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Chagas disease is a public health problem, particularly in Latin America. The available 
treatment consists of two poorly effective drugs in the chronic phase of this parasitic disease. 
Considering the lack of effective treatment, alternatives are sought, such as the search focused on 
the biological targets of the etiologic agent. Based on this strategy, the role of Trypanosoma cruzi 
sterol 14α-demethylase (TcCYP51) in ergosterol seems promising. In this work, we apply the virtual 
screening approach to a proposal to repurpose U.S. Food and Drug Administration (FDA)‑approved 
drugs. We combined computational techniques and used rigorous validation to identify putative 
inhibitors from the FDA-approved drug library. The results indicated one of these drugs as a 
putative inhibitor of the TcCYP51 enzyme. 
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Introduction

Chagas disease is caused by the protozoan 
Trypanosoma  cruzi (T. cruzi) and is transmitted by 
Triatominae insect vectors, infecting approximately 7 million 
people worldwide.1 This disease is endemic in Latin America, 
where the infection occurs mainly by the bite of the vector 
insect or by food contaminated with the insect or its feces. 
Still, the transmission can also occur congenitally and by 
blood transfusion or organ transplantation. The treatment 
consists of two nitroheterocyclic drugs, benznidazole and 
nifurtimox, introduced around the 1970s.1,2 Despite both 
being effective in the acute or early chronic infection phases, 
they require prolonged use, resulting in severe adverse 
effects and treatment withdrawal, and they are not effective 
at a late stage.3,4 Therefore, there is a need to search for new 
antitrypanosomal agents.

In this context, drug repurposing has been highlighted in 
the last decade since one-third of the approved drugs were 
identified from this approach.5-7 The main advantage lies 
in the pharmacokinetic properties and safety of preclinical 

models, which are well established and significantly reduce 
development time and investment cost.7,8 In addition, the 
in silico drug repurposing workflow generally includes 
the computational approach to reduce the database size, 
indicating the candidates for in vitro or in vivo screening.6-8

Based on the research strategy on parasite-specific 
molecular targets, this study focused on the sterol 
14α-demethylase enzyme in Trypanosoma cruzi (TcCYP51) 
(EC.1.14.13.70), which acts in ergosterol biosynthesis 
and is essential for parasite survival.9 We describe 
an in silico drug repurposing of U.S. Food and Drug 
Administration (FDA)‑approved drugs using a computational 
approach focused on the CYP51 enzyme. We established 
a structure-based protocol using molecular docking to 
build a receiver operating characteristic curve (ROC curve) 
and quantitative structure-activity relationship (QSAR) to 
identify drugs as putative T. cruzi CYP51 inhibitors. 

Methodology

Dataset of active compounds

Forty-eight azole compounds that exhibit activity 
against the amastigote forms of T. cruzi were taken from 
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the literature to build a dataset of active compounds, and 
their half maximal effective concentration (EC50) values 
were converted to the negative log of half maximal effective 
concentration (pEC50), Supplementary Information (SI) 
section, Tables S1-S3).10-12 The 3D structures were built 
and optimized by the semi-empirical RM1 method in the 
Spartan 10.13,14

Molecular docking simulation

We obtained the crystallographic structure of the 
TcCYP51 (PDB ID: 4C27, resolution = 1.95 Å) from 
PDB (Protein Data Bank).15,16 For the molecular docking 
procedure, we first removed the water molecules and ions 
from the native structure of the protein, and the missing 
amino acid residues were added to the structure by the 
Modeller program (version 9.20).17,18 The binding site 
center was defined as a sphere of 20 Å radius centered on 
the iron atom of the heme group (x = -10.43, y = 0.78; 
z = -16.30). 

We used the GOLD software (Genetic Optimization for 
Ligand Docking, version 5.7.2) to perform the molecular 
docking simulations.19 We used the ChemScore for the 
scoring function for the prediction of protein-ligand binding 
affinities.20 We follow the given default genetic algorithm 
parameter values of the docking program. Each ligand was 
submitted to 10 docking runs, and we chose the top-ranked 
(highest score) docking pose from each ligand. The docking 
protocol was validated by re-docking, considering the root 
mean square deviation (RMSD) < 2 Å of the top-ranked 
pose.21,22

The analysis of intermolecular interactions and the 
graphic representations were generated using the Discovery 
Studio software (version 21.1.0.20298).23

Receiver operating characteristic (ROC) curve analyses

We constructed the ROC curve using the docking score 
of active and inactive compounds against TcCYP5124 using 
the Screening Explorer server.25 In this study, we used the 
following statistical parameters to evaluate the performance 
of the ROC curve: area under the curve (AUC), total 
gain (TG), sensitivity (SE), and specificity (SP).21,24,26 We 
also assess the probability of bias in the ROC curve by the 
Mann-Whitney U-test in R Commander27 and G-Power 
software.28

