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Caparaó and the Fluminense northwest regions are nationally recognized by the important 
contribution on coffee production and exportation. Adulterations involving specialty coffees result 
in a decrease in the quality of the final product. However, obtaining many different samples from 
the same region is unfeasible in some cases, needing strategies to work with a limited number of 
samples for pattern recognition. Thus, this work is the first to use the construction of synthetic 
samples (SS) for analysis of coffees, and its objective is to identify adulterations in specialty coffees 
with bark, straw and low-quality beans, using UV-Vis spectroscopy, associated with chemometric 
methods. The synthetic samples partial least square discriminant analysis (SS-PLS-DA) showed 
better specificity, sensitivity and reliability rates than the Hard PLS-DA models. One-class methods 
(soft independent modeling of class analogy (SIMCA) and data driven soft independent modeling 
of class analogy (DD‑SIMCA)) showed low specificity and reliability. The discriminant methods 
together with the synthetic samples proved to be adequate to identify adulterations in specialty coffees.
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Introduction

The coffee tree (Coffea sp.) is a shrub from the 
Rubiaceae family. In Brazil, the main two species 
cultivated are Coffea arabica (known as Arabica coffee) 
and Coffea canephora (known as café-robusta or conilon). 
Coffee has a significant cultural and economic impact in 
Brazil, as the country is the largest producer and exporter 
of the grain, and has the second-highest per capita 
consumption in the world, after the United States.1,2 

In the 19th century, the state of Rio de Janeiro was 
a pioneer in the cultivation of large quantities of coffee 
in Brazil, and today, the Fluminense northwest region is 
responsible for 70% of coffee production in this state.3 
The state of Espírito Santo is the second-largest producer 
of coffee in Brazil (with Minas Gerais state in first place). 
The Caparaó region, which spans both states, is where most 
of their coffees are grown.4 Family farming is the primary 
way of growing coffee in the Fluminense northwest and 
Caparaó regions. Due to advances in cultivation techniques, 
there has been a significant increase in the production of 
high-quality coffees in recent years.

Specialty coffee is a rapidly growing global market, 
with approximately 15% growth per year.5 This makes 
specialty coffee a great option to counter commodity price 
fluctuations. Specialty coffee typically commands 30 to 
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40% higher prices than conventional coffee, and in some 
auctions, it can easily exceed 100%. Some regions have 
requested geographical indication (IG) or denomination of 
origin (DO) for their coffees, such as Caparaó and Matas 
de Minas. The Fluminense northwest region is following 
this trend, and proposals have been submitted to conduct 
studies to verify that coffees grown in this region have 
their own identity (special coffees of the “Alto Noroeste 
Fluminense”),6 to support the petition of IG to the National 
Institute of Industrial Property (INPI). This prevents coffees 
produced in other regions from being marketed as specialty 
coffees of the “Alto Noroeste Fluminense,” ensuring their 
uniqueness. Additionally, this guarantees greater added 
value to these coffees, generating higher income, especially 
for small family-based coffee growers in the region. 

It is worth noting that coffees grown in the Region 
of Caparaó (ES) have already received unprecedented 
registration for IG in 2021. Efforts are needed to prevent 
fraud and ensure geographic authentication and correct 
commercialization.

Due to the high added value of specialty coffee beans, 
frauds can occur when cheap materials, such as stems, sticks, 
shells, beans, corn and other coffee beans from different 
geographical origins are added to increase the final volume 
of coffee processed and obtain an irregular and criminal 
profit.7,8 In this sense, there has been an increasing need 
to develop methodologies to identify these adulterations, 
which has been studied by the scientific community and 
food inspection agencies. Sensory analysis, which evaluates 
specialty coffees through attributes such as aroma, flavor, 
and acidity, has been widely used.9,10 However, this requires 
rigorous training to obtain experienced professionals 
(Q-graders) which can be time-consuming and costly. 

