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Computational predictive approaches present themselves as an attractive alternative in the 
search for new compounds that may present toxic or growth regulatory activity in Aedes aegypti. 
Aspergillus species is a producer of secondary metabolites with diverse biological activities. In 
this study, it was possible to evaluate the pharmacokinetic and toxicological properties in silico, 
as well as the prediction of the insecticidal biological activities of the juvenile hormone of natural 
substances produced by the genus Aspergillus. Initially, 187 molecules were cataloged from 
various species of Aspergillus spp., and only seven molecules of indole alkaloids were found to 
exhibit a toxic dose 50% (TD50) after conducting toxicity predictions. The molecular dynamic 
simulation trajectories were utilized to study parameters such as root mean square deviation, root 
mean square fluctuation, radius of gyration and intermolecular hydrogen bond to understand the 
behavior and stability of proposed compounds in the binding pocket of the target protein. The 
N-β-acetyltryptamine molecule showed a binding affinity value of –8.100 ± 0.200 kcal mol-1, 
which classifies the compound as a potential insecticidal agent against the Aedes aegypti vector.

Keywords: Amazonian biodiversity, Aspergillus, molecular dynamic simulation, toxicological 
properties

Introducion

Aedes aegypti mosquito (Diptera: Culicidae) is one of 
the most studied vector species worldwide, implying the 
transmission of pathogens responsible for the transmission 
of diseases to humans, such as dengue, Chikungunya, 
Zika, yellow fever, and the set of its physiological and 
genetic characteristics allow this species to be an extremely 
efficient vector.1

The more efficient chemical control of mosquitoes has 
been carried out mainly by combating the vector larvae.2 
However, the irrational and intensive use of these chemical 

agents has caused serious environmental and human health 
impacts, in addition, to creating resistant populations of 
mosquitoes.3 The search for new chemical entities with less 
toxicity to the environment and the health of the human 
population involves extensive investigations and, in some 
cases, optimization of the cost of research, when looking 
for new pesticides with different modes of action, and that 
have less impact on the health of organisms not targeted 
for public health use.1,4 

Microorganisms, such as fungi and bacterium, are also 
font for new molecules with larvicidal activity. Among 
the most fungal genera, the Aspergillus spp stands out as 
a capacity producer of secondary metabolites including 
butenolides, alkaloids, terpenoids, cytochalasin’s, 
phenalene’s, ρ-terphenyls, xanthones, sterols, diphenyl 
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ether, sesquiterpenoid,5 and anthraquinone derivatives 
and other diverse biological activities,6 as antibiotics and 
antifungal agents, synthase and α-glucosidase inhibitor.7-9 
Aspergillus is one of the most familiar filamentous fungi 
belonging to Ascomycetes (family Trichocomaceae). 
There are about 378 species reported by the World of 
Microorganisms Information Center (WDCM).10,11 
Furthermore, the genus Aspergillus comprises the most 
ubiquitous and best studied filamentous fungi, being a 
species of industrial importance that can be harmful or 
opportunistic pathogens that secrete potent toxins.12

The evolution of secondary metabolites over the years 
was attibuted to the relationship of microorganisms with 
their habitat, using these substances as chemical signals 
for communication, habitat defence and even inhibiting 
the growth of competitor agents. Fungi have become 
capable of producing numerous bioactive compounds such 
as indole alkaloids, with low molecular weight and these 
products have been of great interest in food, cosmetics, 
and pharmaceutical industries.13,14 These alkaloids have 
gained attention in biological studies, due to their structure 
and varied biological responses, as several studies15-17 
have reported the production of these substances by 
microorganisms, such as fungi of the genus Aspergillus 
and Penicillium. Produced metabolites of the alkaloid class 
are abundant and complex, existing from natural products, 
presenting a fascinating structure for the development of 
new drugs. 

