Acessibilidade / Reportar erro

Phthalates Adsorption on Nanostructures for Environmental Remediation: an ab initio Study

Abstract

Phthalates are organic molecules found in various everyday materials, such as plastics, but they do not bond chemically to the product. Consequently, they are released and contaminate the environment. In humans, ingesting phthalates can stimulate a functionality similar to estrogen hormones, acting as endocrine disruptors, thus requiring selective adsorption. This paper demonstrates the use of cyclodextrins (CDs), which are useful due to their capacity for selective adsorption by the inclusion of organic molecules in their internal cavities to remove pollutants from water. Graphene (Gr) is also evaluated due to its interesting electronic properties and a large surface, making this nanomaterial ideal for molecule adsorption. Through ab initio simulations, three phthalate molecules, benzyl butyl phthalate (BBP), dicyclohexyl-phthalate (DCHP), and dipropyl phthalate (DPP) interacting with β-CD and Gr, were evaluated. The results indicate that a weak interaction occurs, through physical adsorption. β-CD interacting with phthalates tends to form a host-guest complex. In the case of Gr, weak adsorption is favored by π-π interactions and H-bonds. Therefore, this study shows that these nanosystems are promising for removing phthalate molecules from wastewater.

Keywords:
environmental applications; DFT; nanomaterial; physics adsorption; simulation


Introduction

Phthalates are organic esters with wide industrial applications as plasticizers, used to improve plasticity and softness in various consumer products, for example, water and beverage bottles, food containers, cosmetics, and others.11 Zhang, L.; Liu, J.; Liu, H.; Wan, G.; Zhang, S.; Ecotoxicology 2015, 24, 967. [Crossref]
Crossref...
However, they do not chemically bond to the product and are released into the environment and contaminate water, food, soil, and air. In humans, phthalates stimulate a functionality similar to estrogen hormones, thus acting as endocrine disruptors and killing sperm, for example.22 Zoeller, R. T.; Mol. Cell. Endocrinol. 2005, 242, 10. [Crossref]
Crossref...

3 Boas, M.; Feldt-Rasmussen, U.; Skakkebæk, N. E.; Main, K. M.; Eur. J. Endocrinol. 2006, 154, 599. [Crossref]
Crossref...

4 Mínguez-Alarcón, L.; Gaskins, A. J.; Meeker, J. D.; Braun, J. M.; Chavarro, J. E.; Fertil. Steril. 2023, 120, 1138. [Crossref]
Crossref...

5 Koch, H. M.; Preuss, R.; Angerer, J.; Int. J. Androl. 2006, 29, 155. [Crossref]
Crossref...
-66 Wang, Y.; Qian, H.; Healthcare 2021, 9, 603. [Crossref]
Crossref...
They have adverse effects on the liver and kidneys and are suspected to be carcinogens in humans. Due to the large industrial use and the environmental risk, mainly due to their adverse effects on human and animal health, the adequate removal of these molecules is essential, especially from aquatic environments.77 Zhu, Z.; Rao, R.; Zhao, Z.; Chen, J.; Jiang, W.; Bi, F.; Yang, Y.; Zhang, X.; J. Mol. Liq. 2022, 355, 118930. [Crossref]
Crossref...

8 Dolai, J.; Ali, H.; Jana, N. R.; ACS Appl. Polym. Mater. 2020, 2, 691. [Crossref]
Crossref...

9 Ahmadi, H.; Javanbakht, M.; Akbari-adergani, B.; Shabanian, M.; J. Ind. Eng. Chem. 2020, 89, 416. [Crossref]
Crossref...
-1010 Wang, G.; Zhang, Q.; Chen, Q.; Ma, X.; Xin, Y.; Zhu, X.; Ma, D.; Cui, C.; Zhang, J.; Xiao, Z.; Chem. Eng. J. 2019, 358, 1083. [Crossref]
Crossref...

Cyclodextrins (CDs) are cyclic oligosaccharides with several applications,1111 Del Valle, E. M. M.; Process Biochem. 2004, 39, 1033. [Crossref]
Crossref...
including a new generation for removing pollutants from the wastewater as they are deemed efficient, selective, and reusable.1111 Del Valle, E. M. M.; Process Biochem. 2004, 39, 1033. [Crossref]
Crossref...

12 Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y.; Chemosphere 2020, 241, 125043. [Crossref]
Crossref...

13 Okasha, A. T.; Abdel-Khalek, A. A.; Alenazi, N. A.; Al Hammadi, A. A.; Al Zoubi, W.; Alhammadi, S.; Ko, Y. G.; Abukhadra, M. R.; J. Environ. Chem. Eng. 2023, 11, 109824. [Crossref]
Crossref...

