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This review was written in honor of Prof Eliezer Jesus 
Barreiro, a great pharmacist who dedicated his life to 
the development of Medicinal Chemistry in Brazil, 
strongly contributing to the search for “green and 
yellow” drugs.
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Drug repositioning involves the use of a determined drug in a different indication and has been 
widely used for some therapeutic classes. Artificial intelligence, in turn, has been a trend in the 
modern world of innovation, including in drug design. Those approaches are apparently paradoxical 
(the former is not considered as properly an innovative method to introduce new molecules/drugs 
into the market, although the latter is) can be used as complementary. In this review, we present 
some concepts of both methods, their advantages, possible disadvantages, and some applications 
in drug design in general to improve different aspects of drug development. Examples of the use 
of both methods together have been given for many therapeutic classes. Notwithstanding, their 
application in the search for drugs for neglected diseases, although somehow stimulated, deserves 
more discussion, mainly in light of the social aspects of these infections.
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1. Introduction

According to International Union of Pure and Applied 
Chemistry (IUPAC), “Medicinal chemistry is a chemistry-
based discipline, also involving aspects of biological, 
medical and pharmaceutical sciences. It is concerned 
with the invention, discovery, design, identification and 
preparation of biologically active compounds, the study of 
their metabolism, the interpretation of their mode of action 
at the molecular level and the construction of structure-
activity relationships”.1 This highly multidisciplinary area, 
it depends on Chemistry, Biology, Physics, Pharmacology, 
Toxicology, and their subareas, has substantially contributed 
to the introduction of new drugs in therapeutics.2 The 
development of the correlated areas, mainly in the twentieth 
century, reflects the evolution of Medicinal Chemistry. The 
twenty-first century assisted a rapid advance in the area with 

the introduction of many computational tools (Figure 1). 
The development of the correlated fields, mainly in 

the twentieth century, contributed to the evolution of 
Medicinal Chemistry. The twenty-first century assisted 
a fast advance in the area with the introduction of many 
computational approaches, the most challenging being 
Artificial Intelligence (AI)2 (Figure 1).

AI encloses advanced technologies, which in 
conjunction, allows computers to perform several functions, 
using adequate algorithms. This technology has been 
applied to several areas, including drug design, reducing 
time and financial resources substantially to introduce 
innovation in the field.3 

Considering the basic phases comprehended in the 
introduction of new drugs in the therapeutics (Figure 2), 
Medicinal Chemistry involves the essential paths toward the 
preclinical studies of molecules, whose main goals are to 
identify drug candidates for further clinical development.4

1.1. Evolution of medicinal chemistry-brief historical aspects5 

Alfred Burger, in 1970, when talking about the evolution 
of Medicinal Chemistry over the years, stated: “The great 
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advance of medicinal chemistry has been achieved by two 
types of investigators: those with the genius of prophetic 
logic, who have opened a new field by interpreting correctly 
a few well-placed experiments, whether they pertained 
to the design or the mechanism of action of drugs; and 
those who have varied patiently the chemical structures of 
physiologically active compounds until a useful drug could 
be evolved as a tool evolved as a tool in medicine.”5 Based 
on this statement, it is important to analyze the ideas and 
concepts from the point of view of their evolution that led 
to the knowledge available in the present.5 

Starting with Antiquity, we must look back to the 
ancient people, such as the Greeks, Chinese, Hindus, and 
the Mayans, from Central America, for example, and the 

use of natural products. This was extended to the Middle 
Ages, with emphasis on Paracelsus, around the 15th and 
16th, whose history is related to the cure power of antimony 
and its salt, thus, emphasizing the potentiality of chemicals 
to heal diseases. The 19th century was considered the Age 
of Innovation and Chemistry. Several active principles 
were then extracted, with cocaine, morphine, caffeine, and 
physostigmine as the most important examples. The 20th 
century witnessed the birth of the Pharmaceutical Industry, 
triggered by the advances in correlated areas as shown 
in Figure 2. The introduction of many chemotherapeutic 
agents at the beginning of the century, such as sulfonamides 
and penicillin, to cite the most important ones, was a great 
impulse for the discovery of many potent anti-infective 

Figure 1. Development of related fields of Medicinal Chemistry from 19th to 20th centuries up to 21th century (third Millennium).2

Figure 2. Phases related to the introduction of new drugs in the therapeutics.4
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agents, changing the paradigm of medical practice. Drugs 
from several classes were discovered and had their chemical 
structures modified to improve their activity and other 
properties. Agents for central nervous system diseases, 
endocrine therapy, steroids, and drugs affecting renal and 
cardiovascular functions were further introduced. The 
lessons from World Wars I and II led to the discovery of 
some anticancer agents and the molecular studies about 
their actions stimulated the search for antineoplastic agents 
with advanced mechanisms of action. Meanwhile, it is also 
important to point out that the limits of drug discovery 
and development in terms of costs and time-consuming, 
give rise to the use of an approach, that has the objective 
of discovering new indications of drugs already in the 
market, named drug repositioning. Processes of medicinal 
chemistry can be used in conjunction with repositioning, 
decreasing the time and money spent by Pharmaceutical 
Industries.5,6 

Genomics constituted the next wave of drug discovery, in 
combination with other approaches such as high‑throughput 
screening and medicinal chemistry. The pharmacogenetics 
that arose from the latter wave changed the scenario and 
opened doors for discovering particular medicines for 
specific patients. It is worth mentioning the high relevance 
of the discovery of molecular targets that can explain 
how drugs work at the cellular level, tissues, and organs, 
helping the researchers of the area to find more potent and 
advanced molecules for many diseases still waiting for 
specific drugs.5

The development of highly sophisticated technology, 
AI being the most relevant and challenging, could aid the 
design of new molecules, and the 21st century will certainly 
change the pattern of drug design. AI encloses advanced 
techniques, which in conjunction, allow computers to 
perform several functions, using adequate algorithms. This 
technology has been applicable to several areas, including 
drug design, reducing time and financial resources 
substantially to introduce innovation in the field.7

It is worth highlighting that, since the very beginning, 
the insight, determination, knowledge, and ability of the 
researchers in managing the molecules were decisive in 
giving them higher potency to cure most of the illnesses 
already discovered and others that are still waiting for 
proper therapy. Although AI could enhance productivity 
in terms of drug design, it might not be overestimated 
compared to the contribution of the scientists.

In Brazil, groups are working on Medicinal Chemistry, 
some of them with the aid of AI. Notwithstanding, 
Barreiro’s group (LASSBio-Laboratory of Evaluation and 
Synthesis of Bioactive Substances, created in 1994 and 
coordinated up till now by Prof Eliezer Jesus Barreiro)8 has 

been using processes of Classical Medicinal Chemistry with 
elevated success. Agents for cardiovascular, for metabolic 
for cancer disease, and anti-inflammatories in addition to 
agents for neglected diseases such as leishmaniasis and 
Chagas, have been designed.9 They composed a library of 
more than 2,000 new molecules,10 which is being studied 
in partnership with Eurofarma, a Brazilian Pharmaceutical 
Industry with a profile of innovation.