Aspergillus spp has the ability to produce metabolites 
that exhibit a promising diversity in chemistry and 
bioactivity.18,19 The search for new biotechnological 
applications for the metabolites has become the target 
of research to control vectors such as Ae. aegypti 
and Culex quinquefasciatus,6,20,21 biodegradation of 
polluting substances,22 anticancer and antitrypanosomal  
activity.23

Although natural products are treated as a valuable 
source for the discovery of new substances,6,24 their isolation 
and chemical characterization is not always feasible, as it 
is an expensive, slow, and costly process.25 In this sense, 
molecular modelling and high-throughput screening 
techniques are complementary tools that gain attention and 
drive the development of new active compounds.26 

One advantage of the computational method for 
the development of new substances is the expansion 
of the toxicological and chemical database in recent 
years, thus increasing the reliability of the in silico 
approach to toxicity assessment.4 The use of the in 
silico approach for the discovery of new substances 
or similar compounds that present biological activity 
for the control of Ae.  aegypti is already a reality. For 

example, pyriproxyfen (control compound) was studied 
by Ramos et al.,27 for insecticidal activity by interaction 
with the enzyme acetylcholinesterase (AChE), in which the 
compound ZINC00001624 showed potential for enzyme 
inhibition AChE and for the juvenile hormone, showing 
promise for future studies.

Therefore, this study sought to evaluate, through 
molecules produced and isolated from the fungus of 
the genus Aspergillus, the potential insecticidal activity 
against the vector Ae. aegypti via virtual screening, as 
well as evaluating the pharmacokinetic and toxicological 
properties in silico, and the prediction of the insecticidal 
biological activities of the juvenile hormone, followed by 
the molecular docking study to evaluate the free energy 
of binding and the mode of interaction of the compounds 
described already in the literature.

Experimental

Obtaining, optimizing and molecular docking for selected 
structures

Initially, 187 chemical structures described in the 
literature as substances identified by the metabolic 
expression of the fungi genus Aspergillus were selected 
(presented in Supplementary Information (SI) section).28,29 
Structures were drawn in ChemDraw Ultra 12.0 software30 
and saved in MDL Molfile (.mol) format. Then, the 
geometric optimization of the three-dimensional (3D) 
structure was performed in the software ChemSketch31 by 
Molecular Mechanics (MM+) method with the force field 
initially based on the CHARMM parameterization.32

Prediction of pharmacokinetic and toxicological properties

Calculations of predictions of absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) were 
performed using Discovery Studio v.16 software.33 These 
properties are important in determining the success of the 
compound for human therapeutic use. Some important 
chemical descriptors correlate well with ADMET 
properties, such as polar surface area (PSA) as primary 
determinant of fraction absorption and low molecular 
weight (MW) for oral absorption and instestinal. The 
distribution of compounds in the human body depends on 
factors such as the blood-brain barrier logarithm (log BBB), 
permeability such as Caco-2 apparent permeability, 
Madin-Darby canine kidney (MDCK) cell apparent plasma 
proteins logarithm (log Khsa for protein binding). 

Toxicity prediction tests were performed using 
Discovery Studio v.16 software33 via the toxicity prediction 
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function by computer assisted technology (TOPKAT). In 
this way, the module can predict the toxicity of chemicals 
based solely on their 2D molecular structure, using a 
variety of robust cross-validated quantitative structure-
toxicity relationship (QSAR) models to evaluate specific 
toxicological parameters. The proven toxicological 
properties were: carcinogenicity in rodents (female 
mice and female rats) and Ames test (mutagenicity), 
toxicity risk prediction calculations were performed 
via TOPKAT and measured the following parameters: 
oral rate lethal dose (LD50 g kg-1 body weight) and 
carcinogenic potential was also predicted using toxic dose 
(TD50 mg kg-1 body weight mouse-day-1 rat) and RMTD 
(maximum tolerated dose in rat mg kg-1 body weight).

Molecular docking simulations 

At this step, only the top-ranked molecules with 
satisfactory results regarding the pharmacokinetic, 
toxicological, and biological activity predictions were 
selected for the molecular docking simulations, in order to 
evaluate the energy function scores through the free energy 
value (ΔG) of the interaction of ligands derived from the 
ligand-based virtual screening, as well as analysis of the 
conformations and binding affinity mode with the targets 
used here. 

