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Uma das chaves para manter a melhoria da alta qualidade de fabricação está no uso de 
cartas de controle. Neste trabalho, cartas de controle multivariada baseadas nos escores da 
componente principal mais significativa e no sinal analítico líquido foram desenvolvidas para 
monitoramento simultâneo da qualidade de dois princípios ativos (isoniazida e rifampicina) numa 
formulação farmacêutica (amostras produzidas no laboratório e na produção) empregando um 
espectrômetro portátil na região do infravermelho próximo. Os limites previstos em ambas as 
cartas multivariadas foram calculados a partir das especificações de qualidade da formulação 
farmacêutica (± 5% do valor nominal para cada princípio ativo). O uso das cartas de controle 
multivariadas forneceu uma simples e poderosa ferramenta para avaliar a formulação farmacêutica 
aliada a espectroscopia no infravermelho próximo. O procedimento é rápido e flexível para 
o monitoramento da produção desta formulação farmacêutica produzida na UFRN/Brasil, 
com o objetivo de introduzir a tecnologia analítica de processos ao tratamento de tuberculose  
pulmonar.

One of the keys to maintain high manufacturing quality improvement is the use of control 
charts. In this work, multivariate control charts based on significant principal component (PC) 
scores and net analytical signal (NAS) were developed to simultaneously monitor the quality of two 
active pharmaceutical ingredients (API) (isoniazid and rifampicin) in pharmaceutical formulation 
(laboratory samples and production samples) using a portable near infrared spectrometer. The limits 
for both multivariate charts were estimated using the quality specifications from the pharmaceutical 
formulation (± 5% of the nominal content of each API). The use of these multivariate control charts 
has provided a simple and powerful tool to evaluate the content of pharmaceutical formulations 
based on isoniazid and rifampicin capsules combined with near infrared spectroscopy. The 
procedure is rapid and adjustable for monitoring the production of the pharmaceutical preparations 
produced at UFRN/Brazil toward the process analytical technology (PAT) for the treatment of 
pulmonary tuberculosis.

Keywords: multivariate control chart, principal component analysis, net analyte signal, process 
analyte technology, near infrared spectroscopy 

Introduction

The pharmaceutical industry traditionally employs 
batch processing with laboratory assays (identification 
of raw materials, homogeneity, moisture, particle size, 
hardness, dissolution testing, chemical composition, and 
polymorph) carried out on finished products to evaluate 

quality control. Of the analytical techniques available for 
the development of qualitative and quantitative methods 
in the pharmaceutical industry, near infrared spectroscopy 
(NIRS) is most likely the most successful. Some 
applications, such as the identification of raw materials,1 
homogeneity,2 moisture,3 particle size,4 tablet hardness,5 
dissolution testing,6 characterization of polymorph7 and the 
determination of chemical composition in tablets8 have been 
described in recent reviews.9 NIRS has advantages such as 
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non-destructive analysis, speed, low cost, automation and 
less consumption of chemicals and toxic reagents compared 
with wet chemical methods.

The Food and Drug Administration (FDA) launched the 
“Guidance for Industry PAT-A Framework for Innovative 
Pharmaceutical Manufacturing and Quality Assurance”,10 
which describes a new regulatory framework [process 
analytical technology (PAT)]. The primary aim of PAT 
and quality by design (QbD) strategies is to increase 
the current understanding and knowledge of production 
processes. As a result of the FDA’s PAT initiative, PAT 
is now being promoted in the pharmaceutical industry to 
encourage the pharmaceutical industry to introduce and 
develop innovative processing systems that will improve 
the efficiency of manufacturing. In this situation, analytical 
methodologies based on NIRS must comply with the 
PAT.11,12