Different analytical techniques have been used to evaluate 
various adulterations in foods with high added value, such as 
coffee. Fourier transform infrared spectroscopy (FTIR), near 
infrared spectroscopy (NIRS),  mass spectrometry coupled 
to gas chromatography (GC-MS) and high-efficiency liquid 
chromatography (HPLC-MS) are the most commonly 
used.2,11-13 However, the high cost of these analytical 
techniques and their absence in educational and research 
institutions in the studied regions are limitations, requiring 
coffee samples to be sent to laboratories in other regions of 

Brazil at a high cost. Therefore, cheaper and more accurate 
methods and techniques such as UV-Vis spectrometry (which 
is low cost, simple and easy to operate), combined with 
chemometric methods, can be an excellent alternative for 
evaluating adulterations in coffee samples. Multivariate data 
analysis has been applied for the authentication of different 
matrices, including coffee, medicinal plants, rice, organic 
grapes and organic grape juices, carrots, and products with 
a protected designation of origin (PDO) such as honey, wine 
vinegar and wine.14-23

This study aims to build chemometrics models from 
results obtained by UV-Vis spectroscopy to distinguish 
specialty coffee produced in the Northwest Fluminense and 
Caparaó regions from adulterated coffee with bark, coffee 
straw, and low-quality coffee beans. A partial least square 
discriminant analysis (PLS-DA) model was built for the first 
time from the creation of synthetic samples (SS-PLS-DA) 
to evaluate the authenticity of specialty coffees. Finally, this 
study contributes to controlling the authenticity of coffee 
produced in protected origins, preventing fraud and the sale 
of products with incorrect origin and processing.

Experimental

Coffee samples origin

Thirty samples of different specialty coffees 
(Coffea  arabica) were used in this study. Specialty 
coffee beans and adulterants (such as bark, sticky straw 
and low-quality beans) were obtained from local and 
regional producers, sourced from the Institute of Technical 
Assistance and Rural Extension of the northwest region of 
Rio de Janeiro (EMATER-RJ), the Laboratory of Coffee 
Quality at the Fluminense Federal Institute (IFF), and by the 
Coffee Classification and Tasting Laboratory at the Federal 
Institute of Espírito Santo (IFES). All samples belonged to 
the 2020 and 2021 crops. Table 1 provides the geographic 
descriptions and sensory evaluation scale of the samples, 
while Figure 1 shows the geographic demarcation of the 
two regions where specialty coffees were grown.

As mentioned in the Introduction section, the Fluminense 
northwest region has applied for an IG with the INPI to 
verify that the coffees grown in this region have their own 

Table 1. Geographical origin of the specialty coffee samples studied as declared by the producers

Samples Cities Amount Scoresa

Fluminense northwest region Bom Jesus do Itabapoana, Porciúncula, Varre-Sai 7 85-90

Caparaó region
Alegre, Alto Caparaó, Carangola, Divino de São Lourenço, Dores 

do Rio Preto, Espera Feliz, Guaçuí, Ibatiba, Ibitirama, Irupi, Martins 
Soares, São José do Calçado

23 85-94

aBrazilian Specialty Coffee Association (BSCA) Sensory Rating Scale.24
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unique identity (specialty coffees from the “Alto Noroeste 
Fluminense”). The Caparaó region (ES) has already been 
granted IG registration in 2021.26

Coffee sample preparation

Thirty samples of specialty coffees were roasted 
at 200  °C for 10 min using an industrial coffee roaster 
(Carmomaq, Torrador de Prova Tradicional, Brazil) and then 
ground to the smallest granulometry allowed by an electric 
coffee grinder (Botini, Botimetal, Brazil). The same roasting 
and grinding procedure was performed for the bark, sticky 
straw and extrinsic coffee defects (called low-quality beans).

The 30 samples of specialty coffees were adulterated 
with 1, 3, 7 and 10 wt.% of bark and sticky straw and with 
sieve bottom blends, intrinsic, and low-quality beans in 
the proportions of 10, 20, 30, 40, 50 and 75 wt.%. The 
adulterations carried out for each pure specialty coffee 
sample generated the following groups of adulterated 
samples: 120 samples (bark); 120 samples (straw) and 
180 samples (low-quality beans).

The aqueous extraction of specialty coffees (pure 
and adulterated) was based on the literature, with some 
modifications.27 Briefly, it involved of preparing coffee 
infusions in which 1.0000 g of each sample and filtered 
in 50.0 mL of distilled water at 90-98 °C. Filtration was 
carried out gradually (approximately 3 min) to extract the 
substances present in the coffee. After that, the obtained 

extracts were cooled to room temperature, and 500 µL of 
each extract was added in a 25.0 mL volumetric flask and 
checked with distilled water.