This study classified 20 azole compounds with 
pEC50  >  7.1 as active (Table S1, SI section). Using the 
DecoyFinder software,29 200 compounds were presumed 
inactive from the ZINC 15 database30,31 employing the 
following parameters: molecular mass (500 ± 200 Da); 

log P (< 6); hydrogen bonding as a donor (3 ± 1); hydrogen 
bonding as an acceptor (7 ± 1); rotatable bonds (7 ± 1); 
searching number (10 decoys for each active ligand); 
Tanimoto coefficient between active/decoy (0.5) and 
between decoy/decoy (0.5).32,33 We built the 3D structures 
of the decoys using the Open Babel software34 from a single 
file in the SDF format, which was separated into individual 
files. Hydrogen atoms were added to structures, and their 
energies were minimized. These structures were submitted 
to the docking protocol as previously described.

Construction of 3D-QSAR model

The 3D-QSAR models were developed on the active 
compounds dataset (Tables S1-S3, SI section) using the per 
residue energy interaction obtained from molecular docking 
simulations. To estimate the influence of the descriptors on 
the predictive capacity of the 3D-QSAR models, we built five 
databases (A-E), considering the following cutoff values by 
variance: 0.001 (A), 0.005 (B), 0.01 (C), 0.05 (D) and 0.1 (E).35 
Each database was divided into training (80%) and test (20%)  
sets using the supervised method of Kennard‑Stone.36 
We used the combined techniques of genetic function 
approximation (GFA) and partial least squares (PLS) in 
the Wolf software37 for the generation of QSAR equations 
containing 4 to 8 terms from the training sets. For this work, 
the following GFA parameters have been used: population 
size (600-1000 equations), crossover (50,000-500,000), 
mutation rate (100%), and smoothing factor (0.1-1.0).

Validation of 3D-QSAR equations

The equations obtained from each training set were 
evaluated for the correlation coefficient (R2), the correlation 
leave-one-out cross-validation coefficient (Q2), and the 
root-mean-square error of the estimate (RMSEE). The 
predicted value of R2 (R2

pred) was obtained for the test 
assembly as external validation.38 The equations were 
selected according to the following criteria: Q2 > 0.5, 
R2 > 0.6, R2

pred > 0.5 and RMSEE < 1.0.38-41

To detect possible redundancy between the descriptors, 
we built the cross-correlation matrix between residue and 
descriptors by R-Commander, discarding models with high 
correlation between residues (R > 0.7).42,43

We classified as outlier compounds from the training and 
the test set that presented residual value (pEC50 - pEC50Pred) 
greater than two units of the standard deviation of the 
estimation (SEE).44 

We submitted the 3D-QSAR model developed to external 
representativeness validation analyses for the test and 
training sets, model robustness, and predictive capability 
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through the application domain, Y-randomization, and 
Spearman correlation.45,46 The application domain was 
calculated by ENALOS nodes in the KNIME software.47 
We used MLRPlusValidation to generate 50 models by 
Y-randomization calculation and analyzed the corresponding 
R2 and Q2.48 We calculated the Spearman correlation (ρ) from 
the experimental and predicted values, of which weights 
close to 1.0 indicate a perfect correlation.49

Virtual screening

The 1657 FDA-approved drugs in the ZINC 15 
database31,50 were filtered and selected according to the 
physicochemical descriptors used for ROC curve analysis: 
molecular mass (500 ± 200 Da); log P (< 6); hydrogen 
bonding as a donor (3 ± 1); hydrogen bonding as an acceptor 
(7 ± 1); rotatable bonds (7 ± 1). The 3D structures of the 
selected compounds have been generated and minimized 
in the Open Babel software34 and then submitted to the 
docking protocol. To identify the putative TcCYP51 
inhibitors, we analyzed the ROC curve based on the 
molecular docking score and used the 3D-QSAR model 
developed to predict their inhibition activity. 

Results and Discussion

Despite docking helping discover new ligands, working 
as a filter to eliminate non-binders, and even predicting 
the poses of fragment-sized molecules against target 
site models,51 we consider additional resources to aid in 
discovering new ligands. The workflow of the strategy used 
in virtual screening to find drugs binding the catalytic site 
of TcCYP51 is depicted in Figure 1.