14 Hedges, A. R.; Chem. Rev. 1998, 98, 2035. [Crossref]
Crossref...

15 Crini, G.; Chem. Rev. 2014, 114, 10940. [Crossref]
Crossref...
-1616 Zou, Y.; Wang, X.; Ai, Y.; Liu, Y.; Ji, Y.; Wang, H.; Hayat, T.; Alsaedi, A.; Hu, W.; Wang, X.; J. Mater. Chem. A 2016, 4, 14170. [Crossref]
Crossref...
Specifically, β-CDs are considered a perfect tool in environmental remediation due to their low cost, with a cavity diameter that offers the most suitable size for removing organic and inorganic pollutants. The hydrophilic exterior and hydrophobic interior of β-CD can host a variety of molecules through host-guest adsorption, establishing hydrophobic interaction in aqueous media with most organic targets, such as phthalate.99 Ahmadi, H.; Javanbakht, M.; Akbari-adergani, B.; Shabanian, M.; J. Ind. Eng. Chem. 2020, 89, 416. [Crossref]
Crossref...

10 Wang, G.; Zhang, Q.; Chen, Q.; Ma, X.; Xin, Y.; Zhu, X.; Ma, D.; Cui, C.; Zhang, J.; Xiao, Z.; Chem. Eng. J. 2019, 358, 1083. [Crossref]
Crossref...

11 Del Valle, E. M. M.; Process Biochem. 2004, 39, 1033. [Crossref]
Crossref...

12 Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y.; Chemosphere 2020, 241, 125043. [Crossref]
Crossref...
-1313 Okasha, A. T.; Abdel-Khalek, A. A.; Alenazi, N. A.; Al Hammadi, A. A.; Al Zoubi, W.; Alhammadi, S.; Ko, Y. G.; Abukhadra, M. R.; J. Environ. Chem. Eng. 2023, 11, 109824. [Crossref]
Crossref...
,1616 Zou, Y.; Wang, X.; Ai, Y.; Liu, Y.; Ji, Y.; Wang, H.; Hayat, T.; Alsaedi, A.; Hu, W.; Wang, X.; J. Mater. Chem. A 2016, 4, 14170. [Crossref]
Crossref...
Experimental studies show the capacity for selective phthalate adsorption by forming inclusion complexes with β-CD. At the same time, the inclusion of phthalate in the internal cavity of β-CD proved to be the main mechanism for successfully removing phthalate from water.99 Ahmadi, H.; Javanbakht, M.; Akbari-adergani, B.; Shabanian, M.; J. Ind. Eng. Chem. 2020, 89, 416. [Crossref]
Crossref...

10 Wang, G.; Zhang, Q.; Chen, Q.; Ma, X.; Xin, Y.; Zhu, X.; Ma, D.; Cui, C.; Zhang, J.; Xiao, Z.; Chem. Eng. J. 2019, 358, 1083. [Crossref]
Crossref...

11 Del Valle, E. M. M.; Process Biochem. 2004, 39, 1033. [Crossref]
Crossref...

12 Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y.; Chemosphere 2020, 241, 125043. [Crossref]
Crossref...
-1313 Okasha, A. T.; Abdel-Khalek, A. A.; Alenazi, N. A.; Al Hammadi, A. A.; Al Zoubi, W.; Alhammadi, S.; Ko, Y. G.; Abukhadra, M. R.; J. Environ. Chem. Eng. 2023, 11, 109824. [Crossref]
Crossref...
,1616 Zou, Y.; Wang, X.; Ai, Y.; Liu, Y.; Ji, Y.; Wang, H.; Hayat, T.; Alsaedi, A.; Hu, W.; Wang, X.; J. Mater. Chem. A 2016, 4, 14170. [Crossref]
Crossref...

17 Dragone, M.; Shitaye, G.; D’Abrosca, G.; Russo, L.; Fattorusso, R.; Isernia, C.; Malgieri, G.; Iacovino, R.; Molecules 2023, 28, 1331. [Crossref]
Crossref...

18 Song, W.; Hu, J.; Zhao, Y.; Shao, D.; Li, J.; RSC Adv. 2013, 3, 9514. [Crossref]
Crossref...

19 Zhou, Y.; Li, J.; Zhang, L.; Ge, Z.; Wang, X.; Hu, X.; Xu, T.; Li, P.; Xu, W.; Anal. Bioanal. Chem. 2019, 411, 5691. [Crossref]
Crossref...
-2020 Wolecki, D.; Trella, B.; Qi, F.; Stepnowski, P.; Kumirska, J.; Molecules 2021, 26, 6966. [Crossref]
Crossref...

Due to the hydrophobic nature of phthalate and hydrophobic core of the cavity, the phthalate molecule could be inserted into the cavity of the β-CD in aqueous media. In aqueous or high-polar solvents, the slightly hydrophobic β-CD cavity is occupied by water molecules energetically unfavorable (polar-non-polar interaction). It can, therefore, be readily substituted by phthalate, which is more hydrophobic than water.99 Ahmadi, H.; Javanbakht, M.; Akbari-adergani, B.; Shabanian, M.; J. Ind. Eng. Chem. 2020, 89, 416. [Crossref]
Crossref...