It must be emphasized that chemical intuition has 
been strongly considered by Pedreira et al.,11 in their 
extremely interesting review, as a relevant part of Medicinal 
Chemistry, which includes many drug discoveries. To 
illustrate, a LASSBio example (LASSBio-579) can be 
presented (Figure 3). This compound is a new neuroactive 
drug candidate acting as a D2-receptor agonist. It was 
designed from clozapine, an atypic antipsychotic, through 
the process of Medicinal Chemistry known as Molecular 
Simplification.12 The strategy was to use it to produce 
N-phenylpyrazone and N-phenyl[1,2,3]triazole derivatives 
through chemistry intuition.

2. Drug Repositioning: Concept, Applications, 
Advantages and Disadvantages 

Ashburn and Thor13 raised concerns about the need 
to grow the productivity of biopharmaceutical industries, 
as the discovery of new compounds was proving to be 
an increasingly difficult and expensive process. Thus, 
they brought drug repositioning as a promising concept 
to modify this challenging scenario.14 As defined, “drug 

Figure 3. Design of LASSBio-579 from clozapine.
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repositioning” or “drug repurposing” comprises the use of 
an active pharmaceutical ingredient, which has a defined 
biological activity (an “old drug”), for a new therapeutic 
indication.13-15

According to Jourdan et al.,15 to apply the concept of 
drug repositioning, there is no structural modification of 
the bioactive agent. Thereby, there is a new therapeutic 
indication based on the molecular bases of the disease, 
through a deep knowledge of the human genome and, 
consequently, regarding biological targets. Possibly, 
the dose, formulation, and route of administration can 
be modified, however, a preliminary understanding of 
pharmacokinetic and pharmacology properties greatly 
assists the drug development process.15

There are different strategies for drug repositioning, 
such as observation of unexpected side effects during 
clinical trials, investigation involving phenotypes of specific 
diseases, computational approaches (signature matching, 
molecular docking, dynamics, genome-wide association 
studies, pathway mapping, artificial intelligence, among 
others), which can also result in the discovery of a new 
drug target.16,17

This interesting strategy allows the designing of novel 
compounds with low cost, shorter timeline, and high 
efficiency since the previous knowledge of candidates can 
be considered in the development,16-18 Additionally, facilities 
such as bioinformatics databases for drug candidates 
(Entrez-Gene, DrugBank/Drug Central/PubChem) have 
greatly assisted the practice, since it is possible to elucidate 
promising targets for ligand interactions, without major 
experiments.15 Traditional steps required for approval by 
the Food and Drug Administration (FDA)19 may not be 
necessary. Furthermore, phase I of clinical trials on humans 
may be discarded, resulting in significant time and financial 
benefits.20

It is important to highlight the estimated cost of 
launching a new drug on the market: 314 million to 
2.8 billion dollars, in total of 12-17 years, considering the 
classic steps of development, for example, drug design, 
and pre-clinical and clinical studies.18,20,21 However, with 
the repositioning strategy, the time can be reduced to 
3 to 12 years, with the great advantage of a considerable 
reduction in cost, making it a very attractive approach 
for the pharmaceutical industries.18 Considering the 
above‑mentioned, 30% of new FDA-approved drugs and 
vaccines in recent years come from drug repositioning 
method.22 There are many examples of successful drugs 
repositioned in therapy, such as zidovudine, originally 
utilized for cancer treatment and now is applied in human 
immunodeficiency virus (HIV) infection; ketoconazole is 
an antifungal agent repositioned to treat Cushing syndrome; 

aspirin was developed for analgesia and has a new 
indication for colorectal cancer; sildenafil was designed 
for angina and the new indication is erectile dysfunction.14

It is also essential to emphasize some disadvantages of 
the drug repurposing methodology. The patent application 
can be a great concern since the inventor can protect the 
discovery of any new process until the final deadline of 
the document. Therefore, if the selected repositioned 
compound is under patent application, there is a real 
problem to advance in the drug development phases.17 
Although, it is possible to encourage a partnership with the 
companies that own the invention, which may benefit from 
this new use.23 Moreover, there is a lack of professionals 
who deeply understand the legal issues related to the 
repositioning of pharmaceutical ingredients, which can 
influence negatively the evolution of the new application.24

Oprea et al.24 highlighted the difficulties regarding 
dosing and safety, as well as the lack of integration with 
pharmaceutical sciences and toxicology. The former 
concern is mainly associated with safety aspects, since there 
is a new target and the dose required for the biological effect 
may be different, consequently, the exposure to the active 
component may be greater. The latter is concerning new 
formulations and delivery mechanisms to avoid unexpected 
toxic effects in vivo.24

Considering project funding, the difficulty is evident 
especially when the drug candidate shows a problem in their 
original indication, which generates concerns regarding 
future applications. In this scenario, some funding agencies 
do not sponsor the proposal.17 

In academia, there are several applications of drug 
repositioning, and a few examples will be briefly 
described below. Bayraktar et al.25 carried out a careful 
search on Alzheimer’s disease, analyzing the main genes 
expressed in this disorder, and aiming to find a promising 
therapeutic target. As a result, they identified glutaminase, 
since its overexpression may be related to several 
conditions, causing, for instance, neurodegeneration. 
Through repositioning, they studied eight compounds 
that could be interesting for interaction with glutaminase, 
highlighting bortezomib and parbendazole (Figure 4), 
which demonstrated interesting results, including in silico 
parameters evaluated by SwissADME.26

Ovarian cancer represents a global health problem 
and the treatment includes particularly toxic drugs. An 
interesting activity-based drug repositioning strategy, 
which considered 54 FDA-approved molecules capable 
of inhibiting the viability of human epithelial ovarian 
cancer (SKOV-3 cells), selected disulfiram (Figure 4) as 
the most promising. The original biological activity of 
this compound is related to the control of alcohol abuse. 
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Interesting findings showed, among other results, the ability 
of this drug to decrease the expression of anti-apoptosis 
B-cell lymphoma/leukemia-2 (Bcl-2). Moreover, the 
treatment with disulfiram provided an increased level of 
proinflammatory cytokines in mice models. The complex 
with copper was also evaluated, revealing, for example, a 
better inducer of reactive oxigen species (ROS) production in 
cancer cells. In vivo data for disulfiram and copper gluconate 
were even more positive, indicating decreased tumor size and 
survival rate in a murine model. Therefore, the repositioned 
action of disulfiram with copper may represent a hopeful 
future for the treatment of ovarian cancer.27