The molecular docking protocol was validated by re-
docking using the co-crystallized structure of the enzyme 
TcCYP51 complex with its inhibitor (Figure 2).12 The 
RMSD of 1.58 Å obtained in re-docking agrees with the 
literature (< 2 Å) and is adequate for the validation of the 
docking protocol.52

We constructed a dataset containing 48 active azole 
compounds selected from the literature (Tables S1-S3, 
SI section)10-12 and used their pEC50 to build the ROC curve. 
In the construction of the ROC curve, we used the 20 most 
active inhibitors (pEC50 > 7.1) and a set of 200 inactive 
compounds (decoys). The AUC-ROC (0.91) and TG (0.71) 
obtained (Figure 3) indicate the successful discrimination 
between active and inactive compounds.24 We considered a 
cutoff docking score of 52.23 and analyzed the sensitivity 
(SE = 0.90) and specificity (SP = 0.94), demonstrating a good 
discriminatory capacity between active and inactive classes.

We performed an additional statistical analysis as the 
sampling power and normality test to identify possible bias 
in the ROC curve. The sampling power value obtained (1.0) 
indicates that the set used for ROC curve analysis was 
sufficient to detect relevant statistical differences since 
values greater than 0.8 indicate a good representation of 
the data used.53,54

We performed the normality test to estimate the ability 
of discrimination between the active and decoy sets,55,56 
where the active group showed a non-normal distribution 
(p = 0.01), and the inactive set showed a normal distribution 
(p = 0.08). Considering the divergent distribution, we 
assumed both as non-normal and performed the test based 
on the mean of the docking score using the non-parametric 
Mann-Whitney U test. This test showed a statistical 
difference based on the median (p-value < 0.001), indicating 
that the ROC curve can discriminate between active and 
inactive compounds. The analyses demonstrate the absence 
of bias in the ROC curve based on docking score and 
presenting representative data with discriminatory capacity.

3D-QSAR construction and validation

To predict the biological activity of potential TcCYP51 
inhibitors, we built a 3D-QSAR model. From the five 
training sets, we obtained 2700 equations that were reduced 
by applying the statistical cutoff criteria (Q2, R2, RMSEE, 
R2

pred, and outliers) (Table 1). The variance-based descriptor 

Figure 1. Workflow for virtual screening procedures adopted in this work. 
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reduction contributed to obtaining equations with adequate 
statistical parameters35,39,57 since the best equation belongs 
to the training set with a variance cutoff of 0.05. Statistical 
differences between the equations may be related to the 
supervised method for splitting the dataset into the training 
and test sets, resulting in training sets with wide structural 
diversity.58,59

The training set demonstrated higher values than the 
cut-off criteria of this work,38-41 with Q2 > 0.5 (0.588‑0.757) 

and R2 > 0.6 (0.701-0.846) (Table 1). Considering that 
statistical evaluation of the test set is crucial for choosing 
a robust and unbiased model,39,40,60 we used R2

pred and 
RMSEE for the test set due to the possibility of overfitting 
the model. In this regard, the equations D-1, D-2, and 
D-3 presented acceptable values of R2

pred (> 0.7) and 
RMSEE (≤ 0.82). Furthermore, there is no detection of 
outliers in equation D-3 (Table 1). Thus, as it presents 
the best statistical parameters to predict the biological 
activity of compounds not included in the training set 
(Table S4, SI  section),38-41,60 we selected equation D-3 
(pEC50 = 4.18 + 0.51 × Met106 + 0.18 × Tyr116 + 1.25 × 
Ala211 + 0.60 × Met358) for the QSAR study.

The cross-correlation matrix analysis of the residual 
values (pEC50Exp - pEC50Pred) for independent terms of the 
D-3 equation showed that the residue-descriptors Met106, 
Tyr116, Ala211, and Met358 have low intercorrelation, 
indicating that the model does not present redundant 
information (Table 2).

We evaluated the domain application to analyze whether 
the prediction of the test set was reliable concerning the 
training set of the D-3 equation (Figure 4).61 We used two 
distance-based methods, Leverage and Euclidean (domain) 
distances,61,62 to analyze the training set compounds 
and determine a threshold value for the applicability 
domain  (AD). Analysis of the limits generated for the 
training set, domain (2.48), and leverage (0.30) showed 
that the chemical space of the test set is comparable to 
the training set, without outlier compounds (Figure 4a).61

The evaluation of the robustness of the D-3 model 
was performed using Y-randomization,63 in which the 
biological activity values are randomly exchanged to 
obtain new values of R2 and Q2 (Figure 4b). Analyzing the 
R2 (< 0.28) and Q2 (< 0.02) values for the 50 randomized 
models, we observed no random correlations between the 
residue descriptors and biological activity. Furthermore, 
the Spearman correlation coefficient for the D-3 equation 

Figure 2. Superposition of 26N (grey) co-crystal structure bound to 
TcCYP51 enzyme and the docked pose (red).