An area with increasing importance within PAT is 
multivariate data analysis (MVDA) including multivariate 
statistical process control (MSPC), which can provide 
a holistic view of a sample and its process fingerprint. 
Regulatory acceptance is already included in the original 
FDA PAT guidance. Although a process’s fingerprint (NIR 
spectrum, for example) can be used as a criterion for end 
processing or for taking specific control actions, a process 
fingerprint will define process supervision and control. In 
this context, chemometric techniques such as multivariate 
control charts have been applied for monitoring and diagnosis 
in multivariable processes.13 Several multivariate control 
charts applied in the pharmaceutical industry have been 
proposed based on principal component analysis (PCA),14,15 
partial least squares,16,17 multivariate exponential weighted 
moving average (MEWMA),18 multivariate cumulative sum 
(MCUSUM)19 and net analyte signal (NAS).20-22 The goal 
of multivariate control charts is to build an empirical model 
of a set of measurements achieved under normal operating 
conditions (NOC). Statistical confidence limits are calculated 
when building the model, and it is possible to identify the 
samples that are “in” and “out” of control, concerning the 
concentration of their analytical parameter. 

Multivariate control charts based on PCA present 
two different charts: a T2 chart using the most significant 
principal components and a Q chart with the remaining 
principal components. Recently, Clavaud et al.14 proposed 
the use of the T2 chart to perform multivariate quality 
monitoring of the cultivation of mammalian Chinese 
hamster ovary (CHO) cells in a fed-batch culture process 
with NIRS. NIR spectra and reference analytics data were 
computed using control charts to evaluate the monitoring 
abilities. The authors employed control charts of each media 
component under control by NIRS. Alcala et al.15 used a 

noninvasive mode to develop qualitative methods based 
on PCA scores to monitor a wet granulation process with 
NIRS. The formulation contained active pharmaceutical 
ingredients (API) (10% m/m) and microcrystalline 
cellulose and maize starch as the main excipients. The 
proposed strategy provides excellent results for monitoring 
the granulation processes in the pharmaceutical industry 
using only the spectral data. Essentially, the advantages 
of the PCA chart in these studies can be summarized as 
follows: (i) generation of simple monitoring charts; (ii) easy 
tracking of the progress in each batch run and monitoring of 
the occurrence of observable perturbations; and (iii) easily 
interpretable T2 and Q charts. 

Recently, new multivariate control charts based on the 
NAS applied in pharmaceutical formulations have been 
proposed to perform multivariate quality monitoring. 
Rocha et al.20 investigated the multivariate control charts 
based on NAS in conjunction with NIRS to monitor 
the quality of a pharmaceutical formulation containing 
nimesulide. In this study, it was possible to identify the 
samples that were outside the specifications concerning 
nimesulide concentration and to identify the presence 
of different constituents in the standard formulation. 
Recently, Rocha et al.21 built multivariate statistical 
control charts based on NAS and NIRS applied to the 
polymorphic characterization of piroxicam samples. In the 
case studied, the authors concluded that the methodology 
could identify piroxicam polymorphic forms that differed 
from the pattern normally present in specifications 
relative to form I of piroxicam. Skibsted et al.22  employed 
multivariate control charts based on NAS to monitor the 
homogeneity in pharmaceutical mixing processes using 
NIRS. The method presented by the authors was rapid, 
easy to use, non-destructive and provided statistical tests 
of homogeneity. The advantage of these charts based on 
NAS is that systematic variation in the product due to 
the property of interest is separated from the remaining 
systematic variation resulting from all the other compounds 
in the matrix. This could enhance the ability to flag products 
that are not within statistical control.

In a previous paper,6 we developed a chemometric 
strategy based on partial least squares (PLS), and the 
NIRS technique was applied to measure the percentage 
drug dissolution of isoniazid, rifampicin, pyrazinamide 
and ethambutol in pharmaceutical preparations produced 
at Universidade Federal do Rio Grande do Norte (UFRN) 
toward the treatment of pulmonary tuberculosis. Since the 
publication of that study, the Center for Food and Drug 
Research at UFRN has produced another pharmaceutical 
formulation for pulmonary tuberculosis. This formulation 
is based on isoniazid and rifampicin capsule powder. The 
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use of multicomponent analytical methods based on NIR 
spectroscopy can considerably improve the analytical 
control of the production process, which consequently 
improves the quality. In addition, the vast majority of 
published studies using multivariate control charts applied 
in pharmaceutical formulations contain a single active 
principle. The joint multivariate control charts for two 
active principles in a multicomponent formulation is 
challenging. 