The action of α-adrenergic blocker, doxazosin (Figure 4), 
on Proteus mirabilis and Pseudomonas  aeruginosa was 
studied by Elfaky et al.28 The authors developed experiments 
to evaluate, especially, the action against virulence, using, 
for example, the assessment of anti-biofilm activity and the 
effect on bacterial motility, quantification of the expression 
of virulence-controlling genes, analysis of anti-proteolytic 
activity, among other investigations. Important in vitro and 
in vivo findings showed the capacity of the replaced drug to 
act as an anti-virulence compound, through the reduction 
of virulence enzymes, pigments, biofilm formation, 
and motility. Therefore, initial studies demonstrated the 
potential of doxazosin in this area of great importance for 
human health.28

Considering infectious diseases caused by the 
ESKAPE group, named Enterococcus faecium , 
Staphylococcus  aureus ,  Klebsiella pneumoniae , 
Acinetobacter baumannii, Pseudomonas aeruginosa, 
and Enterobacter spp., there is an important investigation 
regarding the benzodiazepines repurposing. Thus, 
clonazepam and diazepam (Figure 4), in combination with 
ciprofloxacin, were evaluated for their antibacterial activity. 
Some examples of experimental assays performed were: the 

determination of minimum inhibitory concentration (MIC), 
determination of minimum bactericidal concentration 
(MBC), checkerboard synergy assay, and determination 
of fractional inhibitory concentration index (FICI), among 
others. The MIC results were 64 to 1024 µg mL−1 for 
ciprofloxacin; 128 to 256 µg mL−1 for clonazepam and 1024 
to 2048 µg mL−1 for diazepam. The combined drug assay 
showed interesting findings: 128 to 32 µg mL−1 and 64 to 
32 µg mL−1 (ciprofloxacin-clonazepam and ciprofloxacin-
diazepam, respectively). Moreover, considering almost 
all tested isolates, synergistic effects were observed in the 
checkerboard and FICI assays. Therefore, these preliminary 
repurposing results may be useful for future drug design 
for infectious diseases caused by ESKAPE.29

3. Artificial Intelligence: Concept, Application, 
Challenges and Recommendations

As mentioned before, the search and development of a 
new drug can take up to 12-15 years, and several resources, 
from labor hours to reagents, to money spent on this 
investment (Figure 2). The high cost and consumption of 
human resources to develop these new treatments have led 
researchers to try and figure out new ways to reduce these 
expenses and to save time, allowing these resources can be 
rearranged to other areas of expertise.19 

Several tools have been created to facilitate this process, 
e.g., molecular docking, virtual screening, high-throughput 
screening, chemical synthesis, and many others, although 
they still take a lot of time to create and analyze these 
data. This is where artificial intelligence (AI) comes into 
play. The idea that computers can be employed to simulate 
intelligent behavior is something that researchers have 
been exploring since its creation. In 1950, Alan Turing in 
his seminal paper Computers and Intelligence30 thought 

Figure 4. Chemical structures of some repurposed drugs in academia.
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of a test that would see if computers were able to mimic 
human intelligence, thus creating the “Turing test”. In 
the beginning, AI was resumed as a rule-based system, 
with time, more intricate algorithms were developed 
which allowed a subdivision in the field, such as machine 
learning, applied to identify and analyze patterns whilst 
the machine uses the data provided to improve itself; 
deep learning, a multi-layered neural network that allows 
machines to learn and to make decisions, ensuring that 
the model presents the ability to mold and change itself; 
natural language processing, employed to make decisions 
based on the information drawn from human language; and 
computer vision, where the computers analyze and acquire 
information from videos and images.31 In this context, the 
development of machine learning and deep learning tools 
may be useful the drug discovery, often used to help in 
identifying the pharmacological properties of different 
compounds, which may act in several pathologies and 
molecular targets.32 These tools have shown great potential 
to accelerate and improve many aspects of drug discovery, 
especially in the synthetic planning of small molecules and 
the predictive chemistry field.33

Deep learning tools, especially convolutional neural 
networks, as stated before, belong to a subgroup of machine 
learning. The neural network structure is organized in 
multiple layers and uses images, formulas, and patterns as 
a way to “learn” and develop itself, allowing for a faster 
resolution of problems and faster pattern testing. This 
approach is currently being used in the studies of medical 
images, as well several deep learning algorithms are being 
developed, which may allow these tools to become part of 
the routine in clinical analysis in the near future.34 

Thereby, with machine learning technologies and the 
knowledge of molecular target properties, it is possible 
to create and develop artificial intelligence tools that may 
help in the prediction of compatibility of a certain molecule 
with its target, correlating its physicochemical properties 
with the target characteristics, allowing researchers to see 
if an already available and commercialized drug may be 
compatible with targets of interest from different diseases. 
AI can be employed to integrate a series of heterogeneous 
data to discover patterns to understand at the molecular level 
the mechanisms by which a pathology or molecule works, 
helping in the identification of a target. It can also be used 
in the development and generation of lead molecules and 
their optimization through score function and quantitative 
structure-activity relationships (QSAR). Therefore, the 
use of AI tools accelerates research development through 
the extraction of new and important information, based on 
the large amount of data generated by the drug discovery 
process.35

One of the greatest advantages of using AI instead of 
more traditional approaches, such as virtual screening and 
molecular docking, is that it can be programmed to be 
more a self-sufficient tool, which could eliminate possible 
challenges faced by conventional tools. Deep learning and 
Machine Learning algorithms are already being used in 
several steps of the research of new drugs, from structure 
and ligand-based virtual screenings, synthesis of peptides 
and small molecule design, to toxicity and drug dosage 
prediction, drug repositioning, and much more.33 

These computational techniques may even assist in the 
search for new drugs for the treatment of neglected diseases 
by facilitating the identification of proteomic, genomic, and 
transcriptomic targets, and the interaction they may have 
with potential drug candidates.36

Another example is the development of different 
methods for drug repositioning using AI such as the 
one developed by Lei et al.37 named VGAEDR, which 
proposes the use of a heterogeneous network of multiple 
attributes associated with drugs and an autoencoder graph 
(VGAE) to predict associations between molecules and 
pathologies. The tool built a drug-disease heterogeneous 
network based on various correlations, considering the 
drug properties, the disease features, and the association 
between drug-disease. The VGAEDR module is divided 
into two parts, the VGAE one receives a heterogeneous 
network as an input, then it learns and extracts its 
redimensioned representation, and in a multilayered 
convolution module, which perfects the learning on top 
of the extraction obtained by the VGAE. The association 
of drug-disease is then predicted by the data provided to 
this neural network.37