Spectral data acquisition using UV-Vis spectroscopy 

A UV-Visible spectrometer (BioMate 3S, Thermo 
Fisher Scientific, USA) was used to obtain spectral data 
in the 200-900 nm range using the fast scan mode. The 
reference was measured using distilled water. Spectral 
bands with high noise were identified in the range of 
200‑230 nm and after 350 nm. Therefore, the spectral range 
of 230-350 nm was used for the chemometric analyses.22,28

Chemometric analysis 

The quality of the original spectral data was improved 
by applying the second derivative (second-order polynomial 
and a 9-point window size), aiming to reduce baseline 
effects in the original spectra. The data were then centered 
on the mean. The Kennard-Stone algorithm was used 
to separate the pure specialty coffee samples from the 
adulterated coffee samples, by approximately 2/3 and 1/3 
for the training and test sets, respectively, ensuring a good 
representation of both classes (pure specialty coffees and 
adulterated coffees). All processing was carried out with 
MATLAB R2013a (The MathWorks, Natick, MA, USA), 
with a few toolboxes29-32 for modeling and in-house scripts.

Figure 1. Geographical location of cities producing specialty coffee in the Fluminense northwest and Caparaó regions (adapted from reference 25).
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Synthetic sample creation 

The imbalance between the quantities of pure samples 
and adulterated samples can lead to errors and bias when 
distinguishing between each target class. To mitigate this 
issue, generating synthetic samples (SS) can be a valuable 
approach to address the imbalance and accurately link the 
predictor matrix with the response vector33-35 In order to 
generate SS, the training set of the target class (specialty 
coffee) was normalized around the mean. Subsequently, the 
vector basis was transformed using principal component 
analysis (PCA) and applying singular value decomposition 
(SVD) (equation 1). 

[T, P, varexp] = pca(Xm, npc)	 (1)

where Xm represents the set of samples of the target 
class centered on the mean, npc refers to the number 
of principal components, T is the scores matrix, P is 
the loadings matrix and varexp  indicates the explained 
variance, all products of PCA decomposition. The above 
function was developed by this research group. Singular 
value decomposition, Xm = U·S·Vt; where: U and V 
are orthonormal, and S is a diagonal matrix containing 
the square root of the non-zero eigenvalues (explained 
variance) of Xm.

The SS were randomly generated in the same dimension 
as the principal components (PCs),30 which corresponds 
to the score matrix (T). The semi-axes of an ellipse were 
calculated to establish the boundaries in this PC space, 
employing a confidence limit of 3 standard deviations 
(equation 2). 

	 (2)

where, sd is the adopted limit of 3 standard deviation and 
diag(eig(cov(T))) is the main diagonal of the diagonal 
matrix of eigenvalues, obtained from the quadratic 
covariance matrix of T. 

To create synthetic samples (SS) belonging to the space 
delimited by the ellipse, we used the product of each value 
of a random vector of the same dimension of PCs with the 
standard deviation vector of 𝐓, added to an average vector 
of 𝐓 (equation 3).

SS = (randn(1, col(T)) × Ts) + Tm	 (3)

The function “randn” generates random values from a 
standard normal distribution, col(T) represents the column 
dimension of 𝐓, while Ts corresponds to the standard 
deviation vector and Tm is the mean vector of T.

Subsequently, the synthetic data were returned to the 
vector base of the original vector space by adding the initial 
mean vector to the matrix product of the synthetic data and 
the loadings matrix (P) (equation 4).

SS = SS × PT + Xmean	 (4)

where PT is the transposed loadings matrix and Xmean is the 
mean vector of the original data. 

The synthetic data were then concatenated to the 
training set, generating a new target class (real + synthetic 
samples). This approach aimed to achieve balance 
between the target class and the other modeled classes by 
generating “n” synthetic samples. After that, the models 
were built using the partial least square discriminant 
analysis  (PLS‑DA) applied to the dataset containing the 
real samples along with the SS.29

Regarding the generation of synthetic samples (SS), 
various methods have been proposed in the literature, such 
as SMOTE,36 which is one of the best-known methods for 
this purpose. SMOTE generates synthetic objects along 
a space between the nearest neighbors of minority class 
objects. In this work, we used an algorithm developed by 
our research group, based on capturing the variance of the 
original data in the principal components dimension.