A few hexagonal layers compose graphene (Gr), the same layers that form graphite.2121 Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.; Science 2004, 306, 666. [Crossref]
Crossref...
The electronic properties and the large surface area are some of the most interesting features for the adsorption of molecules of chemical or biological interest.2222 Vendrame, L. F. O.; Zuchetto, T.; Fagan, S. B.; Zanella, I.; Comput. Theor. Chem. 2019, 1165, 112561. [Crossref]
Crossref...
,2323 de Moraes, E. E.; Tonel, M. Z.; Fagan, S. B.; Barbosa, M. C.; J. Mol. Model. 2019, 25, 302. [Crossref]
Crossref...
In addition, the aromatic structure and the numerous delocalized π electrons make Gr promising for environmental decontamination applications, especially in organic systems.2222 Vendrame, L. F. O.; Zuchetto, T.; Fagan, S. B.; Zanella, I.; Comput. Theor. Chem. 2019, 1165, 112561. [Crossref]
Crossref...

23 de Moraes, E. E.; Tonel, M. Z.; Fagan, S. B.; Barbosa, M. C.; J. Mol. Model. 2019, 25, 302. [Crossref]
Crossref...

24 de Oliveira, P. V.; Zanella, I.; Bulhões, L. O. S.; Fagan, S. B.; J. Mol. Liq. 2021, 321, 114738. [Crossref]
Crossref...
-2525 Kommu, A.; Singh, J. K.; Soft Mater. 2020, 18, 297. [Crossref]
Crossref...
In recent years, graphene materials have attracted great interest in their potential use in purifying organic pollutants in the aqueous system.2525 Kommu, A.; Singh, J. K.; Soft Mater. 2020, 18, 297. [Crossref]
Crossref...

26 Iqbal, M. S.; Aslam, A. A.; Iftikhar, R.; Junaid, M.; Imran, S. M.; Nazir, M. S.; Ali, Z.; Zafar, M.; Kanwal, A.; Othman, N. K.; Pal, U.; Pang, A. L.; Ahmadipour, M.; J. Water Process Eng. 2023, 53, 103809. [Crossref]
Crossref...
-2727 Liao, D.; Zhi, J.; Wang, Q.; Yan, W.; Guo, Y.; Han, Y.; Dong, C.; Xiao, Y.; Bai, H.; Liang, W.; Fan, L.; Anal. Chim. Acta 2023, 1271, 341477. [Crossref]
Crossref...
Studies involving the adsorption of phthalates on graphene material sheets have already been demonstrated experimentally and by classical molecular dynamics.2727 Liao, D.; Zhi, J.; Wang, Q.; Yan, W.; Guo, Y.; Han, Y.; Dong, C.; Xiao, Y.; Bai, H.; Liang, W.; Fan, L.; Anal. Chim. Acta 2023, 1271, 341477. [Crossref]
Crossref...

28 Yang, G. C. C.; Tang, P.-L.; Water Sci. Technol. 2016, 73, 2268. [Crossref]
Crossref...
-2929 Dou, Y.; Bai, Q.; Guo, W.; Wang, H.; Chen, S.; Wang, T.; Appl. Surf. Sci. 2024, 643, 158658. [Crossref]
Crossref...

A few studies have explored quantum computer simulations involving pristine graphene interacting with phthalates such as benzyl butyl phthalate (BBP), dicyclohexyl-phthalate (DCHP), and dipropyl phthalate (DPP). In this paper, β-CD and Gr through first principles calculations based on the density functional theory (DFT) as nanomaterials with potential for absorbing or including phthalate molecules were evaluated. These simulations consider three phthalate molecules (BBP, DCHP, and DPP) interacting with β-CD or Gr to assess the electronic, energetic, and structural properties of the resulting systems. Additionally, understanding the differences between the interactions of phthalates with graphene and/or CD is crucial due to variations in chemical conditions and surface shapes.

Methodology

To evaluate energetic, structural, and electronic properties of the phthalate molecules (BPP, DCHP, and DPP) with Gr or β-CD, calculations of the first-principles were performed using the SIESTA computational code,3030 SIESTA, version 4; SIESTA GitLab, Spain, 2019; Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D.; J. Phys.: Condens. Matter 2002, 14, 2745. [Crossref]
Crossref...
based on DFT. In these calculations, double-zeta polarized (DZP) basis functions were employed. The potential for exchange-correlation was described by local density approximation (LDA).3131 Perdew, J. P.; Zunger, A.; Phys. Rev. B 1981, 23, 5048. [Crossref]
Crossref...
This choice was justified primarily by similar works in the literature2323 de Moraes, E. E.; Tonel, M. Z.; Fagan, S. B.; Barbosa, M. C.; J. Mol. Model. 2019, 25, 302. [Crossref]
Crossref...
,3232 Hernández, J. M. G.; Anota, E. C.; de la Cruz, M. T. R.; Melchor, M. G.; Cocoletzi, G. H.; J. Mol. Model. 2012, 18, 3857. [Crossref]
Crossref...

33 Jauris, I. M.; Matos, C. F.; Saucier, C.; Lima, E. C.; Zarbin, A. J. G.; Fagan, S. B.; Machado, F. M.; Zanella, I.; Phys. Chem. Chem. Phys. 2016, 18, 1526. [Crossred]
Crossred...

34 Jauris, I. M.; Fagan, S. B.; Adebayo, M. A.; Machado, F. M.; Comput. Theor. Chem. 2016, 1076, 42. [Crossref]
Crossref...