Although AI can decrease the time spent on drug 
development and can reduce the cost of this process, the 
use of machine learning and deep learning tools still have 
a lot of challenges. In order to begin creating such a tool, it 
is necessary to understand and have sufficient information 
about the target molecule and/or the bioactive molecule 
of interest, there needs to be accurate and well-defined 
data to feed the AI tool. Without the correct and validated 
information, the results may be flawed and misleading, 
which could lead to wasted time and resources. The labeling 
of information needs to be complex and as complete as 
possible to reflect the nature of drugs in biological systems, 
and therefore, it is necessary to be an investment in the 
understanding of the drug mechanisms.38

There is also a need for well-trained human resources 
to create such tools, and to understand what kind of data 
needs to be employed in the construction of the algorithm. 
The cost of developing such software is still on the higher 
side, demanding a great amount of processing power and 
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competent people to operate it. Furthermore, the available 
data is not always sufficient to create a reliable tool. Often, 
there is not enough information regarding the nature of 
the target molecule, the disease pathophysiology being 
studied, and how the target molecules interact with the 
lead molecule in the study. Another problem is the type of 
available data, which usually is created in various formats 
that are not compatible with one another, which makes 
the correlation between them virtually impossible. In this 
case, human interference is required to refine the data 
used to feed to the algorithm and to proofread the findings 
to check their consistency and validity. This takes up a 
lot of time and may also lead to human error or bias.35,39 
Finally, AI tools bring many benefits to the search for 
new drugs, such as time and resource savings, though 
only when made with good and validated data through a 
well-developed algorithm.

4. Advantages and Challenges of Employing 
Artificial Intelligence for Drug Repurposing

AI is playing a growing role in identifying potential 
drug repurposing opportunities. In this section, the major 
advantages, and challenges of using AI for drug repurposing 
are discussed.

4.1. Opportunities

AI enables a systematic approach for generating drug 
repurposing hypotheses through the development of 
predictive computational models that can be employed for 
screening large compound libraries of potential candidates. 
Different successful drug repurposing cases described 
in the literature, such as the landmark repurposing of 
sildenafil, were based on serendipitous findings from 
clinical trial data or experimental testing using in vitro or 
in vivo models.7 Although successful, those approaches 
are more difficult to reproduce on a large scale and they 
present intrinsic challenges, including the need to have 
physical compound libraries, the required work for high 
throughput assay development, and the labor and materials 
for running the screening campaigns, which can require 
significant investments and time.40,41 Therefore, the use of 
AI is a promising alternative to reduce the time and cost of 
generating hypotheses for experimental validation, which 
are advantages aligned with the major goal of the drug 
repurposing field.7

AI provides the possibility of analyzing very large 
databases containing chemical and biological data to 
identify similarities and interactions between compounds, 
biomacromolecules, or disease conditions, which can be 

employed to generate the repurposing hypotheses. This 
capacity is relevant considering the large and increasing 
amounts of biomedical data publicly available with 
information on the disease and drug profiles.42 This 
scenario is the result of novel high-throughput technologies 
that allow the collection of vast amounts of chemical 
and biological results, such as multi-omics (genomics, 
transcriptomics, proteomics, metabolomics), compound 
chemical characterization, drug-biomacromolecule 
interaction, phenotypic endpoints from traditional and 
high-content screening methodologies, clinical trial data 
(therapeutic and side-effects) and real-world clinical 
findings (e.g., electronic health records).40-43 In this 
context, Wang et al.44 developed a deep learning framework 
to integrate large-scale heterogeneous multi-omics data 
(genomics, transcriptomics, and epigenomics), chemical 
properties, and drug-target interaction information to 
predict the response of cancer cells to drugs. Liu et al.45 
described a deep learning framework for drug repurposing 
using real-world patient data from electronic health 
records and insurance claims to predict the effect of the 
drugs on the disease outcome. The model was used to 
find new therapies and combinations for the treatment of 
coronary artery disease using a dataset with 107.5 million 
patient records. Exploration of very large databases is 
now possible as a result of the advances in computational 
capacity and AI algorithms.42

AI brings the possibility of integrating different types 
of data from diverse sources, which further expands 
the possibility of generating systematic repurposing 
hypotheses.43 Each type of data provides a different aspect 
of the disease, biomacromolecule, or drug and, therefore, 
adds another layer to their underlying connections.46 Data 
integration enables the development of methods that 
evaluate the molecule effects not only at a single target 
level but also its interplay with other biomacromolecules, 
which share a common biological pathway.42 Therefore, 
integrating different types of data can help expand the 
applicability domain of the models and unravel interplays 
between diseases, targets, and bioactive compounds.46 

Amiri et al.47 developed convolutional neural networks 
to predict new indications for existing drugs following data 
integration on compound properties (chemical structure, 
side-effects, and therapeutic target), disease patterns 
(human phenotype and target protein), and drug-disease 
associations of 593 FDA-approved drugs.47 A neural 
network model was developed to predict new targets and 
drug repurposing opportunities by embedding chemical, 
genomic, phenotypic, and cellular network data to 
generate a heterogeneous drug-gene-disease framework.48 
Furthermore, a deep learning model was developed for 
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drug repurposing containing chemical structure and drug-
target interaction to capture off-target profiles for model 
development. Although there are several reports in the 
literature on the AI application for drug repurposing, there 
are important challenges that should be considered for any 
endeavor in the field, which depend either on the biomedical 
data or on the model development and validation.49

4.2. Challenges and recommendations

There are large quantities of experimental findings, such 
as data generated by high-throughput deoxyribonucleic 
acid (DNA) and ribonucleic acid (RNA) sequencing, 
mass spectrometry, metabolomics, transcriptomic data, 
phenotyping, and also clinical data that are increasingly 
becoming available from electronic health records. These 
data sets are so large or complex that traditional data 
processing methods are inadequate. In this context, AI is an 
important tool for improving our understanding of disease 
and developing strategies for drug design. It is crucial to 
highlight that there is a gap between our ability to generate 
big biomedical data and our ability to integrate, analyze, and 
interpret the data. However, there are many results, such that 
much-generated data are unstructured and heterogeneous, 
such as imaging and structural findings, which increase 
the complexity integration. There is an urgent need for 
technology solutions that can combine heterogeneous data 
sets and integrate, analyze, and interpret them. Another 
challenge is access to different types of databases. Some 
are publicly available databases for transcriptomic data, 
while others are limited and rare, such as clinical trial 
data and structural, in vitro, or imaging data. Therefore, it 
is important to have publicly accessible and standardized 
databases. Other challenges that can emerge are related to 
patent and regulatory considerations besides organizational 
hurdles.14,50-53

