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A Monte Carlo method is used in addition to functional and individual weighting to overcome 
multicollinearity problems in multiple linear regression equations applied as quantitative-structure-
property-relationships, allowing the estimation of correct coefficient confidence intervals. The 
method was applied to rate constants for the Menschutkin reaction between Et3N and EtI in 
mono- and di-alcohols, at 25.00 ºC. Results show that the use of our methodology produces a 
significant improvement upon confidence interval estimates regardless of the level of collinearity 
present. Addition of weighting shows additional advantages, increasing the overall consistency 
of the regression process.
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Introduction

The search for quantitative structure-property 
relationships (QSPR) to interpret and predict solvent effects 
upon reaction rates often resorts to linear model equations, 
of the general form,

ln k = f(x1, x2,…, xn)	 (1)

where k stands for rate constant and xn is a descriptor of a 
given type of substrate-solvent or solvent-solvent interaction. 
Early models included just one or two descriptors but it is 
now well established that, in general, four descriptors are 
needed to account for the main physicochemical features 
underlying the reaction process. These descriptors include 
Lewis acidity and basicity, dipolarity/polarizability and also 
a cavity term related to the work needed to form a cavity to 
accommodate the substrate.1,2

Over the years a large number of solvent descriptors have 
been proposed to describe substrate-solvent interactions, 
some based on macroscopic properties such as dielectric 
constant, dipole moment and refractive index and others 
on microscopic properties, usually obtained from probes 
showing spectroscopic shifts due to different solvent effects 
upon the signal-wave number (UV-Vis and infrared (IR)) 

or chemical shift (nuclear magnetic resonance (NMR)).3-5

Subsequently, several multiparametric model equations 
corresponding to different combinations of descriptors have 
been used, leading to a greater understanding of the type 
of interactions present and their effect upon the rate of a 
given reaction, thus providing useful mechanistic clues 
and, most of all, generating sound equations to accurately 
predict rate constants for similar reactions.5

The most useful method to obtain this information 
has been found to be multiple linear regression (MLR). 
Ideally, from a mathematical point of view, any descriptors 
in a given MLR model equation should be orthogonal to 
each one of the others and, desirably, also to their linear 
combinations threshold values being, respectively, r2 > 0.5 
and R2 > 0.8.6 However, more often than not, they present 
significant degrees of collinearity, especially when only 
a closely related set of solvents is used, e.g., a set of 
monoalcohols, and/or small variabilities are observed for 
the chosen descriptors, within the data set.

In general, this fact does not affect significantly 
regression coefficients, except in cases where descriptors 
present high correlation coefficients. Even when collinearity 
does not affect regression coefficients, consequences of 
collinearity become apparent through the often inflated 
magnitude of coefficient uncertainties, si, whose values 
are calculated from the diagonal values of the variance-
covariance matrix. From these, confidence intervals for the 
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coefficients (CIi), can subsequently be calculated through 
the use of t-values for the chosen confidence level (e.g., 68, 
95, or 99%), according to,

CIi = ±tsi	 (2)

CIs are particularly important, for interpretative and 
predictive purposes, especially if one aims to interpolate 
reliable estimates of predicted k values.7

A number of methods proposed over time (principle 
component analysis, factor analysis, etc.) although 
successful in overcoming this problem, are more difficult 
to apply and change the descriptors’ structure in their effort 
to orthogonalize descriptors’ axes, leading to solutions 
that frequently bear unclear physical meaning and make 
interpretation of results difficult if not impossible. Other 
techniques such as ridge regression produce unbiased 
estimates of parameters, but their expected values are not 
at all equal to the true values. Generally, they tend to be 
underestimated (sometimes grossly) even if the variance 
of these estimates can be so much lower than that of the 
least-squares estimator and, of course, the total expected 
mean squared error is also less, which makes it (in a certain 
sense) a “better” estimator for some but surely not all 
intended purposes.8

Monte Carlo (MC) methods, on the other hand, are rather 
less known as an efficient method for dealing with the type 
of problem here addressed, although they are widely used 
in computer simulations. Unlike parametric statistics, they 
require no assumptions about the distribution of uncertainties 
or the collinearity among variables, thus allowing calculation 
of reliable coefficients and their confidence intervals.9-12