Hard and synthetic samples partial least square discriminant 
(SS-PLS-DA) models

Mean-centered data were correlated with a single 
y-vector containing 1 for pure samples (or pure + synthetic 
samples for SS-PLS-DA) and 2 for each type of 
adulteration. The number of latent variables was chosen 
by cross-validation, evaluating the lowest cross validation 
classification error (CVCE) and the lowest number of false 
positives (FP) and false negatives (FN) generated by the 
model. The test set was used to verify the performance of 
the model.

The limits for sample discrimination were obtained 
using the Bayesian threshold (TL) derived from Bayes 
theory.37,38 The Bayesian threshold estimating assumes that 
the y variance predicted by the model will follow a similar 
distribution for all other samples to be discriminated. The 
y value is the point where two estimated distributions 
intersect at the selected threshold.39 From this value that 
the number of FP and FN must be minimized for future 
predictions. The test set was used to check the performance 
of the model.

The  so f t  i ndependen t  mode l ing  o f  c l a s s 
analogy  (SIMCA)22,40 and data driven soft independent 
modeling of class analogy (DD-SIMCA) algorithms31 were 
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applied to the dataset in order to compare the performance 
of chemometric methods for authentication of pure and 
adulterated coffees.

Validation of models

The figures of merit (FOM) used to validate the models 
were estimated according to equations 5 to 9.41 The FP 
is the number of samples that do not belong to a class 
but were classified as belonging to it, i.e., an adulterated 
sample that was classified as pure. The FN is the number 
of pure samples that were classified as adulterated. 
True positive (TP) is the number of pure samples that 
have been classified as belonging to this class. True 
negative (TN) is the number of adulterated samples that 
have been classified as belonging to this class. From the 
parameters FP, FN, TP and TN it is possible to estimate 
the false positive rate (FPR), the false negative rate 
(FNR), sensitivity (SEN), specificity (SPE) and reliability  
rate (RLR).28,41 

	 (5)

	 (6)

	 (7)

	 (8)

RLR = 100 – (FPR + FNR)	 (9)

To evaluation the performance of the SS-PLS-DA 
models, the contribution of the synthetic samples was 
excluded from the calculation to enable comparison with 
the models generated by Hard PLS-DA.

Results and Discussion 

Figure 2 presents the spectra (Figure 2a) without pre-
treating (200-500 nm), (Figure 2b) with pre-treating using 
the 2nd derivative with a second-order polynomial and a 
window size of 9 points (230-350 nm) and (Figure 2c) with 
the 2nd derivative combined mean centering (230‑350 nm). 
Spectral bands with high noise were identified in the range 
of 200-230 nm and after 350 nm and, therefore, were 
not used for the chemometric analyses,22,28 as shown in 
Figures 2b and 2c.

The data obtained by UV-Vis spectroscopy are numerical 
values of absorption units (variables) that are correlated 
with a vector y containing the prediction class. Pre-treating 
the data (Figure 2) helps remove non-useful information, 
attenuate instrumental deviations, and improve the quality 
of spectral data.42 However, there is no specific rule for 
treating data generated by UV-Vis spectroscopy, and the 
best classification results for each data set must be evaluated.

Cavdaroglu and Ozen43 evaluated the adulteration of 
grape vinegar with brandy vinegar and synthetic acetic 
acid using different pre-treating of UV-Vis spectral data, 
such as 1st, 2nd and 3rd derivatives, among others. The 3rd 
derivative associated with the orthogonal-PLS-DA model 
produced adequate sensitivity (100 and 85.7% training and 
test set, respectively) and good specificity (100 and 96.4% 
training and test set, respectively) for the classification of 
unadulterated and adulterated vinegars.

It should be noted that the raw spectra obtained from 
UV-Vis spectroscopy are very similar (Figure 2a), making 
it difficult to group and recognize patterns in the data. 
This high similarity of spectra without pre-treating makes 
it challenging to discriminate coffee samples according to 
their target classes. On the other hand, the second derivative 
excludes linear variations of the spectra, emphasizing the 
differences in the absorptions (Figure 2b), in addition to 
allowing the correction of displacements and deviations 
from the baseline.42 This way, the derivative alters the 

Figure 2. (a) Original spectral data, (b) pre-treated spectral data 
(2nd derivate) and (c) combined pre-treated spectral data (2nd derivate + 
mean center) of pure special coffee (solid black line) and adulterated with 
1 wt.% of straw (dotted red line).
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profile of the spectra, increasing the number of visible 
bands. This increased complexity of the derived spectra 
can be useful in qualitative analyses that use the spectral 
print for classification and discrimination of different 
coffee samples.44 Finally, mean centering is a preprocessing 
technique used for data of the same nature and magnitude. 
It involves standardizing the original data and excluding the 
linear coefficient from the model and therefore was applied 
to the studied dataset (Figure 2c).