The aims of this paper were to build and validate 
multivariate control charts based on principal component 
analysis and net analyte signal for the quality monitoring 
of two API (isoniazid and rifampicin) of a pharmaceutical 
formulation produced at UFRN using a portable near 
infrared spectrometer. The new method is intended to 
replace the current method of choice, which uses high 
performance liquid chromatography (HPLC) for two API. 

Theory

Fundamentally, to build a multivariate control chart 
based on PCA and NAS, an out-of-control indicator is 
required for diagnostic and corrective measures. In this 
sense, two steps are required: (i) (diagnostic) discover 
which measured variables contribute to the out-of-control 
signal and (ii) (corrective) determine what occurs in the 
process that perturbs the behavior of these variables.

Multivariate Shewhart control charts based on PCA

PCA is a multivariate analysis technique that extracts a 
new set of variables by projecting the original variables onto 
a principal component space. Essentially, there are some 
commonly used multivariate statistical control charts that 
use measures based on the PCA model23 including Shewhart 
charts,24 cumulative sums,13 scores monitoring and residual 
tracking (SMART) charts, and T2 and Q charts.25,26 

Having established a PCA model based on data 
collected when only common use variation was present, 
future behavior can be referenced against this “in-control” 
model. In this sense, new multivariate observations can be 
projected onto the plane defined by the PCA loading vectors 
to obtain their scores (ti,new = pi

T ynew) and the residuals 
enew = ynew – ŷnew, where ŷnew = PATA,new, tA,new is the (A × 1) 
vector of scores from the model and PA is the (q × A) matrix 
of loadings.

The presence of samples within the ± 2 s control limits 
in the Shewhart control chart built using the relevant PC 
scores or of trends and systematic behaviors in the score 
plot are clear indications of “out-of-control” processes (in 
this case, the content of the pharmaceutical formulation).

Multivariate statistical control charts based on NAS

In 2005, Witte et al.27 proposed a new methodology to 
perform multivariate product quality monitoring based on 
the NAS approach. Recently, Rocha et al.20,21 reported the 
theory regarding the NAS approach. Essentially, the main 
idea for the development of the control charts based on 
NAS is carried out in two stages: (i) model building; and 
(ii) calculation of statistical limits. The model consists of 
the decomposition of a sample spectrum (vector r) into 
three different contributions: rNAS, rINT and rres:

 r = rNAS + rINT + rres (1)

where rNAS is a regression vector that is unique for the 
analyte, rINT is a vector that describes all variation due to 
the other compounds (interfering constituents) and rres is 
a residual vector. 

Statistical limits are calculated in the second stage for 
the multivariate control chart in which a set of spectra that 
are statistically “in-control” are used (RNOC). To derive 
statistical limits for the NAS chart, the NAS value for each 
of the NOC spectra is computed as follows:

nasNOC = RNOC
Tbk (2)

where nasNOC is a vector with the NAS values of the 
individual NOC spectra. The mean (nasNOC) and standard 
deviation (sNOC) of the INOC NAS values are computed. 
With these values, the statistical limits (95% and 99.7% 
confidence limits) can be computed and plotted in the NAS 
chart. In other words, for the control charts based on NAS 
applied in pharmaceutical formulation, it is necessary to 
prepare one data set with “in-control” samples that must 
contain only the API and excipients.

The interference charts are built by projecting the 
RNOC matrix on the interference space. It is estimated 
that the projected “under control” spectra (named RINT) 
occupy a restricted region of the interference space. In 
the pharmaceutical formulation, the interference space 
is constructed with blank samples or placebo (only 
excipients). For the validation step on the control charts, 
it is necessary to have two data sets: (i) “out-of-control” 
samples that contain the API in concentrations outside 
of the specification and (ii) a data set with “in-control” 
samples.