35 Saini, S. S.; Fagan, S. B.; Tonel, M. Z.; Microchem. J. 2021, 166, 106227. [Crossref]
Crossref...
-3636 Tonel, M. Z.; Zanella, I.; Fagan, S. B.; J. Mol. Model. 2021, 27, 193. [Crossref]
Crossref...
where LDA demonstrated better agreement for binding energies and binding distance values in weakly interacting systems compared to experimental results. In the same way, LDA shows good agreement for weakly interacting systems, particularly in the presence of π-stacking interactions in sp22 Zoeller, R. T.; Mol. Cell. Endocrinol. 2005, 242, 10. [Crossref]
Crossref...
-type materials.3636 Tonel, M. Z.; Zanella, I.; Fagan, S. B.; J. Mol. Model. 2021, 27, 193. [Crossref]
Crossref...

37 Arrigoni, M.; Madsen, G. K. H.; Comput. Mater. Sci. 2019, 156, 354. [Crossref]
Crossref...

38 Cresti, A.; Lopez-Bezanilla, A.; Ordejón, P.; Roche, S.; ACS Nano 2011, 5, 9271. [Crossref]
Crossref...

39 Li, B.; Ou, P.; Wei, Y.; Zhang, X.; Song, J.; Materials 2018, 11, 726. [Crossref]
Crossref...

40 Tournus, F.; Charlier, J.-C.; Phys. Rev. B 2005, 71, 165421. [Crossref]
Crossref...
-4141 Tournus, F.; Latil, S.; Heggie, M. I.; Charlier, J.-C.; Phys. Rev. B 2005, 72, 075431. [Crossref]
Crossref...

The charge density was represented using a 200 Ry cut-off radius for the real-space integration grid. Structural optimizations were performed via a conjugate gradient method, ensuring residual forces were below 0.05 eV Å-1 in all atomic coordinates. For simulations involving Gr and phthalate molecules (BPP, DCHP, or DPP), periodic boundary conditions were applied with the unit cell dimensions set at 24.68 × 14.85 × 40.00 Å33 Boas, M.; Feldt-Rasmussen, U.; Skakkebæk, N. E.; Main, K. M.; Eur. J. Endocrinol. 2006, 154, 599. [Crossref]
Crossref...
. The Gr [β-CD] isolated system consists of 144 [147] atoms in the supercell. Similar computational methodologies have been employed in previous studies by our research group.2222 Vendrame, L. F. O.; Zuchetto, T.; Fagan, S. B.; Zanella, I.; Comput. Theor. Chem. 2019, 1165, 112561. [Crossref]
Crossref...
,2323 de Moraes, E. E.; Tonel, M. Z.; Fagan, S. B.; Barbosa, M. C.; J. Mol. Model. 2019, 25, 302. [Crossref]
Crossref...
,3636 Tonel, M. Z.; Zanella, I.; Fagan, S. B.; J. Mol. Model. 2021, 27, 193. [Crossref]
Crossref...
,4242 Saini, S. S.; Copello, G. J.; Fagan, S. B.; Tonel, M. Z.; J. Sep. Sci. 2023, 46, 2300012. [Crossref]
Crossref...

To calculate the binding energy (Eb), the BSSE method (base set superposition error) is considered (equation 1):4343 Boys, S. F.; Bernardi, F.; Mol. Phys. 1970, 19, 553. [Crossref]
Crossref...

(1) E b = - [ E ( A + B ) - E ( A + B ghost ) - E ( A ghost + B ) ]

where the ghost subscript refers to the atomic base placed in the positions of Gr/β-CD or phthalates but without atomic potentials representing real atoms in those positions. In the BSSE method, the correction is performed from the initial geometry of the system AB (interacting systems) and calculating the total energy of the system A[B] (isolated system), considering the entire set of basis functions, where the set of basis functions B[A] is located in the position corresponding to the system B[A] (isolated system), without the explicit presence of atoms. It is worth noting that positive energy values indicate an attractive system.

Results and Discussion

Initially, the isolated structures of β-CD, Gr, BBP, DCHP, and DPP were evaluated. β-CD has a HOMO (higher occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) difference of 5.72 eV, close to that described in the literature with similar methodology.4242 Saini, S. S.; Copello, G. J.; Fagan, S. B.; Tonel, M. Z.; J. Sep. Sci. 2023, 46, 2300012. [Crossref]
Crossref...
,4444 Figueiredo, J.; Silva, L. B. D.; Pontes, R. B.; Zanella, I.; Fagan, S. B.; J. Nanopharm. Drug Delivery 2016, 3, 70. [Crossref]
Crossref...
The HOMO-LUMO difference observed in BPP, DCHP, and DPP is, respectively, 3.44, 3.51, and 3.44 eV (Table 1). Singh et al.4545 Singh, N.; Dalal, V.; Kumar, P.; Mol. Simul. 2020, 46, 9. [Crossref]
Crossref...
obtained 3.88 eV for the HOMO/LUMO difference for DCHP molecule with DFT/B3LYP (6-311G) basis set.4646 Becke, A. D.; J. Chem. Phys. 1993, 98, 5648. [Crossref]
Crossref...