The Monte Carlo method assumes that the data set 
is a sample of all possible sets, randomly drawn by the 
experimental method within experimental uncertainty. 
Using this procedure one can simulate as many synthetic 
data sets as one needs (n), drawn from a particular model, 
just by introducing the appropriate random noise (δi):

ki’ = ki + δi	 (3)

Random numbers are generated using any algorithm 
that can ensure long non-repeating sequences with the 
appropriate standard deviation and zero mean value. 
Usually, since it is assumed that coefficient uncertainties 
follow a Gaussian distribution, the generated numbers are 
normally distributed in order to later allow the calculation 
of confidence intervals for each equation parameter. 
Each synthetic data collection is then subjected to a 
regression analysis leading to n “synthetic” parameter sets 
(a1, a2,..., an), (b1, b2,..., bn), etc.12

Alternatively, using the method proposed by Alper and 
Gelb,9,10 confidence intervals (given from the adequate 
number of computer runs) can be easily and accurately 
calculated without the usual assumption of normality 
for uncertainty distribution by the simple exclusion of 
the appropriate number of high and low solution values 
from the generated sets by ordering the calculated values 
and excluding the (100 – x)% / 2 top and bottom ones, 
thus obtaining x% CIs. The minimum number of sets 
to be generated for each confidence level has also been 
established by these authors.

Finally, another usual MLR assumption is that 
uncertainties for the whole experimental data set are equal. 
In reality experimental results may have very different 
standard deviations (si). In this instance, it is a well-known 
(but scarcely used) practice to use individual correcting 
weights (wi). This type of individual weighting accounts 
for the accuracy of each value and, in most situations, it is 
considered to be inversely proportional to σi

2, the variance 
of each set of replicate measurements, or the estimate of a 
single measurement.13,14

In the case of kinetic measurements, the accuracy of ki 
values may vary significantly due to experimental errors and 
especially if values from different authors and/or different 
measurement techniques have been used.

Much more uncommon, in the same context, is the use 
of global weighted regression to correct for effects due to 
transformations on the dependent variable, although this 
regression tool has been clearly shown to contribute towards 
correcting these same effects, mainly when significant 
compression/expansion of uncertainties is present as is the 
case with logarithms.14-21

For a logarithmic transformation such as Yi = ln (ki), the 
original assumption is, again, that ki values are normally 
distributed, but we are actually minimizing the sum of 
squares of the deviations in ln (ki), and these do not follow a 
Gaussian distribution, since there is a compression of the data 
for low ki values and an expansion for the higher ones.16-19

When experimental ki values are converted to Yi (e.g., 
ln k, 1 / k), assuming the usual hypothesis that ΔYi and Δki 
are relatively small, we can write, following de Levie,18

	 (4)

The global weighting factor (w'i) dictated by the 
mathematical transformation of the data, is given by,

	 (5)
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In the present case, the transformation of the rate 
constant (ki) into ln (ki) yields, 

	 (6)

Both types of weighing factors should be used together: 
their combination (Wi), the total weight, is achieved by 
multiplying the two weighing factors. In the present case, 
this produces the expression,

	 (7)

In this paper, we show the advantages of the combined 
use of these methodology changes in multiparametric 
QSPR applied to kinetics, through its application to a 
data set of 20 rate constants for the Menschutkin reaction 
of Et3N with EtI in mono- and di-alcohols at 25.00 ºC 
(Table 1) that were previously correlated with two sets of 
four solvent descriptors from two multiparametric QSPR 

models by Calado et al.22 In this work, the authors applied 
two suitable models to their experimental data set, one 
predominantly solvatochromic, the Taft-Abboud-Kamlet-
Abraham equation (TAKA),23 and one based prevalently 
on macroscopic descriptors, the Gonçalves-Albuquerque-
Simões equation (GAS).24

For the TAKA equation we have

ln k = a0 + a1p* + a2a + a3b + a4C	 (8)

where the solvatochromic descriptors are p*, a measure of 
the solvent’s dipolarity/polarizability; a and b which are, 
respectively, measures of the solvent’s ability to donate 
(Lewis acidity) or accept (Lewis basicity) a hydrogen bond 
from a given substrate; and C which is the cohesive energy 
density, a macroscopic descriptor intended to measure the 
solvent’s contribution to the formation of a cavity to harbor 
the substrate’s molecule.