Finally, the residuals chart is obtained after the 
calculation of NAS and interference vectors, as described 
above. The limits of the control charts are estimated based 
on Q-statistics.13 Q-statistics are employed to ensure the 
presence of systematic noise.
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Experimental

Samples 

All of the chemicals used were either pharmaceutical or 
analytical grade. The studied pharmaceutical formulation 
(in capsule form) contained isoniazid (99.29%, Amsal 
Quality Control Laboratory, India) and rifampicin (98.87%, 
Sanofi Aventis, Italy) as the active principle, cellulose as 
the major excipients, and magnesium stearate, sodium 
starch glycolate and talc as the minor excipients. The 
capsules produced at UFRN were available in one absolute 
API content per dose. The capsules were uncoated, thus 
permitting diffuse reflectance.

Laboratory samples were prepared using a D-optimal 
experimental design (MODDE 4.0 from Umetrics, Umeå, 
Sweden), DoE. D-optimality of a design is performed when 
the classical symmetrical designs cannot be used because 
the shape of the experimental region is irregular or the 
number of experiments selected by a classical design is too 
large. The design contained 3 concentration levels within 
± 5% of the nominal content of each active substance 
and excipient. A total of 30 different formulations were 
generated by the design software to efficiently represent the 
design space for the large number of possible combinations 
of these substances and 24 blank samples (12 for isoniazid 
and 12 for rifampicin). Samples containing only the 
excipients were also prepared. The laboratory samples 
were weighted on an analytical balance with an accuracy 
of 0.0001 g. Then, the samples were mixed for 3 min and 
vortexed for 1 min. 

In addition, production lots were collected over a period 
of several months to include possible changes in sample 
constituent concentration, suppliers, process changes 
or variations in storage conditions up to a shelf life of 1 
year, resulting in a total of 52 samples. These lots were 
also selected to ensure that each API concentration was 
included in the models covering a concentration range that 
was amenable to modeling. 

“In-control” (± 5% around the nominal value for 
each active principle and excipient) and “out-of-control” 
(upper ± 5% of each substance) samples were prepared 
by the formulation development department using 
production department guidelines. To maintain industrial 
confidentiality, no detailed information about the chemical 
composition of the data sets can be given.

Apparatus

Spectra in the near infrared range of 950-2500 nm 
were recorded in triplicate using an ARCspectro FT-NIR 

(Neuchâtel, Switzerland) with a spectral resolution of 
8 cm−1. Thirty-two scans were co-added, and the diffuse 
reflectance mode was used. The mean spectrum for each 
tablet was then calculated by averaging the triplicate 
spectra. The portable NIR device uses an InGaAs 
photodiode (0.9 µm to 2.6 µm), and the reflected light was 
directed to the spectrometer via a bundle of optical fiber 
(model R600-7-VIS-125F, Ocean Optics, USA) linked to 
the probe end and controlled via ARCspectro ANIR 1.64 
software. In addition, the instrument uses a miniature 
scanning Fourier-transform based on a lamellar grating 
interferometer (35 mm × 35 mm × 65 mm), and it also uses 
a micro-mechanical actuator. The powder samples were 
deposited on the aluminum-plated backing plate (0.1 mm 
sample thickness). The transflectance probe was positioned 
on the sample surface (less than 1 cm and 90° from the 
surface). The transflectance probe was washed with ethanol 
(70% v/v) and dried using tissue paper after each sample. 
The spectrum of a polytetrafluoroethylene (PTFE) sample 
was used as the background. The spectrometer was placed 
in an air-conditioned room (22 °C), and the samples were 
allowed to equilibrate to this temperature before analysis. 

After NIR analysis, the samples were subjected to 
reference analysis using HPLC. The API isoniazid and 
rifampicin were determined by performing isocratic analysis 
for each active compound using an HPLC instrument 
from Shimadzu (Kyoto, Japan) equipped with a degasser 
(DGU-20A5), pump (LC-20AT), auto-injector (SIL-20A), 
column oven (CTO-20A), SPD-M20A photodiode array 
detector and CBM-20A communication bus module. The 
Purospher Star® 250 mm × 4.6 mm × 5 µm column was 
obtained from Merck, and it was used at 25 °C. For each 
analysis, the mobile phases used were 96:4 v/v and 55:45 v/v 
phosphate buffer pH 6.8 and acetonitrile, respectively.

