. M. M.; Int. J. Food Prop. 

2011, 14, 185. [Crossref]

	 6.	 Eddy, N. O.; Udofia, P. G.; Eyo, D.; Afr. J. Biotechnol. 2007, 

6, 2415. [Crossref]

	 7.	 Jensen, S.; Skibsted, L. H.; Kidmose, U.; Thybo, A. K.; LWT 

2015, 60, 292. [Crossref]

	 8.	 Akintayo, O. A.; Oyeyinka, S. A.; Aziz, A. O.; Olawuyi, I. F.; 

https://doi.org/10.1016/j.focha.2023.100473
https://doi.org/10.1016/j.procbio.2020.09.002
https://doi.org/10.1016/j.foodcont.2022.109115
https://doi.org/10.1016/j.jcs.2022.103447
https://doi.org/10.1080/10942910903160406
https://doi.org/10.5897/AJB2007.000-2379
https://doi.org/10.1016/j.lwt.2014.08.037


Assessing the Quality of Wheat Flour Blended with Cassava Starch Using a Handheld NIR Spectrophotometer and Chemometrics Candeias et al.

11 of 11J. Braz. Chem. Soc. 2025, 36, 1, e-20240090 

Kayode, R. M. O.; Karim, O. R.; J. Food Sci. 2020, 85, 2310. 

[Crossref]

	 9.	 Câmara dos Deputados, Brasil, Projeto de Lei No. 5332/2009, 

Cria o “Pão Brasileiro”, a Ser Produzido com Farinha de Trigo 

Adicionada de Farinha de Mandioca Refinada, de Farinha de 

Raspa de Mandioca ou de Fécula de Mandioca, Adquiridos 

Pelo Poder Público, e Estabelece Regime Tributário Especial 

Para a Farinha de Trigo Misturada, e dá Outras Providências; 

Brasília-DF, 2009. [Link] accessed in May 2024

	 10.	 Companhia Nacional de Abastecimento (CONAB); 

Acompanhamento da Safra Brasileira Grãos-Safra 2023/24, 

4º Levantamento; CONAB: Brasília, DF, Brazil, 2024. [Link] 

accessed in May 2024

	 11.	 Lin, F.; Li, X.; Jia, N.; Feng, F.; Huang, H.; Huang, J.; Fan, 

S.; Ciais, P.; Song, X.-P.; Global Food Sec. 2023, 36, 100661. 

[Crossref]

	 12.	 Behnassi, M., El Haiba, M.; Nat. Hum. Behav. 2022, 6, 754. 

[Crossref] 

	 13.	 Liu, H.-Y.; Wadood, S. A.; Xia, Y.; Liu, Y.; Guo, H.; Guo, B.-L.; 

Gan, R.-Y.; Crit. Rev. Food Sci. Nutr. 2023, 63, 33. [Crossref] 

	 14.	 Zhang, S.; Liu, S.; Shen, L.; Chen, S.; He, L.; Liu, A.; Curr. 

Res. Food Sci. 2022, 5, 1305. [Crossref]

	 15.	 Du, Z.; Tian, W.; Tilley, M.; Wang, D.; Zhang, G.; Li, Y.; Compr. 

Rev. Food Sci. Food Saf. 2022, 21, 2956. [Crossref] 

	 16.	 Su, W.-H.; Sun, D.-W.; J. Food Eng. 2017, 200, 59. [Crossref]

	 17.	 Tao, F.; Liu, L.; Kucha, C.; Ngadi, M.; Biosyst. Eng. 2021, 203, 

34. [Crossref]

	 18.	 Duarte, E. S. A.; Almeida, V. E.; Costa, G. B.; Araújo, M. C. U.; 

Véras, G.; Diniz, P. H. G. D.; Fernandes, D. D. S.; Food Chem. 

2022, 368, 130843. [Crossref]

	 19.	 Giussani, B.; Gorla, G.; Riu, J.; Crit. Rev. Anal. Chem. 2024, 

54, 11. [Crossref]

	 20.	 Gopal, J.; Muthu, M.; Trends Anal. Chem. 2024, 171, 117504. 

[Crossref]

	 21.	 Yan, H.; Neves, M. D. G.; Noda, I.; Guedes, G. M.; Ferreira, 

A. C. S.; Pfeifer, F.; Chen, X.; Siesler, H. W.; Chemosensors 

2023, 11, 272. [Crossref]

	 22.	 Gullifa, G.; Barone, L.; Papa, E.; Giuffrida, A.; Materazzi, S.; 

Risoluti, R.; Front. Chem. 2023, 11, 1214825. [Crossref]

	 23.	 Beć, K. B.; Grabska, J.; Huck, C. W.; Foods 2022, 11, 1465. 

[Crossref]

	 24.	 Vallese, F. D.; Paoloni, S. G.; Springer, V.; Fernandes, D. D. S.; 

Diniz, P. H. G. D.; Pistonesi, M. F.; J. Food Comp. Anal. 2024, 

126, 105925. [Crossref]

	 25.	 Gomes, A. A.; Azcarate, S. M.; Diniz, P. H. G. D.; Fernandes, 

D. D. S.; Veras, G.; Food Chem. 2022, 370, 131072. [Crossref] 

	 26.	 Oliveri, P.; Downey, G.; Trends Anal. Chem. 2012, 35, 74. 

[Crossref]

	 27.	 MATLAB, version R2018b, Natick, MA, USA: MathWorks, 

2018.

Submitted: January 17, 2024

Published online: May 29, 2024

https://doi.org/10.1111/1750-3841.15347
http://www.camara.gov.br/proposicoesWeb/fichadetramitacao?idProposicao=436945
https://www.conab.gov.br/component/k2/item/download/51274_e40f1bba791d27a4c67a29c5f29781ff
https://doi.org/10.1016/j.gfs.2022.100661
https://doi.org/10.1038/s41562-022-01391-x
https://doi.org/10.1080/10408398.2021.1942783
https://doi.org/10.1016/j.crfs.2022.08.006
https://doi.org/10.1111/1541-4337.12958
https://doi.org/10.1016/j.jfoodeng.2016.12.014
https://doi.org/10.1016/j.biosystemseng.2020.12.010
https://doi.org/10.1016/j.foodchem.2021.130843
https://doi.org/10.1080/10408347.2022.2047607
https://doi.org/10.1016/j.trac.2023.117504
https://doi.org/10.3390/chemosensors11050272
https://doi.org/10.3389/fchem.2023.1214825
https://doi.org/10.3390/foods11101465
https://doi.org/10.1016/j.jfca.2023.105925
https://doi.org/10.1016/j.foodchem.2021.131072
https://doi.org/10.1016/j.trac.2012.02.005

	_Hlk155863415
	_Hlk108634700
	_Hlk108706417
	_Hlk108706434
	_Hlk161591530
	MTBlankEqn
	_Hlk155877152
	_Hlk155900873