For the GAS equation we have

ln k = a0 + a1f(e) + a2g(nD) + a3ET
N + a4C	 (9)

In this equation, f(e) is the Kirkwood function of 

Table 1. Rate constants (k) for the reaction of Et3N with EtI and select solvent properties at 25.00 ºC19

Solvent
k × 105 / 

(mole fraction-1 s-1)
σ(k) × 105 / 

(mole fraction-1 s-1)
e n

D
p* a b C × 10-3 / MPa

Water 191.40 0.001 78.30 1.3330 1.13 1.16 0.50 2.307

Methanol 10.02 0.07 32.66 1.3284 0.6 1.09 0.73 0.887

Ethanol 5.151 0.009 24.55 1.3614 0.55 0.88 0.80 0.703

1-Propanol 2.686 0.012 20.45 1.3856 0.53 0.79 0.85 0.59

2-Propanol 4.079 0.008 19.92 1.3772 0.48 0.68 0.93 0.552

1-Butanol 1.968 0.017 17.51 1.3993 0.54 0.74 0.84 0.485

2-Butanol 3.231 0.012 16.56 1.3971 0.54 0.54 0.91 0.488

1-Pentanol 1.269 0.010 13.9 1.4100 0.5 0.73 0.88 0.497

2-Methyl-1-butanol 1.047 0.002 15.63 1.4088 0.51 0.64 0.93 0.482

3-Methyl-1-butanol 1.429 0.006 15.19 1.4072 0.48 0.74 0.91 0.497

1-Hexanol 0.819 0.03 13.30 1.4178 0.52 0.68 0.86 0.471

1,2-Ethanediol 18.842 0.140 37.7 1.4318 0.89 0.88 0.72 0.887

1,2-Propanediol 21.393 0.046 28.59 1.4324 0.76 0.83 0.78 0.881

1,3-Propanediol 49.69 0.02 34.98 1.4398 0.84 0.80 0.77 0.847

1,2-Butanediol 11.16 0.05 22.35 1.4378 0.71 0.80 0.71 0.600

1,3-Butanediol 16.70 0.02 28.57 1.4410 0.75 0.76 0.74 0.562

2,3-Butanediol 10.56 0.04 21.65 1.4310 0.75 0.68 0.88 0.602

1,5-Pentanediol 12.26 0.04 27.17 1.4494 0.76 0.70 0.82 0.603

Diethylene glycol 55.33 0.043 31.69 1.4475 0.92 0.72 0.67 0.615

Triethylene glycol 45.52 0.028 23.69 1.4558 0.88 0.66 0.69 0.48

k: rate constant; e: relative permittivity; nD: refractive index; p*: TAKA dipolarity/polarizability parameter; a: TAKA Lewis acidity parameter; b: TAKA 
Lewis basicity parameter; C: cohesive energy density.
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the relative permittivity; e relates to dipolarity; g(nD) is 
a function of the refractive index; nD measures the 
polarizability effect; ET

N is the normalized Dimroth and 
Reichardt parameter and measures a blend of dipolarity 
and Lewis acidity effects; and C has the same meaning 
as above.

Methodology

The procedure used was as follows: (i) classical 
regression was performed over the experimental data using 
a correlation equation to determine a set of coefficients; 
(ii) each ki value was scattered by adding a random 
number, di (equation 3), to construct a new “experimental” 
mathematical solution; (iii) the resulting MC data set was 
analyzed through classical regression and a new set of 
coefficients was obtained; (iv) this sequence was repeated 
n times, where n is the necessary total number of synthetic 
data sets; and (v) the CI for each coefficient was obtained 
as described above by ordering the coefficient values and 
excluding the (100 – 68)% / 2 top and bottom ones.