Selection of enzyme and inhibitor structures 

As insecticides can act in different sites, the two pathways 
of action mechanism are the highlights: juvenile hormone 
(JH3) enzymes and acetylcholinesterase. Similarly, JH3 is a 
key regulation of insect development and breeding. In adult 
mosquitoes, it is essential for ovary maturation and normal 
male reproductive behavior, but how the distribution and 
activity of JH3 are regulated is unclear after secretion. The 
crystallographic structure of juvenile hormone complexed 
with methyl (2E,6E)-9-[(2R)-3,3-dimethyloxiran-
2-yl]3,7-dimethylona-2-6-dienoate, (JH3), was downloaded 
with the Protein Data Bank PDB ID 5V1334 and 1.87 Å 
resolution.35 The JH3 compound was used here as a control 
inhibitor in the molecular docking studies, based on a well-
established protocol developed.6,36

Docking study from AutoDock 4.2/Vina

Heteroatoms, co-crystallized ligand, and water 
molecules were removed using the Discovery Studio 
software,33 while the hydrogen atoms of the proteins 
were added with PROPKA using pH ca. 7. The validation 
of molecular docking protocols was performed by 
overlapping the elucidated crystallographic structure 
(experimental) with the generated model (theoretical), that 
is, comparison between the crystallographic ligand and the 
best conformation obtained with molecular docking based 
on the value of the root mean square deviation (RMSD). 
Coordinates x, y, and z of the receptors were determined 
according to the middle region of the active site. The 
coordinates used here for the center of the grid can be 
seen in Table 1. An energy function score was used to 
evaluate the binding free energy (ΔG) of the interaction of 
the ligands with the amino acid residues of the receptors. 
The conformational analysis was also considered for the 
selection of the best binding free energy for binding affinity 
calculations via AutoDock 4.2/Vina 1.1.2.37 Visualizations 
as well as distance measures of interactions between 
inhibitors and enzymes were performed using Discovery 
Studio.33

Molecular dynamic simulation method

Molecular dynamics (MD) simulation38 is a 
computational technique used for studying the interaction 
and behavior of small molecules over a specific time. In 
this study, molecular dynamic simulation of the target 
protein (5V13)39 in complex with top screened compounds 
and controls was performed using Molecular Dynamics 
Software NAMD tool (version 2.14)40 and Amber tools 
platform.41 The purpose of this study was to analyze and 
compare the binding strength of the screened compounds 
and control compounds within the binding site of the 5V13. 

The tLeap module42 from Amber tools41 were utilized 
to generate the protein and ligand forcefield FF14SB,43 
GAFF44 respectively, and construction of input files for 
the NAMD tool40 MD simulations. TIP3P solutions were 
employed to solvate the complexes in a periodic, cubic box 
by 10 Å beyond each protein atom. Counter ions such as 
Na+, Cl– were added for system neutralization. Furthermore, 

Table 1. Data from protocols used for molecular docking validation on Protein Data Bank (PDB) ID 5V13

Enzyme (PDB ID 5V13) Ligand Grid coordinates Grid dimensions

Juvenile hormone
methyl (2E,6E)-9-[(2R)-3,3-dimethyloxiran-

2-yl]-3,7-dimethylnona-2,6-dienoate

X = 238.978 34 x

Y = –26.138 30 y

Z = 353.063 26 z
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particle meh Ewald (PME) method was employed to 
calculate the electrostatic interactions, Varlet method 
with cutoff 10 Å was used for calculating electrostatic 
interactions and Van der Waals interactions, while bond 
constrained were managed using linear constrained solver 
(LINCS) algorithm.45 

In MD simulation, the system achieved multiple 
phases to reach equilibrium. In this first step, steepest 
descent algorithm was used to minimize the system up to 
10,000 steps. The system was heated up to 300 K for 0.10 ns 
with gradually increased up to 50 K. Berendsen thermostat 
was used to manage the temperature and Langevin piston 
for pressure control of the system. The temperature and 
pressure of the system were kept constant at 1 bar and 
300 K for 100 ns production run. Moreover, particle 
mesh Ewald (PME) method was choice for handling long 
electrostatic interactions during simulation in periodic 
boundary condition.46 

Subsequently, MD trajectories were analyses using 
visual molecular dynamics (VMD),47 Cpptraj48 and 
R  package.49 The evaluating parameters such as root 
mean square deviation (RMSD), root mean square 
fluctuation  (RMSF), radius of gyration and hydrogen 
bond trajectory were evaluated. The evaluation of these 
parameters was crucial to assessing the stability of the target 
protein and small molecules throughout the molecular 
dynamics (MD) simulation.50

Binding free energy calculation

The binding free energy of the complexes was calculated 
by using molecular mechanics-based method (MMGBSA).51 
For this purpose, 300 snapshots of the complex captured 
at 2 ps intervals from the final 2 ns of the stable MD 
trajectories were utilized for MMGBSA calculations. The 
binding free energy calculation is determined by taking the 
difference between the ligand and target protein ΔGcomplex 
total free energy and the sum of the individual free energy 
of the receptor ΔGprotein and ligand ΔGligand as expressed in 
following equations 1 and 2:

∆Gbind = [∆Gcomplex – (∆Gprotein + ∆Gligand)] (1)

Whereas ΔGcomplex is the combination of the following 
energies: 

∆Gcomplex = [∆GMM + ∆Gsolvation –T∆S] (2)

where:  ΔG MM = molecular  mechanics  energy, 
ΔGsolvation = solvation energy, and TΔS = entropy value at 
temperature T.