The performance of AI models depends directly 
on the availability of high-quality and comprehensive 
experimental data for modeling. Despite the huge expansion 
in public biomedical information, it is well known that the 
data can be incomplete and even contain noise, bias, and 
inaccurate results. Noise can be a product intrinsic to the 
methodology, from human error or biological variability. 
Bias can arise from the selection of a particular subset of 
compounds for testing or from uncontrolled experimental 
conditions that were not acknowledged during the data 
report. Limited negative results can also interfere with the 
development of robust AI models.43,54,55 For this reason, 
careful consideration of the data quality must be taken to 
guarantee that reliable and relevant models are generated. 
In this context, there are initiatives from the scientific 

community to standardize the reporting of biomedical data, 
such as the FAIR Principles, which aim at improving data 
reusability for in silico modeling.56

Besides data quality, AI applicability for drug 
repurposing is limited to the information that can be extracted 
from the existing data. The applicability domain of AI 
models is determined by the structural and pharmacological 
diversity of the training set.57 Therefore, AI-generated drug 
repurposing hypotheses are subject to bias, since there is 
more published information and databases for a selected 
set of drugs, while limited information is available for 
other compounds.43,58 In this sense, more diverse datasets 
and data integration are promising strategies to expand 
the applicability domain by enabling novel connections 
between drugs, biomacromolecules, and diseases, thus 
providing the identification of a wider variety of drug 
repurposing candidates.46

Data integration from different sources can also be 
challenging due to the high heterogeneity of the chemical 
(structure, physicochemical properties), biological (multi-
omics, phenotypic profile), and clinical results.46 In addition, 
integration can be difficult owing to inconsistencies, sparse 
data, variations in terms of format and annotation, a variety 
of experimental conditions, and the level of agreement 
of equivalent endpoints from different sources.53,54 This 
scenario demonstrates the need for extensive manual data 
curation, which prevents more widespread use of AI for 
drug repurposing14 Similarly, there are initiatives focusing 
on harmonizing data from different databases to facilitate 
its use for computational models.59 

Even with robust and comprehensive biomedical data 
available, the incomplete understanding of the biological 
systems and the complex and multifactorial biology of 
diseases makes it challenging to employ AI to predict the 
therapeutic potentials of existing drugs.60 AI algorithms 
cannot completely model the complex interplay between 
drugs, biomacromolecules, and disease conditions. Moreover, 
most biomedical results are generated using in vitro assays 
that evaluate proxy endpoints of human clinical efficacy, 
safety, and pharmacokinetics. These results only capture 
partial aspects of the disease biology and thus present limited 
translation to the effect that will be observed in humans.61 
In addition, there are aspects of drug pharmacokinetics and 
pharmacodynamics that are not usually considered during 
hypothesis generation, which may have a significant impact 
on the safety and efficacy profile of the compounds. Those 
features include, for example, different pharmacokinetic 
properties and toxicity for a novel target population (e.g., a 
drug approved for adults may have a completely different 
safety profile in a special population, such as the elderly) 
and for different disease conditions.62
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In addition to the quality of the data set, the performance 
of AI models depends on the AI framework and proper 
model development and validation. Several neural network 
structures exhibit superior performance for specific data 
formats, such as convolutional neural networks for image-
like data and recurrent neural networks for data available 
as sequences.63 Therefore, the development of AI models 
for drug repurposing can still be challenging and require 
extensive work for validation. AI models tend to result 
in overfitting, in which predictive performance is high 
during training and internal validation, though significantly 
decreases for unseen data, thus leading to erroneous 
predictions and limited applicability in real-world settings.43 
This may be a result of the limited amount of data and 
the complex model architecture.63 Some strategies can be 
employed to minimize overfitting, which may involve, 
for example, removing layers from the network or 
terminating the training phase earlier.64 Additionally, the 
limited availability of reliable benchmarking databases 
for model validation makes it difficult to compare the 
performance reported for different frameworks in the 
literature.65 Moreover, deep learning neural networks still 
lack interpretability, making it challenging to evaluate 
the variables that impact the prediction scoring and, thus, 
resulting in a “black box” computational model.66 Although 
the above-mentioned strategies for further validating the AI 
model outputs are promising, experimental validation using 
preclinical experiments before human testing is paramount 
in any drug repurposing initiative.14,53

AI algorithms coupled with large databases of 
biomedical data can be a promising approach to generate 
hypotheses on drug repurposing opportunities. The 
selection of the most adequate algorithm for each case 
should consider the type, quality, and amount of available 
data. Although AI has limitations, it can provide strong drug 
repurposing hypotheses to support experimental testing.44

Pushpakom et al . , 14 in 2019, describe some 
recommendations to help realize the drug repurposing, such 
as the need for better integrative platforms for data analysis, 
as well as the access and integration, remain a bottleneck, 
particularly for findings from industry‑sponsored 
phase II‑IV clinical trials, especially for discontinued drugs, 
which may open the opportunity of repurposing through 
external searches. Another recommendation is to carry out 
novel safety assays to repurposed drugs, due to the new 
interactions between the drug and the disease for which 
it is repurposed, use in new populations, or differences 
in the dosing schedule. More incentives are needed to 
finance projects involving the repositioning of drugs, which 
can also happen through new financial sources, such as 
crowdsourcing and parent entrepreneurs, especially for 

neglected diseases, which do not arouse the interest of 
the pharmaceutical industry in researching new drugs. 
Another recommendation is to share libraries of bioactive 
compounds. Lastly, actions are required regarding the 
patent and regulatory barriers, which could include better 
data exclusivity time for repurposed indications, royalty 
arrangements between companies, or other legislative 
changes to ensure the retrieval of investment from drug 
repurposing programs.

5. Drug Discovery and Development 
for Neglected Diseases: Use of Drug 
Repositioning and Artificial Intelligence 

According to World Health Organization (WHO),65 
“Neglected Tropical Diseases (NTDs) are a diverse 
group of conditions caused by a variety of pathogens and 
associated with devastating health, social and economic 
consequences”. The tendency nowadays is to consider 
NTDs as diseases of neglected populations, as they are 
prevalent in poor communities in tropical areas, where 
the conditions are normally dreadful. In general, the 
interest of governments in improving the health situations 
of those areas is missing, as the people involved do 
not have political voices to change the scenario. NTDs 
affect more than 1  billion people, and comprise more 
than 20 diseases, such as: Buruli ulcer, Chagas disease, 
dengue and chikungunya, dracunculiasis, echinococcosis, 
foodborne trematodiases, human African trypanosomiasis, 
leishmaniasis, leprosy, lymphatic filariasis, mycetoma, 
chromoblastomycosis and other deep mycoses, noma, 
onchocerciasis, rabies, scabies and other ectoparasitosis, 
schistosomiasis, soil-transmitted helminthiases, snakebite 
envenoming, taeniasis/cysticercosis, trachoma, and 
yaws. Malaria and tuberculosis have not been included 
as NTDs given the investments that have been made in 
these diseases. Nevertheless, they have been considered 
diseases of neglected people. Table 1 shows some of the 
diseases of neglected people and their distributions around 
the world. Nevertheless, if one considers the populations 
needing preventive and curative interventions, this number 
reaches 1.6 billion, which corresponds to about 5% of the 
world population. 