HPLC analysis

The HPLC procedure used as a reference to determine 
the API (isoniazid and rifampicin) in the production 
capsules was as follows: each capsule was weighted, 
dissolved in 10 mL of methanol, sonicated for 5 min, 
diluted with phosphate buffer pH 6.8, sonicated again 
for 5 min, and diluted to 100 mL with the same buffer. A 
10 mL aliquot was taken to determine the level of isoniazid, 
and a 20 mL aliquot was taken to determine the level of 
rifampicin. Both aliquots were then diluted to 50 mL with 
the solvent, and the resulting solutions were employed to 
obtain chromatograms at 254 nm and 238 nm for isoniazid 
and rifampicin, respectively. The API in each sample, 
in milligrams of API per gram of capsule, was used as 
reference datum.
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Multivariate control charts

Multivariate Shewhart based on the PCA scores
Data set 1 contains 106 NIR spectra obtained from the 

DoE (30 samples), blank (24 samples) and production samples 
(52 samples). For the development of the control charts based 
on PCA, subsets of calibration (42 “in-control” samples), 
named the cal set, subsets of validation (42 “out-of-control” 
samples), named the val set, and subsets of prediction 
(11 “in-control” and 11 “out-of-control” samples), named 
the pred set were generated.

Net analyte signal (NAS)
Data set 2 contains 106 NIR spectra obtained from the 

DoE (30 samples), blank (24 samples: 12 for isoniazid and 
12 for rifampicin) and production samples (52 samples). 
For the development of the control charts based on NAS, 
one control chart for each API (isoniazid and rifampicin) 
was also prepared. 

In the first control chart, 20 “in-control” samples 
(called set A1) containing the active principle (isoniazid) 
and excipients (cellulose, magnesium stearate, sodium 
starch glycolate and talc) were obtained from the DoE and 
the production sample; 12 blank samples (called set B1, 
only excipients) were prepared for the construction of the 
control chart and the interference space for isoniazid API. 
For validation of the control chart for isoniazid, 29 “out-
of-control” samples for isoniazid (named set C1) were 
obtained from the production sample and 23 “in-control” 

samples for isoniazid (named set D1) obtained from 
the DoE design and the production sample were  
prepared. 

In the second control chart, 20 “in-control” samples 
(named set A2) containing the active principle (rifampicin) 
were obtained from the DoE and the production sample 
in excipients (cellulose, magnesium stearate, sodium 
starch glycolate and talc); 12 blank samples (called set 
B2, placebo) were prepared for the construction of the 
control chart and the interference space for isoniazid 
API. For validation of the control chart to rifampicin, 
29 “out-of-control” samples containing rifampicin were 
obtained from DoE (named set C2) and 23 “in-control” 
samples for rifampicin (named set D2) obtained from the 
DoE design and the production sample were prepared.

Table 1 is an overview of the samples that were used to 
construct and validate the control charts based on PCA and 
NAS. The criterion used to select the number of principal 
components used for the construction of the interference 
space was the root mean standard error of cross validation 
(RMSECV).

Software

The data import, pre-treatment, and construction of 
multivariate control charts were implemented in MATLAB 
version 6.5 (Math-Works, Natick, USA) using a method 
developed in-house. Different preprocessing methods 
were used, including baseline correction, multiplicative 

Table 1. Overview of the samples used for construction of control charts (PCA and NAS)

Sample set Description 1 Description 2 Used for

Cal 42 in-control samples DoE (1-24) + production sample (25-42) calibration set

Val 42 out-of-control samples (1-23) production sample + (24-33) 
placebo for isoniazid + (34-42) placebo 

for rifampicin

validation set

Pred 11 in-control and 11 out-of-control 
samples

(1-11) in-control from DoE (1-6) and 
production sample (7-11) and (12-22) 
out-of-control from production sample 
(12-17), placebo for isoniazid (18-19), 

placebo for rifampicin (20-22)

prediction set

A1 20 in-control samples DoE (1-10) + production sample (11-20) developed of NAS, interference and 
residual charts

