Acessibilidade / Reportar erro

Interaction of allylic carbocations with benzene: a theoretical model of carbocationic intermediates in terpene biosynthesis

Carbocations act in different ways when interacting with aromatic rings. It is interesting that in terpene biosynthesis, the carbocationic intermediates do not alkylate the aromatic side chain of the amino acids present in the enzymatic active site, as would be expected by other carbocations such as the tert-butyl cation. In this study, the interaction between benzene and different allylic carbocations, mimicking terpenoid cations, is analysed in order to better understand how this interaction would occur. Density-functional-theory (DFT) calculations show that for secondary and tertiary allylic carbocations (as found in nature), the non-covalent interaction is energetically favoured with respect to alkylation of the aromatic ring.

density-functional calculations; DFT; electrophilic substitution; cation-π interaction


Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br