Table 1
Most stable configurations studied for the interaction of phthalate molecules (BBP, DCHP, and DPP) with β-CD or Gr. Binding energy, shortest distance, ∆HOMO/LUMO, and charge transfer

The interaction of β-CD with phthalate molecules (BPP, DCHP, or DPP) has been proposed in various atomic arrangements. The phthalate molecules interacting through the largest and smallest cavity and the external part of the β-CD were analyzed. Figure 1 illustrates the most stable chemical structures for each interacting system. Table 1 shows the values of the binding energy (eV), shortest distance (Å), HOMO/LUMO difference (eV) (∆HOMO/LUMO), and charge transfer (eˉ) between the nanostructures (β-CD or Gr) and the molecules.

Figure 1
β-CD interacting with (a) BBP, (b) DCHP, and (c) DPP: most stable configuration, energy levels, and charge plot on HOMO and LUMO (isosurface value 1 × 10-3 e Å-3).

BBP interacts with β-CD (Figure 1a) through the inner part of the largest cavity, considering the molecular dimensions of the β-CD cavity (diameter 6.0-6.5 Å), with a binding energy of 0.94 (21.69) eV (kcal mol-1). The HOMO LUMO difference is 2.85 eV, which decreases compared with isolated BBP and β-CD, 3.44 and 5.72 eV, respectively. β-CD acts as an electron donor of +0.22 e- in the presence of the BPP molecule. Saini et al.4242 Saini, S. S.; Copello, G. J.; Fagan, S. B.; Tonel, M. Z.; J. Sep. Sci. 2023, 46, 2300012. [Crossref]
Crossref...
also showed that β-CD interacts with bisphenol. The electronic charge plot in HOMO is located on β-CD and in LUMO on BBP, more precisely on the aromatic ring inside the β-CD cavity. These results show that electronic levels in previous theoretical/experimental4747 Li, J.; Hu, X.; Zhou, Y.; Zhang, L.; Ge, Z.; Wang, X.; Xu, W.; ACS Appl. Nano Mater. 2019, 2, 2743. [Crossref]
Crossref...
studies state that BPP can partially enter the beta-CD cavity. This complexation is favorable for the degradation of BPP. β-CD has hydrophobic internal cavities, and Zhou et al.1919 Zhou, Y.; Li, J.; Zhang, L.; Ge, Z.; Wang, X.; Hu, X.; Xu, T.; Li, P.; Xu, W.; Anal. Bioanal. Chem. 2019, 411, 5691. [Crossref]
Crossref...
used this strategy to capture BBP molecules.

When the β-CD interacts with the DCHP (Figure 1b), the binding energy is around 1.12 (25.83) eV (kcal mol-1), in this case, the molecule interacts perpendicularly over the largest cavity of the β-CD. The interaction distance (minimum distance between interacting atoms of DCHP and β-CD) is 1.76 Å, and β-CD acts as an electron donor to the DCHP molecule, resulting in a charge transfer of +0.18 e-. The HOMO-LUMO difference is 2.56 eV, a smaller value than that of the isolated DCHP molecule (3.51 eV). The charge plot in the HOMO region is concentrated on β-CD, while in the LUMO, it is exclusively on the DCHP molecule. In this case, the inclusion of DCHP in the β-CD cavity is unfavorable; nevertheless, this system was the most stable among the studies. Despite the binding energy value, the system exhibits physical adsorption characteristics, as evidenced by the absence of significant changes in electronic properties, interaction distance value, and low charge transfer.

The most stable system of DPP phthalate interacting with β-CD (Figure 1c) occurs through encapsulation of the larger CD cavity; the binding energy is 1.04 (23.98) eV (kcal mol 11 Zhang, L.; Liu, J.; Liu, H.; Wan, G.; Zhang, S.; Ecotoxicology 2015, 24, 967. [Crossref]
Crossref...
). In this case, the β-CD in the presence of DPP is an electron acceptor (0.08 e-), contrasting with the BBP and DCHP interaction. This behavior can be understood as a result of the electronegativity variation within the region where phthalate molecules enter the cavity of β-CD. A HOMO-LUMO difference of 3.22 eV is observed, a value close to that of the isolated DPP molecule (3.44 eV). The charge plot in HOMO reveals that the charge is mainly concentrated on β-CD and LUMO in the DPP aromatic ring in the β-CD cavity.

In Figure 2, the most stable configurations of Gr interacting with BBP, DCHP, and DPP, the energy bands of the isolated systems and the most stable configurations, and the charge plot in the valence (VB) and conduction band (CB) are presented.

Figure 2
Gr interacting with (a) BBP, (b) DCHP, and (c) DPP: most stable configuration, energy levels, and charge plot on HOMO and LUMO (isosurface value 1×10-3 e Å-3).

In the interaction of BBP with Gr (Figure 2a), the most stable system presents a binding energy of 0.42 (9.68) eV (kcal mol-1), with an electronic charge transfer from Gr to the phthalate molecule of +0.09 e-, that is, BBP is a charge acceptor. The smallest distance between structures is 3.35 Å. There are no significant changes in electronic properties compared to isolated Gr. The charge plots on the VB and CB are concentrated mainly on Gr.