B1 12 blank samples DoE construction of interference space

C1 23 in-control samples and 29 out-of-
control samples

production sample validate NAS chart

D1 23 in-control samples DoE (1-10) + production sample (11-23) validate interference and residual chart

A2 20 in-control samples DoE (1-10) + production sample (11-20) developed of NAS, interference and 
residual charts

B2 12 blank samples DoE construction of interference space

C2 23 in-control samples and 29 out-of-
control samples

production sample validate NAS chart

D2 23 in-control samples DoE (1-10) + production sample (11-23) validate interference and residual chart
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scattering correction (MSC), variance scaling, derivative, 
smoothing Savitzky-Golay methods using a first- and 
second-order polynomial and varying the number of 
window points (3, 5, 7 and 11). 

Results and Discussion

The raw NIR spectra (data set 1, 82 samples) obtained 
from the experimental design (30 samples) and line 
production (52 samples) are shown in Figure 1a, and they 
are the averages of triplicate measurements for each sample 
recorded in the region from 950 to 2500 nm. The spectra 
are highly overlapping and noisy, and visual inspection 
does not permit the identification of the active ingredients 
and excipients or the ability to distinguish similar 
features between them (“in-control” or “out-of-control”). 
Figure 1b shows the NIR spectra for the API (isoniazid and 
rifampicin), placebo (isoniazid and rifampicin), laboratory 
sample and production sample. As observed, the spectra for 
the placebo, two API, the production and the laboratory 
sample were distinct, which was largely a result of the 
spectral contribution of the API.

Multivariate Shewhart based on the PCA scores

In Figure 1, the raw spectra that are affected by noise, 
overlapping and additive/multiplicative effects that are 
common in solid measurements are readily observed. 
Therefore, for the development of the control chart based 
on PCA, a series of preprocessing methods were applied to 
reduce instrumental noise and light scattering that can affect 
the interpretation of the signal, such as Savitzky-Golay 
smoothing, MSC, variance scaling, and first and second 
derivative. The performance of developed models for 
each preprocessing method was evaluated according to 
their correct classifications (predicted sample index equal 
to the correct sample index) and incorrect classifications 
(predicted sample index different from the correct class 
index) using a calibration and validation set. The best 
prediction rates were obtained using Savitzky-Golay 
smoothing (11 points) combined with MSC and variance 
scaling (see Figure 2a), given that the samples were 
classified correctly in the control chart. The derivative 
preprocessing methods were tested, but some samples were 
not classified correctly in the control charts.

Figure 1. (a) Raw NIR spectra of the original 82 samples (30, DoE and 
52, production); (b) raw NIR spectra for the active principle ingredient 
(API, isoniazid and rifampicin), placebo for each API and laboratory and 
production sample powder sample.

Figure 2 (a) NIR spectra after pretreatment (Savitzky-Golay smoothing, 
MSC and variance scaling). (b) PC3 loading plot.
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Afterward, the PCA model was set up to investigate 
the unique patterns and the correlation structure among the 
variables. The model analyzed six principal components 
that globally explain 53.27% of the variation (R2). The 
first component accounts for 25.89% of the explained 
variation; the second and third components explain 11.49% 
and 5.59% of the variation, respectively. Although the first 
two PC explained the major variance, the best classification 
control charts were achieved using PC3. As observed in 
Figure 2, the loading plot of PC3, some significant bonds 
related to both compounds (isoniazid and rifampicin) were 
identified. 

Some characteristic absorption peaks were observed, 
and they were interpreted as follows: 1100-1170 nm region 
is assigned to C–H and C=C for the second overtone of 
rifampicin; 1200-1400 nm is assigned to –CH3 for the 
combination of rifampicin; 1500-1700 nm is assigned to 
C=C and O–H for the first overtone of rifampicin and to 
N–H, C–O for the first overtone of isoniazid; 1750-1900 
nm is assigned to −CH3 for the first overtone of rifampicin 
and isoniazid; and 1950-2300 nm is assigned to C–O, 
N–H, C=C, O–H and C–H for combination vibrations of 
rifampicin and isoniazid.