NTDs normally have a very complex epidemiology, 
being closely related to the environment.65 Many are 
vector-borne diseases and have complex life cycles 
and animal reservoirs. These characteristics make them 
difficult to control, which implies huge challenges for the 
public health of the countries affected. Also, NTDs are 
responsible for high levels of morbidity and mortality. 
Although many technological developments have been used 
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in drug discovery, in general, this does not happen with 
NTDs. Some reasons contribute to this situation, such as 
the lack of interest of pharmaceutical industries, motivated 
by the cost of developing new drugs66 and the implicit 
low financial revenue. Furthermore, in most of the poor 
countries involved, there is no access to new technologies, 
which might trigger the development of more effective 
drugs for those diseases. 

Although this scenario has changed over the years, 
with successful partnerships between international 
organizations, such as WHO, Drugs for Neglected Diseases 
Initiative (DNDi), TB (Tuberculosis) Alliance, countries’ 
governments, and some pharmaceutical industries, the 
financial resources available to tackle the problem are 
still insufficient, as it can be seen in Brazil.67 From 2007 
to 2020, the investments by the source of funding for 
product-related Research and Development for neglected 
diseases were 64.66% by institutions of the public sector; 
20.62% by philanthropic foundations, non-governmental 
organizations, corporate donors; 12.97% by pharmaceutical 
and biotechnology companies; 0.88 by academic and other 
research institutions; 0.80% multilateral public sector, 
and 0.07%, unspecified. The amount accounts for around 
US$ 50 million, but this corresponds to 14 years of funding, 
being the investment per year insufficient.65 

Much might be done to face this challenge. Some 
approaches, such as drug repositioning, and more advanced 
processes, such as AI, either separately or together. 
Nevertheless, the number of works is still reduced and 
could be increased mainly by the pharmaceutical industry 
sector.68,69 However, in the past few years, there have been 
many works using drug repurposing in experimental or 
computational high throughput screenings, searching 
active agents against different neglected diseases.70 These 

studies may identify several compounds already used in 
the therapeutics. 

Notwithstanding, it is important to consider that 
computational methods are becoming more and more 
relevant in medicine, due to the existence of large 
databases that allow their use in AI, and it looks like a 
promising approach for the near future. Works about AI 
use in neglected diseases comprise not only therapeutic 
but also diagnosis and predictive objectives.71 As already 
discussed, despite being an advantageous approach, there 
are some drawbacks, being accuracy and availability of 
good quality databases among the major ones. These 
limitations recommend care, as there will be security risks, 
involving social variables among others. Therefore, studies 
to overcome these limitations must be focused on these 
concerns resolution, which anticipates its more rational 
use in the future.

Some neglected diseases are awakening more interest 
in the use of AI approaches alone and sometimes together 
with repositioning methods. Advances have been registered 
in malaria works and they depend on the improvement 
of computational algorithms, along with the enhancing 
knowledge of the biology and biochemistry of the parasites, 
which is essential to repositioning. One of the threats of 
malaria has been the resistance of the parasites to the first-
line drugs. In addition to many others, the extrapolation 
of the in vivo studies in experimental animals to clinical 
trials has been still a gap in the research.36 American 
trypanosomiasis, or Chagas disease was considered the first 
use of machine learning for a neglected tropical disease.72 It 
was used to solve a formulation problem of benznidazole, 
one of the two drugs available for this neglected disease. 
The problem was the low water solubility and the use of 
machine learning for a neglected tropical disease allowed 

Table 1. Information about some of the most relevant disease of neglected people

Neglected Tropical 
Diseases

Global prevalence / 
millions

Population at risk / 
millions

Annual mortality / 
thousands

Regions of high  
prevalence in the World

Malaria 249
ca. 4,000 

(ca. 50% world population
608

Sub-Saharan Africa,a Asia, South and 
Latin America, Middle East, and Pacific 

Islands

Schistosomiasis 240 700 200
Africa, Middle East, South America, 
Caribbean, China, Southeast Asia, 
Cambodia, Laos, Central Africa

Tuberculosis 10.6 1,000 1.5
India, Indonesia, China, Philippines, 

Pakistan, Nigeria, Bangladesh, 
Democratic Republic of Congo

Leishmaniasis 12 1,000
30b

1,000c

India, South Asia, Sub-Saharan 
Africa, Latin America, Caribbean, and 

Mediterranean region

Chagas disease 6-8 75 0.7 Latin America, Caribbean
a94% of cases, 95% of deaths-78% children under 5 years old; bvisceral leishmaniasis; ccutaneous leishmaniasis.
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to have effective higher solubility microparticles, being the 
oral absorption was enhanced. Formulations containing 
chitosan microparticles were made to improve the water 
solubility of benznidazole. Artificial neural networks 
were employed to evaluate the influence of process 
parameters such as encapsulation efficiency, size, yield, 
and dissolution. A neural network involving three layers 
was developed: input, hidden, and output layers. The output 
layer was designed with four neurons, corresponding to 
the size, encapsulation efficiency, yield, and dissolution 
rates. The input layer was related to polymer concentration, 
NaOH concentration, stirring rate, and spraying rate. A 
multi-response optimization was then applied to obtain 
minimum size and maximum throughput, encapsulation 
efficiency, and dissolution rates. The influence of predicted 
parameters to improve the benznidazole solubility were: 
polymer concentration, 1.5% (m/v), NaOH concentration, 
6.0% (m/v), stirring rate, 1400.0 rpm and spraying rate, 
5.0 mL min-1. These conditions were reproduced in the 
laboratory and showed to be the ideas for preparing 
the formulation containing benznidazole in chitosan 
microparticles. Thereby, the formulation was very efficient 
in reducing particle size and increasing the encapsulation 
efficiency, yield, and dissolution rate of benznidazole.

Guerra et al.,73 in 2013, developed with the aid of AI, a 
study about neural network application to 72 compounds 
of a in house data set,74 comprising imidazolidines 
arylhydrazones, N-oxides of benzimidazole, indazole, 
quinoxaline and benzofuroxan 5-nitrofuryl semicarbazones, 
coumarins and nitrofurazones. Those researchers achieved 
a model using a CODES/RD Program,75 which was 
considered able to get “outstanding predictive results”. It 
is worth mentioning that by this program each molecule 
is codified into a set of numerical parameters based on 
topological information of each chemical structure. They 
report the study as the first model for the prediction 
of trypanocide activity among heterogeneous series of 
organic compounds based on the strategy of artificial 
neural networks. 