There are several chemometric models used to classify 
data as to their authenticity and, the most appropriate model 
will depend on the nature and origin of the samples studied. 
In this article, two chemometric approaches were evaluated: 
one-class (SIMCA and DD-SIMCA) and discriminant 
(Hard PLS-DA and SS-PLS-DA). Table 2 presents the 
performance of the models evaluated for the classification 
and discrimination of pure and adulterated specialty coffees 
with bark, straw, and low-quality beans. The number of 
factors (VLs and PCs) used to build the models (SIMCA, 
Hard and SS-PLS-DA) was based on the lowest CVCE. 
The number of PCs for building the DD-SIMCA model was 
chosen from the smallest number of extreme target samples 
(false negatives) or outliers (samples outside the threshold, 
with a 95% confidence probability) for the training set.45,46 
The training and test sets were chosen systematically and 
unbiased using the Kennard-Stone algorithm. The models 
presented in Table 2 were evaluated without detecting and 
removing outliers to allow comparison.

PLS-DA is a discriminant method that has been widely 

used in recent decades for supervised discrimination in 
food analysis.2,10,11 The performance parameters for the 
discriminant models are presented in Table 2, which 
indicate good sensitivity (> 83.3%), specificity (> 97.2%), 
and high reliability rates (> 84.0%) for SS-PLS-DA models, 
for example. Some works47,48 have suggested the use of 
class modeling methods, such as, for example, SIMCA, 
as the most appropriate for food authentication. However, 
the one-class methodologies (SIMCA and DD-SIMCA) 
obtained in this article showed low specificity (< 47.1%) 
and models with low capacity to detect samples adulterated 
with bark, straw, and low-quality coffee. One explanation 
for this behavior is the high heterogeneity of samples of 
pure specialty coffees (target class) produced in different 
cities in the Fluminense northwest and Caparaó regions 
(Figure 1), generating a data set with high variability.

Recent works49,50 report that when there is a large 
variability of the target class, SIMCA tends to have 
high sensitivity (ability to detect authentic samples) at 
the cost of low specificity (ability to detect adulterated 
samples), or vice versa, depending on the number of PCs 
samples. Santos et al.50 applied one-class models (SIMCA 
and OCPLS) to distinguish infested (target class) from 
non‑infested (non-target class) sorghum grains. Both 
models showed high sensitivity (> 95%) at the cost of low 
specificity (< 30%) due to the high variability of the studied 
samples (36 different genotypes). Biancolillo et al.49 applied 
the SIMCA and PLS-DA models to distinguish edible rice 
samples (target class) from those infested by storage pests 

Table 2. Figures of merit for the models applied to pure special coffee and pure special coffee adulterated with bark, coffee peal and low-quality coffees