Figure 3a represents the Shewart chart of PC3 using 42 
“in-control” samples and 24 DoE/18 production samples 
(cal1 set). The confidence limits take into account a variation 

of ± 5% of the concentration of each active principle in the 
trade pharmaceutical formulation. This chart clearly indicates 
that the samples are correctly classified as “in-control,” 
which is in agreement with what was projected because 
these samples were prepared and produced in the laboratory 
with concentrations within the normal operating range. 
However, some samples were misclassified. Samples 17, 
28 and 37 (cal1 set) were misclassified as “out-of-control.” 
Upon further analysis, these samples were not homogeneous, 
and some different particle sizes are present among the 
constituents. However, the particle size of the material affects 
the scattering, which was most likely a source of variation 
in the NIR spectra for these samples. However, as expected, 
39 samples were correctly classified within the confidence 
limit from the calibration set with a success rate of 92.8% 
(39 of 42 samples).

After the construction of the calibration control chart, 
validation was performed with 42 different “out-of-control” 
samples: 23 production/10 blanks for isoniazid/9 blanks 
for rifampicin (val1 set). Figure 3b shows the results 
obtained with the validation set. The confidence limits also 
take into account a ± 5% variation of the concentration 
of each active principle in the trade pharmaceutical 
formulation. In Figure 3b, it is evident that the samples 
were correctly classified as “out-of-control,” which is in 
agreement with what was expected. Only three samples 

Figure 3. Multivariate Shewhart control charts of PC3 on pharmaceutical formulation for: (a) calibration set; (b) validation set; (c) prediction set. The 
calibration set are represented as empty circles, empty square for validation set, while the prediction set are represented as black circles.
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(21, 22 and 30) from the produced line were misclassified. 
Investigating these samples, it was observed that they are 
also not homogeneous, which could affect the NIR spectra. 
However, as expected, 39 samples were correctly classified 
within the confidence limit from the calibration set, which 
had a success rate of 92.8% (39 of 42 samples) that was 
similar to the calibration set. 

Finally, to evaluate the multivariate control chart based 
on PCA, a prediction set (pred1 set) including 22 samples 
was prepared comprised of 11 “in-control” samples (6 DoE/5 
production) and 11 “out-of-control” samples (6 production/2 
blanks for isoniazid/3 blanks for rifampicin). The control 
chart for the prediction set is shown in Figure 3c. As 
observed, all samples were correctly classified taking into 
account a variation of ± 5% of the concentration of each 
active principle in the trade pharmaceutical formulation. 
Thus, it was possible to identify the samples that were “in” 
and “out” of control using the multivariate control chart 
based on PCA, regarding the concentration of both API in the 
laboratory samples and the production sample formulation 
produced in UFRN, Brazil.

Multivariate control chart based on NAS

For the development of the control chart based 
on NAS, spectral preprocessing was performed using 
Savitzky-Golay smoothing, MSC, variance scaling, and 
first and second derivative. The best models (samples 
were classified correctly in the control chart) obtained 
during the pretreatment stage utilized the 900-1650 nm 
region from which the distribution information of isoniazid 
and rifampicin in excipients was extracted very well. In 
addition, the Savitzky-Golay smoothing (with a window 
of 11 points), MSC and variance scaling were chosen for 
the data preprocessing.

Isoniazid

Using data set A1 (“in-control” samples) obtained from 
the DoE and the production sample for isoniazid, the NAS 
regression vector was obtained and the decomposition of 
each spectrum was determined. Using the NAS chart, the 
upper and lower confidence limits of isoniazid concentration 
in the samples (data set A1) were determined by taking into 
account a variation of ± 5% of the concentration of the 
API. Then, PCA using 4 components [PC1 (96.80%), PC2 
(0.64%), PC3 (0.51%) and PC4 (0.37%)] was applied to the 
B1 set (12 blank samples for isoniazid) for the construction 
of the interference space and the confidence limit. The 
confidence limit for the interference chart was obtained 
according to d-statistics, resulting in a value of 17.71. 