The possible synergy between repositioned drugs 
against Trypanosoma cruzi was explored by Planer et al.76 
They found promising results from FDA-approved drugs 

and screened as for their trypanocidal activity. Most of 
the active compounds showed (half maximal effective 
concentration (EC50)) in the range of either micromolar or 
nanomolar concentrations. Through this study they identified 
clemastine, an antihistamine drug, EC50 = 0.4 µM; fluoxetine, 
a selective serotonin reuptake inhibitor, EC50 = 4.4 µM, and 
pyrimethamine, an antifolate drug, EC50 = 3.8 µM, and 
other drugs as well. Figure 5 shows the structure of these 
three drugs mentioned above. Assayed in the murine model 
of T. cruzi infection, most of them showed lesser efficacy 
than when in combination with other classes of drugs. This 
study was extended to 24 active compounds tested in vitro 
combined with other drugs screened. They concluded that 
combinations of FDA-approved drugs had a synergistic effect 
is a promising strategy (polypharmacology) for developing 
treatments for Chagas disease. 

Aguilera et al.77 reviewed the use of polypharmacology 
in the treatment of Chagas disease. Polypharmacology is a 
method that has been increasing the efficacy and tolerance 
of drugs in many diseases. It consists of a combination 
of drugs either useful in the treatment or repositioned 
for the treatment of Chagas disease. The authors discuss 
the employment of ergosterol biosynthesis inhibitors, 
anti-inflammatory agents, cardiac dysfunction drugs, 
trypanothione biosynthesis inhibitors, and vitamins, 
among other drugs. Natural products were also used in the 
application of this strategy. The most known combination 
is benznidazole with ergosterol biosynthesis inhibition, 
namely with posaconazole (Figure 6). Even though this 
combination failed, polypharmacology deserves to be 
explored for other classes of compounds. The work77 shows 
some examples of this fact.

Computational models, using LBDD (ligand-based 
drug design) and SBDD (structure-based drug design), 
with the support of AI, machine learning, were developed 
by Ferreira Junior,78 using some specific softwares.79-83 
These approaches have been used for the repositioning of 
drugs and drug candidates, to contribute to the treatment 
of Chagas disease. In the LBDD approach, the machine 
learning algorithms random forest, Naive Bayes (NB), 
support vector machine, and probabilistic neural networks 
were used to develop computational models based on 

Figure 5. Drugs that can have synergistic effect in Chagas disease, according to Planer et al.76
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phenotypic data of in vitro T. cruzi inhibition. The NB-
FeatMorgan model showed the best performance, with a 
high predictive power in the initial validations (5-fold cross-
validation and external validation), which was confirmed 
by two types of validation. 269 drugs comprised the data 
set and 19 (7.1%) out of the total drugs were selected as 

potentially active (IC50 (drug concentration able to inhibit 
50% of the parasite proliferation at the hos cells) < 5 µM 
and SI (drug selectivity index) > 10) in the literature 
during the virtual screening performed with this model. 
Additionally, 17 drugs have been experimentally tested 
for T. cruzi inhibition (Figure 7). Desloratadine, an anti-
histamine drug, and flibanserin (drug originally developed 
as anti-depressive) showed the highest efficacy against the 
parasite (Amax, maximum activity against parasites = 91 and 
92%, respectively), when tested in cells U2OS, infected 
with Y clone of T. cruzi. It is worth mentioning that the 
intention was to use some compounds in clinical assays 
and even metabolites of some drugs. However, the little 
information about these classes of compounds does not 
allow for solid results.

Nevertheless, in the SBDD approach, a workflow 
for identifying T. cruzi dihydroorotate dehydrogenase 
(TcDHODH) inhibitors were developed.78 The best scoring 
function (ASP) has been used for predicting the binding 
mode of compounds in the TcDHODH and for eliminating 
inactive molecules. As this scoring function displayed a 
low/intermediate capacity to identify compounds with a 
high affinity at the enzyme, a machine learning model 

Figure 6. Benznidazole and posaconazole in pharmacological 
combinations.77

Figure 7. Drugs in trials against Chagas disease.78 IC50 and CC50: drug concentration able to inhibit 50% the proliferation of the parasito or of de host cell, 
respectively. SI: selectivity index, claculated by the relation between CC50 and IC50. Amax: maximum activity determined as the maximum normalized.
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was developed, based on orotic acid derivatives tested 
against the enzyme, to be employed to reclassify the results 
from an initial virtual screening using the ASP function. 
The descriptors explored in this work were the ligand-
protein interaction enthalpy, the ligand lipophilicity, and 
the entropic energy loss associated with its complexation 
with the target protein. The best reclassification model, 
NB TcDHODH-8, exhibited high performance in the 
validations used. The SBDD and LBDD models developed 
in this work can contribute to the development of novel 
safe and efficacious candidates in the treatment of Chagas 
disease. Moreover, they can be used as starting points 
for novel anti-T. cruzi drug Research and Development 
initiatives and the validated models could also be used for 
novel virtual screening campaigns.

In 2020, Ferreira et al.84 published a study using 
computer-assisted chemogenomics drug repositioning 
to identify new hits for malaria treatment. Computer-
assisted chemogenomics involves a systematic screening 
of chemical compounds relative to biological targets in 
high-throughput screening (HTS) toward finding leads for 
a determined activity.84 It is worth mentioning that this tool 
represents an integration of biological and chemical spaces. 
From this work, epirubicin (Figure 8), an antineoplastic 
antibiotic from the anthracycline chemical class, was 
shown to be active in the sexual and asexual stages of 
Plasmodium  falciparum and P. vivax. Two molecular 
targets have been predicted by functional and computational 
assays as well: Plasmodium GyrA and a putative target 
in Plasmodium, a GlcNac-1-P-transferase (GPT) enzyme 
involved in protein N-glycosylation. Both molecular targets 
are involved in the metabolism of isoprenoids, also found 
in eukaryotic cells. The results lead to the perspective that 
through a detailed study of characteristics of epirubicin 
related to its repositioned activity it might be possible to 
find leads, and subsequently to optimize them to obtain 
potential antimalarial agents. 

