The construction of LED systems applied to photosensitization processes was studied. Aiming to obtain more efficient devices it was evaluated the use of high intensity LED (HPLED), that present greater photonic flux, tending to excite a greater fraction of molecules. Construction details for 3 different irradiation systems were described (filtered halogen bulbs, conventional LED, HPLED), using methylene blue as a photosensitizer. A comparison between the efficiency of the equipments was carried out through the kinetics of photooxidation of 1,3-Diphenylisobenzofuran and Staphylococcus aureus photoinactivation. The overlap between the light emited from each equipment and the photosensitizer absorption, was also an important parameter in estimating the efficiency of the equipment. Bacterial inhibition higher than 99% for concentrations of 5 × 10-6 mol dm-3 of the photosensitizer was observed, in the system that uses HPLED. The equipments based on LED showed satisfactory results, besides their low cost and simple to assembling.
high power LED; Staphylococcus aureus; methylene blue; irradiation systems