DCHP interacting with Gr (Figure 2b) exhibits a binding energy of 0.55 (12.68) eV (kcal mol-1), with a distance of 2.96 Å. A slight charge transfer of +0.09 e- from Gr to DCHP is observed in this case. Additionally, there are no significant changes in electronic properties compared to isolated Gr, indicating a weak interaction, namely physical adsorption.

In the interaction of BBP and DCHP with Gr, it is notable that in the two most stable cases, one of the phthalate aromatic rings interacts in a planar structure with Gr. Previous studies2323 de Moraes, E. E.; Tonel, M. Z.; Fagan, S. B.; Barbosa, M. C.; J. Mol. Model. 2019, 25, 302. [Crossref]
Crossref...
,3636 Tonel, M. Z.; Zanella, I.; Fagan, S. B.; J. Mol. Model. 2021, 27, 193. [Crossref]
Crossref...
show that planar molecules, or planar portions of molecules, interact through π-π type.

In the case of the interaction of DPP with Gr (Figure 2c), the phthalate molecule interacts perpendicularly. In this case, the binding energy is 0.18 (4.15) eV (kcal mol-1), with a smaller distance between the structures of 2.99 Å. As in the previous cases, Gr donates an electronic charge to phthalate (0.08 e-). The electronic properties remain unchanged to isolated Gr, and the charge plot in VB and CB are concentrated over Gr.

The interaction of BPP, DCHP, and DPP molecules with Gr present binding energy in the order of 0.42 (9.68), 0.55 (12.68), and 0.18 (4.15) eV (kcal mol-1), respectively. In these systems, the bonding distance is around 3 Å. Studies demonstrate that other pollutants, such as analgesics, are adsorbed through non-covalent interactions (van der Waals and π-π interactions) with graphene.4848 Perry, R. H.; Phys. Chem. Chem. Phys. 2021, 23, 1221. [Crossref]
Crossref...
demonstrate that the structures are optimized at a relatively long distance (3 4 Å) compared to typical C-H and C-C bond lengths, and the negligible change in electronic properties indicates that the adsorption mechanism is of a physical nature. The interaction occurs within a physical adsorption regime, indicating weak interaction between the constituents.

Experimental studies on the adsorption of phthalates onto carbon nanotubes have revealed that not only does the small diameter of the nanotubes contributes to higher adsorption efficiency, but also that it is an endothermic process, whereby an increase in ambient temperature leads to increased adsorption efficiency.4949 Zhuang, S.; Zhu, X.; Wang, J.; J. Mol. Liq. 2020, 319, 114267. [Crossref]
Crossref...
,5050 Becky Miriyam, I.; Anbalagan, K.; Magesh Kumar, M.; Water Sci. Technol. Libr. 2022, 85, 2581. [Crossref]
Crossref...
Moreover, in all these instances, the adsorption of a broad spectrum of phthalates with varying polarities was observed to be relatively non-selective.5151 Julinová, M.; Slavík, R.; J. Environ. Manage. 2012, 94, 13. [Crossref]
Crossref...

The results presented in this paper collaborate with previous experimental studies.5151 Julinová, M.; Slavík, R.; J. Environ. Manage. 2012, 94, 13. [Crossref]
Crossref...
It is observed that β-CDs and graphene can be utilized for the adsorption of phthalates in a physical regime. β-CD provides better stabilization for the interaction with phthalates molecules compared to Gr. This adsorption preference occurs through the cyclodextrin cavity, which increases the number of possible chemical interactions between the systems.

Conclusions

In this paper, first-principle DFT-based calculations to assess the interaction of phthalate molecules (BPP, DCHP, and DPP) with both Gr and β-CD nanomaterials were conducted. The energetic, structural, and electronic properties estimation results indicate that the interactions occur through a physical adsorption regime. This suggests that the interaction is weak, with no significant changes observed in the electronic and structural properties of the systems. In the case of β-CD[Gr] interacting with phthalate molecules, the binding energy obtained are 0.94 / 21.68 [0.42 / 9.68] eV / kcal mol-1, 1.12 / 25.83 [0.55 / 12.68] eV / kcal mol-1, and 1.04 / 23.98 [0.18 / 4.15] eV / kcal mol-1, for BBP, DCHP, and DPP, respectively. However, all binding energies were less than 1.12 (25.83) eV (kcal mol-1), indicating a physical adsorption regime. The absence of chemical bonds between the systems is one of the essential conditions for utilizing Gr and β-CD as a potential nanofilter platform for phthalate molecules BBP, DCHP, and DPP. Thus, we demonstrate that both β-CD and Gr are promising nanomaterials for removing phthalate molecules, offering the prospect of reusable systems.

Acknowledgments

The authors are grateful to CENAPAD-SP (National Center for High-Performance Processing in São Paulo) and UFN (Franciscan University) for the computational space, and the Brazilian agencies CNPq (grants 443154/2023 6, 421701/2017-0 and 309162/2021-1), CAPES (grant 88881.506898/2020-01), and FINEP (grant 01.22.0536.00) for financial support.