Leishmaniasis is an intricate disease associated with 
a complex life cycle that comprises around 20 species of 

the genus Leishmania. It is important to highlight that this 
complex of protozoa is responsible for health and social 
aspects in the poor population affected. The chemotherapy 
for this neglected disease is far from ideal, mainly because 
of the drug resistance and ineffectiveness of the drugs 
available. Therefore, it is of utmost importance that new 
methods could be applied to the search for new and better 
drugs for this disease. Then, the use of AI methods can be 
promising to change the paradigm from a classical process 
of finding drug candidates. With this objective, some works 
have focused on SBDD and LBDD with the aid of AI, 
using folate biosynthesis as one of the targets, as well as 
glycosome, involved in the parasite survival.85 Works like 
this have been successful in discovering putative inhibitors. 
Nonetheless, there were problems, as in vitro and in vivo 
validation of targets that could allow minimal side effects. 
There is a lack of tertiary and quaternary structures of many 
leishmanial proteins, which has been a problem in applying 
SBDD in the studies with Leishmania. Notwithstanding, 
computational studies using AI and machine learning 
approaches-Alpha Fold286 and RoseTTA fold,87 would 
allow them to develop studies even though there is no 
experimental data. Then, the possible characterization of 
the leishmanial proteins, around eight thousand, can allow 
the development of anti-leishmanial candidates.85 

Schistosomiasis is a type of worm infection, which 
affects more than 200 million neglected people worldwide.65 
There is only one available drug, praziquantel, which has 
been shown to not be completely effective in this disease. 
This shows the urgent need to develop new drugs for this 
worm disease. Many approaches can be used with this 
aim, including AI methods.88 The existence of databases, 
mainly a result of the phenotypic screening and target-
based approaches has been decisive for the development 
of AI works, giving rise to QSAR models, which allow 
the search for new drugs using Virtual screening, and 
other methods such as SBDD, LBDD, to discover new 
bioactive compounds for the treatment of schistosomiasis. 
To discover drugs that could be active in many stages 
of Schistosoma  mansoni, one of the causative agents 
of schistosomiasis, Andrade et al.88 have implemented 
a proteome-wide alignment screen of a dataset of 
2,114 proteins. They discovered that paroxetine, a selective 
serotonin reuptake inhibitor (Figure 9), has a potent activity 
in schistosomula viability, with an EC50 = 2.5 µM, after 
72 h of exposition, and in male and female worm motility, 
EC50 = 5.1 μM and EC50 = 5.1 and 9.9 μM, respectively. In 
addition, they are selective as schistosomicide. After this 
experimental observation, they confirmed the molecular 
basis of this activity, applying molecular modeling studies 
with an S. mansoni serotonin transporter. 

Figure 8. Epirubicin, repositioned for malaria, active in the sexual and 
asexual phases of Plasmodium falciparum and Plasmodium vivax.79
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Tuberculosis has been responsible for 1,4 million deaths 
and 10 million cases each year, mainly in neglected poor 
people.65 One of the main challenges of tuberculosis is 
drug resistance, which decreases the effectiveness of 
medicines used to treat this infectious disease. However, 
also the differential diagnosis is very relevant, once it 
can differentiate this infection from other pulmonary 
diseases.89 Otherwise, latent tuberculosis infection has 
been the main cause of active tuberculosis and the use of 
Machine Learning technology is promising in diagnosis 
differentiation. Although there are advantages to using 
this technology, there are some drawbacks that limit this 
usage. Data is one of the limitations and the employment of 
different types of data sources can help to have a standard 
clinical diagnosis, which leads to better treatment of the 
latent infection. Using this technique in the early stages 
of the disease would have the advantage of adequately 
discriminating between latent and active infection, 
reducing the progression of the former to the latter.89 AI, 
with different tools, such as deep learning and radiomics, 
helps doctors to differentiate drug resistance infections, 
providing better and specific medicines for treatment.90 It 
is relevant to emphasize that in silico platforms for drug 
repositioning,90 included initiatives towards tuberculosis, 
in addition to other diseases, such as malaria and dengue. 
Integration of protein drug targets and approved drugs, 
which means phenotype and physiology approaches are 
interrelated in the conception of specific algorithms. The 
35% top-ranking predictions identified novel repurposed 
therapies for many diseases, including for tuberculosis. To 
summarize, drug repositioning together with AI is also a 
perspective. It is relevant to solve the gaps still present in 
the management of TB with the aid of AI, and this includes 
technical, regulatory, and educational aspects among 
others.91 These knowledge gaps, if solved, could provide 
better ways to manage TB in many aspects.92 

We presented herein the neglected diseases that have 
been the highest challenges for poor neglected populations. 
Nevertheless, with the increase of migration worldwide, 
countries not involved in epidemic areas have been 
threatened by those diseases. 

6. Concluding Remarks

The evolution of Medicinal Chemistry has been 
astonishing, especially in the third millennium, with the 
great development of the areas intimately linked with this 
fascinating field of science, which searches for the health 
improvement of the people. 

It is worth noting that there is an increase in the 
availability of databases about the work on drugs for NTDs. 
This relative change in the scenario related to these diseases 
allows for the exploration of computational methods for 
searching for drugs in this area. Hence, the application 
of AI, especially machine learning, in the modeling 
and prediction of biological activity toward discovering 
new drugs for NTD, has been employed much more 
now, changing the paradigm of drug discovery/design.66 
However, several drawbacks yet deserve to be solved, 
considering many advanced tools have been introduced 
over the years. 

Different areas of drug design and discovery have 
benefited from the advanced technology involved. 
Notwithstanding, there is much to do for orphan/rare 
diseases and for neglected tropical diseases, which affect 
more than 1 billion people in the world, causing high 
morbidity and mortality. It is worth noting that neglected 
diseases affect primarily poor and neglected people. 

Malaria, tuberculosis, Chagas disease, leishmaniasis, 
and schistosomiasis are the most studied with this objective 
and for this reason, they have been briefly discussed in 
terms of works driven with those tools.

If we consider that AI has been used in most areas of 
science, technology, and medicine, there is space to search 
for new therapeutic agents for neglected diseases. Despite 
the interest in developing works toward finding new leads 
for these diseases, only some of them are awakening for 
the potentialities of AI together with Drug Computational 
chemogenomics, which can find promising leads, is still 
poorly explored in drug repositioning for NTDs.93 

According to our point of view, AI and drug 
repositioning, either together or in an isolated form, have 
been most used in academic environments and in research 
institutes as well. It is worth mentioning, conversely, that 
the translation between preclinical to clinical aspects should 
be mostly managed by the industries. The high costs and the 
infrastructure necessary for introducing new drugs in the 
therapeutic normally requires the relevant association with 
this sector, sometimes intermediated by world organisms 
of research. This has been performed with a high level of 
success by DNDi, WHO, just to mention some international 
organisms. For this very reason, we believe that this 
integration must be strongly emphasized and probably the 

Figure 9. Paroxetine, a selective serotonin reuptake inhibitor like 
fluoxetine, as anti-S. mansoni agent.81
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governments display an urgent role towards facing this 
challenge, probably with public health politics. Maybe the 
scenario changes in the near and promising future.
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