Results and Discussion

Pharmacokinetic and toxicological predictions

Calculated topological polar surface area (TPSA) values 
of the molecules are within acceptable limits, less than 
140 Å.52-54 Thus, the distribution of molecules in the human 
body, as indicated by the blood-brain barrier coefficient 
logarithm (logBBB), Caco-2 apparent permeability, logKp 
for skin permeability, the volume of distribution and 
binding to plasma proteins logarithm (log Khsa for whey 
protein binding) were determined in the standard range.55 
After application of the screening filters, 22 molecules have 
good aqueous solubility, and the others have low solubility 
(Figure 1). The calculated logS values of the molecules 
are within the acceptable range (≥  –5) and conform to 
the standard absorption, distribution, metabolism, and 
excretion (ADME) range. The molecules were compared 
to the reference ligand, and it was observed that most 
molecules are within their allowable limits and are therefore 
unlikely to have limited bioavailability.

The results of the screening of molecules in the ADME 
model showed that of the 187 molecules and controls 
submitted to pharmacokinetic prediction, only 39 have 99% 
confidence levels for human intestinal absorption and low 
penetration into the BBB. The other molecules are outside 
the ellipse filter of the ADME model, which indicates the 
low intestinal absorption and greater penetration capacity 
of BBB. Toxicity is a major obstacle to successful drug 
discovery and development. In recent years, this has led to 
an increasing focus on high-throughput studies of ADME 
and toxicity.56,57 

Figure 1. The plot of polar surface area (PSA) versus logAP for molecules 
isolated from different Aspergillus species shows the ellipses of the 95 and 
99% confidence limits corresponding to the blood-brain barrier (BBB) 
and intestinal absorption (IA).
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TOPKAT model calculates likely toxicity values for a 
chemical structure by calculating a discriminant score based 
on its quantitative structure-activity relationship (QSAR) 
model.57,58 Molecules with a good pharmacokinetic profile 
were submitted to the study of toxicological predictions. 
Based on chemical structures, the discriminant score 
of 12  molecules was negative, indicating their non-
carcinogenic property. Likewise, the 12 molecules did not 
show mutagenicity. These molecules conform to parameters 
based on the pivot molecule and are comparable to the 
predicted results of the reference compounds. 

All selected compounds (Table 2) showed a negative 
prediction for carcinogenicity (rat/mouse model and the 
Ames test), which highlights the possible absence of 
toxicophoric groups. However, a carcinogenicity alert was 
observed for the pivot molecule. Regarding carcinogenic 
potency, only 7 molecules present TD50 values higher than 

the reference TD50 molecule of 54.8404 (mg kg-1 body 
weight day-1), which highlights a low toxicity profile of 
the selected molecules (Table 2).

Currently, the most used assay to test the mutagenicity 
of compounds is the Ames experiment. The Ames test is a 
short-term bacterial reverse mutation assay that detects a 
significant number of compounds that can induce genetic 
damage and frame-shift mutations (Figure 2). The estimated 
inter-laboratory reproducibility rate of Salmonella test data 
is only 85%.59,60

Molecular docking 

The molecular docking results were considered 
satisfactory since the relative pose of the crystallographic 
ligand and the pose docking were considered similar. The 
root mean square deviation (RMSD) value between the 

Table 2. Predictions of toxicological properties of selected molecules and carcinogenic potency TD50 (toxic dose 50%)

Ligand

Carcinogenic potency, TD50 / (mg kg-1 body weight day-1)

Mouse Rat
Maximum 

tolerated dose
Mouse female / Rat female Ames mutagenicity

Juvenile hormone (JH3) 39.6698 13.9437 54.8404 non-carcinogen / single-carcinogen non-mutagen