References

  • 1
    Zhang, L.; Liu, J.; Liu, H.; Wan, G.; Zhang, S.; Ecotoxicology 2015, 24, 967. [Crossref]
    » Crossref
  • 2
    Zoeller, R. T.; Mol. Cell. Endocrinol. 2005, 242, 10. [Crossref]
    » Crossref
  • 3
    Boas, M.; Feldt-Rasmussen, U.; Skakkebæk, N. E.; Main, K. M.; Eur. J. Endocrinol. 2006, 154, 599. [Crossref]
    » Crossref
  • 4
    Mínguez-Alarcón, L.; Gaskins, A. J.; Meeker, J. D.; Braun, J. M.; Chavarro, J. E.; Fertil. Steril. 2023, 120, 1138. [Crossref]
    » Crossref
  • 5
    Koch, H. M.; Preuss, R.; Angerer, J.; Int. J. Androl. 2006, 29, 155. [Crossref]
    » Crossref
  • 6
    Wang, Y.; Qian, H.; Healthcare 2021, 9, 603. [Crossref]
    » Crossref
  • 7
    Zhu, Z.; Rao, R.; Zhao, Z.; Chen, J.; Jiang, W.; Bi, F.; Yang, Y.; Zhang, X.; J. Mol. Liq. 2022, 355, 118930. [Crossref]
    » Crossref
  • 8
    Dolai, J.; Ali, H.; Jana, N. R.; ACS Appl. Polym. Mater. 2020, 2, 691. [Crossref]
    » Crossref
  • 9
    Ahmadi, H.; Javanbakht, M.; Akbari-adergani, B.; Shabanian, M.; J. Ind. Eng. Chem. 2020, 89, 416. [Crossref]
    » Crossref
  • 10
    Wang, G.; Zhang, Q.; Chen, Q.; Ma, X.; Xin, Y.; Zhu, X.; Ma, D.; Cui, C.; Zhang, J.; Xiao, Z.; Chem. Eng. J. 2019, 358, 1083. [Crossref]
    » Crossref
  • 11
    Del Valle, E. M. M.; Process Biochem. 2004, 39, 1033. [Crossref]
    » Crossref
  • 12
    Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y.; Chemosphere 2020, 241, 125043. [Crossref]
    » Crossref
  • 13
    Okasha, A. T.; Abdel-Khalek, A. A.; Alenazi, N. A.; Al Hammadi, A. A.; Al Zoubi, W.; Alhammadi, S.; Ko, Y. G.; Abukhadra, M. R.; J. Environ. Chem. Eng. 2023, 11, 109824. [Crossref]
    » Crossref
  • 14
    Hedges, A. R.; Chem. Rev. 1998, 98, 2035. [Crossref]
    » Crossref
  • 15
    Crini, G.; Chem. Rev. 2014, 114, 10940. [Crossref]
    » Crossref
  • 16
    Zou, Y.; Wang, X.; Ai, Y.; Liu, Y.; Ji, Y.; Wang, H.; Hayat, T.; Alsaedi, A.; Hu, W.; Wang, X.; J. Mater. Chem. A 2016, 4, 14170. [Crossref]
    » Crossref
  • 17
    Dragone, M.; Shitaye, G.; D’Abrosca, G.; Russo, L.; Fattorusso, R.; Isernia, C.; Malgieri, G.; Iacovino, R.; Molecules 2023, 28, 1331. [Crossref]
    » Crossref
  • 18
    Song, W.; Hu, J.; Zhao, Y.; Shao, D.; Li, J.; RSC Adv. 2013, 3, 9514. [Crossref]
    » Crossref
  • 19
    Zhou, Y.; Li, J.; Zhang, L.; Ge, Z.; Wang, X.; Hu, X.; Xu, T.; Li, P.; Xu, W.; Anal. Bioanal. Chem. 2019, 411, 5691. [Crossref]
    » Crossref
  • 20
    Wolecki, D.; Trella, B.; Qi, F.; Stepnowski, P.; Kumirska, J.; Molecules 2021, 26, 6966. [Crossref]
    » Crossref
  • 21
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.; Science 2004, 306, 666. [Crossref]
    » Crossref
  • 22
    Vendrame, L. F. O.; Zuchetto, T.; Fagan, S. B.; Zanella, I.; Comput. Theor. Chem. 2019, 1165, 112561. [Crossref]
    » Crossref
  • 23
    de Moraes, E. E.; Tonel, M. Z.; Fagan, S. B.; Barbosa, M. C.; J. Mol. Model. 2019, 25, 302. [Crossref]
    » Crossref
  • 24
    de Oliveira, P. V.; Zanella, I.; Bulhões, L. O. S.; Fagan, S. B.; J. Mol. Liq. 2021, 321, 114738. [Crossref]
    » Crossref
  • 25
    Kommu, A.; Singh, J. K.; Soft Mater. 2020, 18, 297. [Crossref]
    » Crossref
  • 26
    Iqbal, M. S.; Aslam, A. A.; Iftikhar, R.; Junaid, M.; Imran, S. M.; Nazir, M. S.; Ali, Z.; Zafar, M.; Kanwal, A.; Othman, N. K.; Pal, U.; Pang, A. L.; Ahmadipour, M.; J. Water Process Eng. 2023, 53, 103809. [Crossref]