The computational conditions were chosen using 
Alper and Gelb’s criteria;9,10 therefore, since we chose to 
use 68% confidence intervals (ca. 1σ), the number of MC 
simulations, n, equaled 200. Normally distributed random 
uncertainty was introduced through a routine written 
before. The number set had µ = 0 and σ = 1.5 × 10‑4. 
This latter value for the standard deviation can be 
considered as a scattering factor. It is usually chosen 
from information on the magnitude of the uncertainties 
affecting the dependent variable. In the present study, 
a different approach, previously developed by us, 
was used:17 using the TAKA equation in each mono-
descriptor reduced form, where no collinearity problems 
can be present, the standard deviation of the random 
uncertainty numbers set was adjusted by repeating the 
MC procedure with different scattering factors until the 
averaged coefficients’ confidence intervals were identical 
to those calculated through classical regression. The same 
scattering factor was then used for equations 7 and 8. This 
procedure has avoided the need for previous knowledge 
or pre‑assumption of a given uncertainty level.

Goodness-of-fit has been analyzed in terms of the 
standard deviation of the fit (sfit), defined in the usual 
manner,

	 (10)

where n is the number of data points, p is the number of 

equation parameters and Wi is the total weighting which 
is equal to unity if none of the weighting types are used.

Results and Discussion

The degree of collinearity among equation descriptors 
has been determined in terms of the determination 
coefficient (r2) (Tables 2 and 3), showing that several 
descriptors are highly correlated in both models.

The correlation of each descriptor with linear 
combinations of pairs of the remaining descriptors (Tables 4 
and 5) is also above the limit (R2 > 0.8) in several cases.

Results above are not surprising since the observed 
multicollinearity is mostly a result of studying a specific 
family of solvents. Nevertheless, the best equations’ 
subsets were the same for the classical and Monte Carlo 
methods.

Regarding the best equation for the TAKA model, 
the stepwise regression method indicates that only p* is 
significant, i.e.,

ln k = a0 + a1p*	 (11)

and therefore this model will be used only to show the strict 
equivalence of results for the two approaches, as can be 
seen in Table 6 in which the comparison of results between 
classical regression and the MC method for equation 11 

Table 3. Correlation among variables in equation 9

r2 f(e) g(n
D
) ET

N C

f(e) 1 0.0108 0.7952 0.6843

g(nD) – 1 0.0423 0.0430

ET
N – – 1 0.7576

C – – – 1

r2: determination coefficient; f(e): Kirkwood function of the relative 
permittivity; g(nD): function of the refractive index; ET

N: normalized 
Dimroth and Reichardt parameter; C: cohesive energy density.

Table 2. Correlation among variables in equation 8

r2 p* a b C

p* 1 0.1930 0.7513 0.4487

a – 1 0.4861 0.6398

b – – 1 0.5425

C – – – 1

r2: determination coefficient; p*: TAKA dipolarity/polarizability 
parameter; a: TAKA Lewis acidity parameter; b: TAKA Lewis basicity 
parameter; C: cohesive energy density.
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shows only very small differences in the confidence 
intervals and no difference in sfit.

Table 7 depicts the results for the GAS model, for which 
the best equation is:

	 (12)

Results clearly indicate that, although the coefficients 
obtained in both cases are similar, the use of the Monte 
Carlo method leads to significantly less conservative 
estimates of the coefficients’ confidence intervals, with 
relative differences ranging from –26 to –64%. The MC fit 
itself shows a somewhat larger standard deviation but with 
no statistical significance (the F-test on variances confirmed 
that they are equal up to a significance level of 98%).

The effect of weighting in addition to the use of the MC 
method is shown in Table 8, along with the same effects on 
a subset that excludes water.

On one hand, it is clear from the 1st and 3rd rows that 
the use of weights improves regression results, as can 
be perceived through sfit values. Furthermore, global 
weighting also increases the internal consistency of the 
tested data set: if one uses non-weighted regression, the 
comparison of results for the original data set (20 points) 
and a subset excluding water shows a change on the 

Table 4. Correlation between each variable in equation 8 and linear 
combinations of two of the remaining variables

R2 b + a a + C C + b

p* 0.8043 0.4745 0.7535

p* + b p* + C C + b

a 0.5956 0.6566 0.6653

p* + a a + C p* + C

b 0.8754 0.5749 0.7954

a + b p* + b p* + a

eC 0.7020 0.5464 0.7654

R2: multiple determination coefficient; p*: TAKA dipolarity/polarizability 
parameter; a: TAKA Lewis acidity parameter; b: TAKA Lewis basicity 
parameter; C: cohesive energy density.