Aniquinazoline B 17.5998 0.363458 56.6879 non-carcinogen non-mutagen

Aspergilline E 12.1197 0.070666 44.7533 non-carcinogen non-mutagen

bis(Dethio)bis 155.878 172.44 59.928 non-carcinogen non-mutagen

Carnemycin A 51.4169 24.8186 2526.16 non-carcinogen non-mutagen

Carnemycin B 52.0468 6.63612 1463.3 non-carcinogen non-mutagen

Fumigatoside C 0.85852 0.040724 63.3249 non-carcinogen non-mutagen

Fumigatoside D 0.85852 0.040724 63.3249 non-carcinogen non-mutagen

N-β-Acetyltryptamine 515.893 678.596 253.885 non-carcinogen non-mutagen

Oxepinamide F 16.3633 6.23257 21.5888 non-carcinogen non-mutagen

Oxepinamide G 15.514 7.97591 15.7309 non-carcinogen non-mutagen

Protuboxepin A 10.7233 4.90675 35.7106 non-carcinogen non-mutagen

Protuboxepin B 10.1355 6.26023 25.9517 non-carcinogen non-mutagen

Figure 2. Chemical structure of secondary metabolites from Aspergillius spp. 
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JH3 crystallographic ligand atoms and the docking pose 
was calculated to be 1.43 Å. 

Thus, the literature61,62 specifies that when the RMSD 
values ≤ 2 Å, the docking protocol is considered satisfactory 
because it presents a similarity to the experimental model. 
The best result of the experimental (crystallographic ligand) 
and theoretical (docking pose) overlay models can be seen 
in Figure 3.

According to studies of Araújo et al.,6 and Ramos et al.,27 
at the juvenile hormone binding site, interactions 
are between the amino acid residues Leu33-Leu37, 
Ile44-Val51, Tyr59-Glu71, and Cys122-His136 in the 
α-helix and interactions between the Leu72-Arg73 residues 
in the β-leaf.63 Interactions observed in the molecules 
selected in the molecular docking study are classified as 
being of the hydrophobic type in their majority, and the 
interactions of the hydrogen bond type are less frequent. 
Interactions were quantified for binding affinity relative to 
control (JH3) for the mosquito juvenile hormone-binding 
protein and the new potential inhibitors. The affinity values 
of the new potential inhibitors can be seen in Figure 4.

The difference between the binding affinity values 
between the N-β-acetyltryptamine inhibitor and the 
JH3 control was ± 0.667 kcal mol-1, which classifies the 
compound as a potential insecticidal agent, as it may have 

a similar interaction in the receptor causing a delay in the 
growth process or morphological malformation and cause 
the death of the Ae. aegypti.

In the mosquito juvenile hormone-binding protein 
receptor complexed with JH3, similar interactions were 
observed with the molecules carnemycin A, carnemycin B 
and N-β-acetyltryptamine present between the amino 
acid residues around the α-helix between the amino acid 
residues Tyr33, Leu37, Val51, Val68, and Tyr129 and in 
the β-leaf between residues Trp53 and Phe144, as shown 
in Figure 5. 

The epoxy group at the end of JH3 forms a hydrogen 
bond with the phenolic hydroxyl of Tyr129, and the 
remainder of the isoprenoid chain is surrounded by 
hydrophobic side chains, including those of Phe144, 
Tyr64, Trp53, Val65, Val68, Leu72, Leu74, Val51 and  
Tyr33.64,65 

In the N-β-acetyltryptamine ligand with the best binding 
affinity results, it is possible to observe hydrophobic 
interactions with the amino acid residues Trp50, Trp53, 
Val68, Tyr129 and Phe144. Conventional hydrogen 
bond between residues Trp50 and Val65 provides greater 
stability of the ligand and lower energy expenditure 
with the obtained conformation, which intensifies the 
biological activity in the active site. Studies65,66 suggest 
that the greater stability of molecules at the binding site 
in the juvenile hormone receptor is attributed to hydrogen 
bond interactions, due to the presence of water residues 
in the protein, which corroborates the study, since the 
potential molecule presents interactions of the hydrogen 
bond type. Consequently, potential insecticidal agents can 
prevent mosquitoes from molting from pupae to adults by 
mimicking the action of their natural juvenile hormones.