Q-statistics were used for the residuals chart resulting in a 
value of 0.53 at 95% confidence. The validation chart for 
isoniazid was developed after the construction of the three 
charts (NAS, interference and residual) using 52 samples 
(called set C1) obtained from the production samples 
(23 “in-control” and 29 “out-of-control”) to validate the 
NAS chart and 23 “in-control” samples (named set D1) 
to validate interferences and the residuals chart. Figure 4 
shows the control charts developed for isoniazid. It can be 
observed that the samples are correctly classified, which 
agrees with what was expected. Furthermore, Figure 4 also 
shows that samples from data set C1 (29 “out-of-control” 
samples) are outside the NAS charts, which is in agreement 
with what was expected, given that these samples were 
obtained in the production phase. The data from set D1 
(23 “in-control” samples) are within the interference and 
residuals charts, which is also in agreement with what was 
expected. Considering the interference chart, as observed 
in Figure 4, only one sample is “out-of-control.” Further 
analysis of this sample indicates that sample 8 has a higher 
cellulose concentration. Only sample 18 is “out-of-control” 
in the residuals chart. One can considerer the hypothesis 
that the samples are not adequately homogeneous and 
that the laboratory and production samples have diverse 
particle sizes.

Rifampicin

Using data set A2 (“in-control” samples) obtained 
from DoE, for rifampicin, the NAS regression vector 
was obtained and the decomposition of each spectrum 
was determined. Using the NAS chart, the upper and 
lower confidence limits of rifampicin concentration in 
the samples (data set A2) include a variation of ± 5% of 
the concentration of the API. PCA using 2 components 
[PC1 (89.75%) and PC2 (9.04%)] was applied to set B2 

Figure 4. Control charts (data set A1) for isoniazid: () ‘‘in-control” 
samples in () NAS; () interference; () residual; validation samples 
in-control charts (+) and () (samples sets C1 and D1).
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(12 blank samples for isoniazid) for the construction of the 
interference space and the confidence limit. A confidence 
limit of 9.62 for the interference chart was obtained 
according to d-statistics, and Q-statistics were used for the 
residuals chart, resulting in a value of 432.8, considering a 
95% confidence level. The validation chart for rifampicin 
was constructed after the construction of the three charts 
(NAS, interference and residual), using 52 samples 
(named set C2) obtained from the production samples 
(23 “in-control” and 29 “out-of-control”) to validate the 
NAS chart and 23 “in-control” samples (called set D2) 
to validate interferences and the residuals chart. Figure 5 
shows the control charts developed for rifampicin. As shown 
in Figure 5, the samples are correctly classified, which is 
in agreement with what was expected. Furthermore, it is 
possible to note in Figure 5 that samples from data set 
C2 (29 “out-of-control” samples) are outside the NAS 
charts, which is in agreement with what was expected, 
given that these samples were obtained in the production 
phase. The data in set D2 (23 “in-control” samples) are 
within the interference and residuals charts, which is also 
in agreement with what was expected. Considering the 
interference chart, all 23 of the “in-control” samples are 
in agreement with what was expected. With respect to the 
residuals chart, as observed in Figure 5, samples 15 and 
17 are “out-of-control.” These samples were prepared 
in the production and could have different particle sizes 
between the laboratory and production samples, which 
would consequently affect the scattering in the NIR spectra.

Conclusion

This paper presents an application of multivariate control 
charts based on PCA and NAS using near infrared spectra to 
simultaneously monitor two API (isoniazid and rifampicin) 
in a pharmaceutical formulation produced at UFRN for the 

treatment of pulmonary tuberculosis. For control charts based 
on PCA, three control charts were developed (calibration, 
validation and prediction data set), and the confidence 
limit was calculated. For NAS, three control charts were 
developed for each contribution (NAS, interferences and 
residual), and their individual control limits were calculated. 
Both multivariate control charts were validated, and it was 
possible to successfully identify samples that were in- and 
out-of-control. For the studied cases, the methodology 
provides a simple, rapid, non-destructive and powerful tool 
for monitoring the production of isoniazid and rifampicin 
because it does not require production samples; in fact, 
only laboratory samples that are obtained by combining 
the ingredients in appropriate amounts and samples that are 
under control are required for model development. 
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