    » Crossref
  • 27
    Liao, D.; Zhi, J.; Wang, Q.; Yan, W.; Guo, Y.; Han, Y.; Dong, C.; Xiao, Y.; Bai, H.; Liang, W.; Fan, L.; Anal. Chim. Acta 2023, 1271, 341477. [Crossref]
    » Crossref
  • 28
    Yang, G. C. C.; Tang, P.-L.; Water Sci. Technol. 2016, 73, 2268. [Crossref]
    » Crossref
  • 29
    Dou, Y.; Bai, Q.; Guo, W.; Wang, H.; Chen, S.; Wang, T.; Appl. Surf. Sci. 2024, 643, 158658. [Crossref]
    » Crossref
  • 30
    SIESTA, version 4; SIESTA GitLab, Spain, 2019; Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D.; J. Phys.: Condens. Matter 2002, 14, 2745. [Crossref]
    » Crossref
  • 31
    Perdew, J. P.; Zunger, A.; Phys. Rev. B 1981, 23, 5048. [Crossref]
    » Crossref
  • 32
    Hernández, J. M. G.; Anota, E. C.; de la Cruz, M. T. R.; Melchor, M. G.; Cocoletzi, G. H.; J. Mol. Model. 2012, 18, 3857. [Crossref]
    » Crossref
  • 33
    Jauris, I. M.; Matos, C. F.; Saucier, C.; Lima, E. C.; Zarbin, A. J. G.; Fagan, S. B.; Machado, F. M.; Zanella, I.; Phys. Chem. Chem. Phys. 2016, 18, 1526. [Crossred]
    » Crossred
  • 34
    Jauris, I. M.; Fagan, S. B.; Adebayo, M. A.; Machado, F. M.; Comput. Theor. Chem. 2016, 1076, 42. [Crossref]
    » Crossref
  • 35
    Saini, S. S.; Fagan, S. B.; Tonel, M. Z.; Microchem. J. 2021, 166, 106227. [Crossref]
    » Crossref
  • 36
    Tonel, M. Z.; Zanella, I.; Fagan, S. B.; J. Mol. Model. 2021, 27, 193. [Crossref]
    » Crossref
  • 37
    Arrigoni, M.; Madsen, G. K. H.; Comput. Mater. Sci. 2019, 156, 354. [Crossref]
    » Crossref
  • 38
    Cresti, A.; Lopez-Bezanilla, A.; Ordejón, P.; Roche, S.; ACS Nano 2011, 5, 9271. [Crossref]
    » Crossref
  • 39
    Li, B.; Ou, P.; Wei, Y.; Zhang, X.; Song, J.; Materials 2018, 11, 726. [Crossref]
    » Crossref
  • 40
    Tournus, F.; Charlier, J.-C.; Phys. Rev. B 2005, 71, 165421. [Crossref]
    » Crossref
  • 41
    Tournus, F.; Latil, S.; Heggie, M. I.; Charlier, J.-C.; Phys. Rev. B 2005, 72, 075431. [Crossref]
    » Crossref
  • 42
    Saini, S. S.; Copello, G. J.; Fagan, S. B.; Tonel, M. Z.; J. Sep. Sci. 2023, 46, 2300012. [Crossref]
    » Crossref
  • 43
    Boys, S. F.; Bernardi, F.; Mol. Phys. 1970, 19, 553. [Crossref]
    » Crossref
  • 44
    Figueiredo, J.; Silva, L. B. D.; Pontes, R. B.; Zanella, I.; Fagan, S. B.; J. Nanopharm. Drug Delivery 2016, 3, 70. [Crossref]
    » Crossref
  • 45
    Singh, N.; Dalal, V.; Kumar, P.; Mol. Simul. 2020, 46, 9. [Crossref]
    » Crossref
  • 46
    Becke, A. D.; J. Chem. Phys. 1993, 98, 5648. [Crossref]
    » Crossref
  • 47
    Li, J.; Hu, X.; Zhou, Y.; Zhang, L.; Ge, Z.; Wang, X.; Xu, W.; ACS Appl. Nano Mater. 2019, 2, 2743. [Crossref]
    » Crossref
  • 48
    Perry, R. H.; Phys. Chem. Chem. Phys. 2021, 23, 1221. [Crossref]
    » Crossref
  • 49
    Zhuang, S.; Zhu, X.; Wang, J.; J. Mol. Liq. 2020, 319, 114267. [Crossref]
    » Crossref
  • 50
    Becky Miriyam, I.; Anbalagan, K.; Magesh Kumar, M.; Water Sci. Technol. Libr. 2022, 85, 2581. [Crossref]
    » Crossref
  • 51
    Julinová, M.; Slavík, R.; J. Environ. Manage. 2012, 94, 13. [Crossref]
    » Crossref

Edited by

Editor handled this article: Maria Cristina Canela

Publication Dates

  • Publication in this collection
    19 Aug 2024
  • Date of issue
    2024

History

  • Received
    01 Mar 2024
  • Accepted
    23 July 2024
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br