Juvenile hormone (JH) is a key regulator of insect 
development and reproduction.67,68 The physiological 
activity of the mosquito juvenile hormone binding 
protein  (mJHBP) has not yet been established, and it 
may act in the regulation of JH concentration in the 
hemolymph.64 Regulators of mosquito physiology are 
obvious targets in the development of control agents against 
these parasitic and viral disease vectors that threaten a large 
fraction of the human population.

Post molecular dynamics simulation analysis

The molecular dynamic simulation trajectories were 
utilized to study parameters such as RMSD, RMSF, radius 
of gyration and intermolecular hydrogen bond to understand 
the behavior and stability of proposed compounds in the 
binding pocket of the target protein. The root mean square 
deviation (RMSD) was calculated for each compound as 

Figure 3. Superimposition of molecular docking (green) and 
crystallographic ligand (blue) poses.

Figure 4. Binding affinity values of potential ligands with the juvenile 
hormone receptor (p value < 0.0001; n = 3).
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shown in Figure 6 from the starting to the end frame during 
the whole production run. The average RMSD value for 
compound 11NBA (N-β-acetyltryptamine) was 1.5 Å, 
103 (carnemycin B) was 1.4 Å, 435_h (carnemycin A) 
was 1.6 Å and JH3 was 1.4 Å. The relationship between 
the average RMSD values and the stable conformations 
of the modeled compounds showed direct proportions in 
the graph curve. The graph illustrates that 11NBA attained 
equilibrium from 20 ns, whereas other compounds 103, 
435_h and control compound (JH3) reached at steady-state 
from 10 ns. Moreover, the plateau comparison of proposed 
compounds indicates that compounds 103 and 435_h 
exhibit comparable behavior with control compounds 
(Figure 6).

Furthermore, RMSF fluctuations were observed in all 
compounds in Figure 7, showing no significant variation 
with their time-averaged values. There are some residues 
such as Leu267, Asp208, Ala210, Ala207, Glu1 that 
fluctuated more during the production run. However, these 
residues are present at the N and C terminal of the target 
protein and do not involve in the interaction of the small 
molecules in the binding site of the protein. In contrast, 
there was also minimal fluctuation at the residue Asn166 
which is a part of loop region and does not affect binding 
of compounds with the protein. When compounds were 
compared to the control compound JH3, it was found that 
compound 103 exhibited better stability and binding in the 
same way as control compound (Figure 7). 

Figure 5. Interactions of controls JH3 (a), JH3 docking pose (b), potential larvicidal agents carnemycin A (c), carnemycin B (d) and N-β-acetyltryptamine (e) 
at the binding site. 
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For instance, radius of gyration graph represented 
in Figure 8, shows the consistency of protein during 
simulation time. If a protein is efficiently folded during its 
interaction with small molecule, a relatively steady radius 
of gyration plot is achieved. We observed that radius of 

gyration of protein is stable and compact in the complex 
with JH3, 103 and 435_h compared with the control 
compound. The average radius of gyration ranges from 16 
to 20 Å showing the nominal spatial distribution of atoms 
within the molecule.

Figure 6. Root mean square deviation (RMSD) plot illustration throughout protein in complex with ligand simulations at 100 ns. (a) 5V13-11NBA  
(N-β-acetyltryptamine), (b) 5V13-103 (carnemycin B), (c) 5V13-435_h (carnemycin A) and (d) 5V13-JH3 (control) complexes. 

Figure 7. Root mean square fluctuation (RMSF) plot illustration throughout protein in complex with ligand simulations at 100 ns. (a) 5V13-11NBA  
(N-β-acetyltryptamine), (b) 5V13-103 (carnemycin B), (c) 5V13-435_h (carnemycin A) and (d) 5V13-JH3(control) complexes.
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The stability of the protein was also assessed with 
the hydrogen bond calculations between their atoms. The 
average hydrogen bond count for JH3, 103, 435_h and 
the control compound was 70 ns during simulation time. 

All proposed small molecules exhibited a high number 
of hydrogen bonds, with consistent intra-molecular bond 
formation, indicating the strong interactions between the 
residues of the protein (Figure 9). 

Figure 8. Radius of gyration plot illustration throughout protein in complex with ligand simulations at 100 ns. (a) 5V13-11NBA (N-β-acetyltryptamine), 
(b) 5V13-103 (carnemycin B), (c) 5V13-435_h (carnemycin A) and (d) 5V13-JH3(control) complexes. 