Figure 3. ROC curve and performance metrics (AUC and TG) to active and 
inactive compounds from docking simulation of 4C27 crystal structure. 

Table 1. Statistical parameters of the eight best 3D-QSAR equations generated from the training set

Training set Equation Terms Q2 R2 R2
pred RMSEEtest Outliers

A 1 4 0.721 0.793 0.330 0.931 2

C 1 7 0.757 0.846 0.362 0.902 3

C 2 6 0.746 0.838 0.331 0.923 3

C 3 5 0.727 0.818 0.570 0.740 2

C 4 4 0.664 0.751 0.450 0.841 3

D 1 6 0.629 0.736 0.709 0.821 2

D 2 5 0.618 0.727 0.738 0.776 2

D 3 4 0.588 0.701 0.794 0.687 0

Q2: correlation leave-one-out cross-validation coefficient; R2: correlation coefficient; R2
pred: predicted value of correlation coefficient; 

RMSEEtest: root‑mean‑square error of the estimate of test set.
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(ρ = 0.85) indicates that the model may be suitable for 
biological activity estimating.64

Virtual screening of FDA-approved drug

To select drugs with similar characteristics to the 
investigated inhibitors, we used physicochemical screening 
parameters on the 1657 FDA-approved drugs, of which 
we selected 37 drugs for molecular docking and ROC 
curve evaluation. Our results showed that losartan65 and 
imatinib66 had significant docking scores (52.53), above 
the cutoff value (52.23) (Table S5, SI section). Also, we 
tested the AD analysis to indicate whether the D-3 equation 
descriptors were reliable for predicting biological activity 
for both drugs. However, the AD value of losartan (1.57) 

and imatinib (2.83) suggest that the losartan prediction 
was reliable while imatinib was not, indicating that only 
losartan retains chemical characteristics like the training 
and test set.33,67,68 Then, we used the D-3 equation to obtain 
the predicted activity value for losartan (pEC50 = 8.04). 

Our results showed similar interactions between the 
TcCYP51 binding site residues and the most active inhibitor 
in the database (27) (Tables S1-S3, SI section) or losartan, 
observed by the normalized energy values of equation D-3. 
They suggested the interaction of losartan with the cofactor 
due to the proximity of the tetrazole ring to Fe-Heme 
(d = 2.5 Å). Comparison with amino acid residues from 
the D-3 equation suggests that interactions with Met106 
and Met358 are meaningful for the predicted activity since 
losartan and compound 27 follow the same trend (Figure 5). 
Interestingly, losartan has already been reported as relevant 
in Chagas disease by treating heart failure in patients with 
Chagas cardiomyopathy.69,70

Conclusions

In this work, we developed a ROC curve and a QSAR 
model to identify putative TcCYP51 inhibitors by virtual 
screening. Based on the docking score value (52.53) 
by the ChemScore function of the GOLD software, the 

Table 2. Cross-correlation matrix of the amino acid residues from the 
D-3 equation

Met106 Tyr116 Ala211 Met358

Met106 1

Tyr116 -0.29 1

Ala211 0.22 -0.02 1

Met358 -0.03 -0.39 0.09 1

Ala: alanine; Met: methionine; Tyr: tyrosine. 

Figure 4. (a) Applicability domain plot for the test set of equation D-3. (b) Y-randomization plot for D-3 equation: original model (red ball) and the 50 
randomized models (blue balls).

Figure 5. (a) 2D chemical structure of losartan. (b) 3D intermolecular interactions obtained by molecular docking between losartan and TcCYP51 binding 
site residues. Hydrogen bond (green dashed line); the distance between the Fe-Heme and N-tetrazole ring (red dashed line). (c) The graph of energies per 
residue of losartan and compounds 23 and 27 from the QSAR study. Ala: alanine; Met: methionine; Tyr: tyrosine.
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ROC curve showed an excellent discrimination capacity 
(AUC: 0.919; TG: 0.71; SE: 0.9 and SP: 0.94). The energy 
per residue used as a descriptor to build the 3D-QSAR 
model presented suitable statistical parameters (Q2: 0.588; 
R2: 0.701; RMSEE: 0.633) without outliers for training 
and test sets.

Our virtual screening of the FDA-approved drugs 
database, following the traced physicochemical properties, 
the ROC-curve, and the developed 3D-QSAR model, 
indicated losartan drug as a putative inhibitor of TcCYP51, 
showing a reliable prediction estimate in the model QSAR. 
The results suggest this drug is a candidate for further 
studies as a trypanocide agent or a lead compound in 
designing new TcCYP51 inhibitors.

Supplementary Information

Supplementary information (Tables S1-S5) is available 
free of charge at http://jbcs.sbq.org.br as PDF file. 
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