Table 5. Correlation between each variable in equation 9 and linear 
combinations of two of the remaining variables

R2 g(n
D
) + ET

N g(n
D
) + C ET

N + C

f(e) 0.8954 0.7364 0.9063

f(e) + ET
N f(e) + C ET

N + C

g(n
D
) 0.0731 0.3583 0.4450

f(e) + C g(nD) + f(e) g(nD) + C

ET
N 0.9122 0.8080 0.8054

g(nD) + f(e) f(e) + ET
N g(nD) + ET

N

C 0.6538 0.7712 0.7376

R2: multiple determination coefficient; f(e): Kirkwood function 
of the relative permittivity; g(nD): function of the refractive index;  
ET

N: normalized Dimroth and Reichardt parameter; C: cohesive energy 
density.

Table 6. Comparison between classical and Monte Carlo methods for 
equation 11

Method Weights a0 ± σ(a0) a1 ± σ(a1) σfit

Classical No –6.37 ± 0.21 3.33 ± 0.30 0.232

Monte Carlo No –6.37 ± 0.23 3.33 ± 0.28 0.232

an ± σ(an): coefficient confidence interval; σfit: standard deviation of the fit.

Table 7. Comparison between classical and Monte Carlo methods for equation 12

Method Weights a0 ± σ(a0) a1 ± σ(a1) a2 ± σ(a2) a3 ± σ(a3) σfit

Classical No –26.4 ± 2.7 41.4 ± 6.4 10.9 ± 3.2 0.48 ± 0.22 0.22

Monte Carlo No –26.8 ± 2.0 41.2 ± 3.1 11.2 ± 2.0 0.47 ± 0.08 0.28

Dσ / % –26 –53 –38 –64 –

ai ± σ(ai): coefficient confidence interval; σfit: standard deviation of the fit.

Table 8. The effect of weighting, using the MC approach, on the original data set and on a subset excluding water for equation 12

Weights n a0 ± σ(a0) a1 ± σ(a1) a2 ± σ(a2) a3 ± σ(a3) σfit

Yes 20 –28.6 ± 1.2 46.2 ± 2.0 10.6 ± 1.8 0.44 ± 0.07 0.16

Yes 19 –26.9 ± 1.0 42.4 ± 1.0 9.7 ± 1.6 0.74 ± 0.02 0.09

No 20 –26.8 ± 2.0 41.2 ± 3.1 11.2 ± 2.0 0.47 ± 0.08 0.28

No 19 –29.6 ± 1.5 49.8 ± 2.2 9.8 ± 1.8 –0.44 ± 0.14 0.20

n: number of data points; ai ± σ(ai): coefficient confidence interval; σfit: standard deviation of the fit.
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sign associated with a3. However, a similar comparison 
for the weighted regression shows an alteration on the 
magnitude of a3 but with the sign remaining unchanged. 
This apparently small difference is rather significant in 
terms of both interpretation and prediction.

It is also easily seen that the uncertainties affecting each 
k value are generally very small when compared with the 
residuals of each fit, causing the chi-square of each fit to 
become larger than the number of degrees of freedom in 
all cases (a “rule of thumb” indicates that they should be 
close).12 This is a common situation in this type of context 
and is due probably to the empirical or semi-empirical 
nature of solvent descriptors and to the formal procedure 
of considering the mere additivity of all included effects.

Conclusions

From the above analysis, we can conclude that the 
proposed MC method, especially when combined with 
global weighting, allows a significant improvement on 
the calculation of uncertainties on MLR coefficients, and 
increases the overall consistency of the regression process 
otherwise affected by the presence of multicollinearity. The 
interpretation and/or prediction process becomes, therefore, 
more reliable.

Supplementary Information

Supplementary information (Pascal code for MC 
confidence interval estimation) is available free of charge 
at http://jbcs.sbq.org.br as PDF file.
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