Figure 9. The number of hydrogen bonds that are created during simulation between a binding site of the protein and top screened and control compound: 
(a) 5V13-11NBA (N-β-acetyltryptamine), (b) 5V13-103 (carnemycin B), (c) 5V13-435_h (carnemycin A) and (d) 5V13-JH3(control). The plots demonstrate 
how every complex exhibits constant hydrogen bonding.
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Binding free energy interpretation

The molecular mechanics generalized born surface 
area (MMGBSA) method was employed to compute 
the binding free energy calculation of best screened 
and control compounds. Binding free energy serves 
as a significant indicator to predict the binding affinity 
of the protein-ligand complexes, more negative values 
demonstrate greater stability.69 The calculation of total 
energy is a combination of interactions such as Van der Waals 
energy (VDW), electrostatic energy (EEL), electrostatic 
potential-based (EPB), polar solvation energy (ENPOLAR), 
and dispersion energy (EDISPER), shown in Table 3. The 
average ΔGtotal of the compound JH3, 103, and 435_h was 
–37.8724, –54.1922, and –64.9947 kcal mol-1, respectively. 
The ΔGtotal value of compound 435_h is much higher than 
control compound JH3 –41.1650 kcal mol-1 exhibited better 
binding affinity with target protein (Table 3). 

The role of each amino acid of the simulated complexes 
in binding free energy calculation was investigated by 
decomposition analysis. According to Figure 10, a total 
of 5 residues whose positive energy contribution is equal 
and greater to –1 kcal mol-1 in hit and control compound 
includes Tyr14, Trp34, Val46, Val49, Tyr110. However, 
Tyr45 and Lys33 showed unfavorable interaction with 
5V13-103 complex as it showed positive binding energy 
values. The high energy contribution of residue Tyr14 in 
5V13-103, 5V13-435_h and 5V13-JH3 complexes is due to 
π-π interaction between them. Moreover, Trp34 also shows 
a high positive contribution to the 5V13-11NBA complex 
due to CH group of residue and O atom of ligand. Based on 
the above interactions between residues and ligand atom, 
the π-π, CH–O are the main interactive forces and binding 
between hit compounds and can act as a potential inhibitory 
against 5V13 protein target (Figure 10). 

Table 3. Binding free energy calculation of top inhibitory and control compounds against target protein 5V13

Binding energy (ΔG) / 
(kcal mol-1)

11_NBA 103 435_h JH3 (control)

ΔGVdw –38.9182 –64.1027 –70.9539 –48.5548

ΔGElec –13.0197 –20.8832 –17.9707 –150.0701

ΔGGb 18.2924 38.5867 38.0387 167.5409

ΔGSurt –4.2269 –7.7929 –37.7978 –28.9440

ΔGGas –51.9379 –84.9859 –88.9245 –198.6249

ΔGSolv 14.0655 30.7937 75.1807 190.0914

Total –37.8724 –54.1922 –64.9947 –41.1650

11NBA: compound N-β-acetyltryptamine; 103: compound carnemycin B; 435_h: compound carnemycin A; JH3: juvenile hormone; ΔGVdw: Van der Waals 
energy; ΔGElec: electrostatic energy; ΔGGb: polar free energy; ΔGSurt: solvent-accessible surface area; ΔGGas: gas phase interaction energy; ΔGSolv: solvation 
energy.

Figure 10. The residue contribution plot (MM-GBSA, molecular mechanics generalized born surface area), representing the binding contribution of 
residue in stabilizing the protein-ligand complexes. 
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Conclusions

A list of 187 compounds identified from different species 
of Aspergillus spp was related in this work to investigate the 
pharmacokinetic and toxicological properties in silico, for 
prediction of the insecticidal biological activities against 
Ae. aegypti vector. 39 molecules showed confidence levels 
for intestinal absorption and penetration into the blood-brain 
barrier, and a list with seven compounds demonstrated low 
toxicity profile, and the N-β-acetyltryptamine showed a 
binding affinity value of –8.100 ± 0.200 kcal mol-1, for 
the juvenile hormone, which classifies the compound as 
a potential insecticidal agent against the Aedes aegypti 
vector. The results presented are considered satisfactory, 
and open interesting perspectives, with huge capacity of the 
Aspergillus genera as an attractive biological source that is 
worth further exploitation with distinguished anticipation 
for the global pharmaceutical and agrochemistry industries.
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