Group Model

Training seta,b Test seta,b Total classificationc Other parameters

SEN / % SPE / % SEN / % SPE / % SEN / % SPE / % RLR / %
Number of 
PCs/VLs

Bark

SIMCA 85.7 49.3 100 41.9 90.0 47.1 37.2 4

DD-SIMCAa 100 100 100 100 100 38.4 38.5 3

Hard PLS-DA 100 93.2 100 90.6 100 93.3 93.3 9

SS-PLS-DAb 95.2 100 88.8 100 93.3 100 93.3 12

Straw

SIMCA 71.4 43.7 100 22.5 80.0 34.1 14.2 2

DD-SIMCAa 100 100 100 100 100 18.3 18.4 3

Hard PLS-DA 95.2 91.6 88.8 80.5 90.0 91.3 81.3 10

SS-PLS-DA 85.7 96.4 100 97.2 93.3 100 93.3 11

Low-quality grains

SIMCA 80.0 40.5 100 30.9 86.6 38.3 25.1 6

DD-SIMCAa 100 100 100 100 100 26.1 23.9 3

Hard PLS-DA 80.9 92.0 66.6 94.4 76.7 93.3 70.0 8

SS-PLS-DAb 85.7 96.8 88.8 98.1 83.3 97.2 84.0 10
aThe training and test sets for DD-SIMCA were performed with pure samples only, then the adulterated samples were inserted into the model (total 
classification); bThe SEN, SPE and RLR parameters were calculated without considering the synthetic samples, comparing the generated models. cTotal 
classification (training + test sets). SEN: sensitivity rate; SPE: specific rate; RLR: reliability rate; PCs: principal components; VLs: latent variables; 
SIMCA: soft independent modeling of class analogy; DD-SIMCA: data driven soft independent modeling of class analogy; PLS-DA: partial least square 
discriminant analysis; SS-PLS-DA: synthetic samples PLS-DA.
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(non-target class). The SIMCA model showed low sensitivity 
(59.1% to test set) and high specificity (96.9% to test set) 
due to the high heterogeneity of samples that were collected 
from different countries. It is worth noting that the authors 
used 8 or more PCs to build the SIMCA models, which 
ensured adequate detection capacity for samples infested 
by storage pests (non-target class). Increasing the number of 
PCs can improve the number of hits in the non-target class 
(high specificity), but attention should be paid to possible 
overfitting of the built model. Finally, the one-class models 
for this work were constructed using fewer than 6 PCs, 
resulting in a low ability to detect samples adulterated with 
bark, straw, and low-quality grains (i.e., low specificity). The 
use of more PCs generated overfit models.

Although the discriminant models were built with 
more factors than the DD-SIMCA, it has been observed 
that neither the SS nor the PLS-DA models exhibited 
overfitting. Overfitting, which refers to the inclusion of 
irrelevant information in the model, can be identified when 
the performance of the training set significantly surpasses 
that of the test set. However, this phenomenon did not occur 
with the SS and PLS-DA models, as indicated in Table 2. 
It is important to note that the selection of the number of 
factors (VLs) in the SS and PLS-DA models is based on 
the lowest cross-validation classification error (CVCE). In 
contrast, for DD-SIMCA, the number of factors (PCs) used 
for model construction is determined from a smaller subset 
of extreme target samples or outliers.31 For this reason, 
the number of factors in DD-SIMCA tends to be smaller 
compared to PLS-DA and SS-PLS-DA.

Comparison of Hard PLS-DA and SS-PLS-DA models

Figures 3a and 3b show the Hard PLS-DA and 
SS‑PLS‑DA models, respectively, for the discrimination of 

pure specialty coffees versus adulterated specialty coffees 
with bark (1 to 10 wt.%). For the Hard PLS-DA model, a 
good sensitivity was obtained (SEN = 100%), as all samples 
of pure specialty coffees were correctly discriminated, 
resulting in no false negatives. This high sensitivity was 
also observed for the SS-PLS-DA models (Figure 3b; 
SEN = 93.3%), indicating that the ability to discriminate pure 
specialty coffee samples remained when synthetic samples 
were added to the model. However, the Hard PLS-DA model 
showed a lower specificity (Figure 3a; SPE = 93.3%) when 
compared to the SS‑PLS‑DA (Figure 3b; SPE = 100%). The 
high specificity of the SS‑PLS-DA model was attributed to 
a lower false positive rate (FP = 0) as compared to the Hard 
PLS-DA model, which had 8 false positives (FP = 8). As 
a result, the incorporation of synthetic samples resulted in 
an improvement in the specificity of the PLS-DA model. 
However, both models (Hard and SS-PLS-DA) had the same 
reliability rate (RLR = 93.3%).

Figure 4a shows the Hard PLS-DA model that was 
utilized to differentiate pure specialty coffees from those that 
were mixed with straw (ranging from 1 to 10 wt.%). This 
model displayed a sensitivity of 90.0% with only 3 false 
negatives, suggesting a strong capability of discriminating 
pure specialty coffee samples. On the other hand, the SS-
PLS-DA model (Figure 4b) demonstrated high sensitivity 
(SEN = 93.3%), indicating that the addition of synthetic 
samples did not considerably affect the discrimination 
ability of pure specialty coffee samples. Additionally, the SS-
PLS-DA model exhibited higher specificity (SPE = 100%) 
compared to Hard PLS-DA (SPE = 91.3%), showing accurate 
discrimination of non-target samples (mixed with straw). By 
balancing the target class (pure specialty coffees) through the 
inclusion of synthetic samples, more dependable outcomes 
were achieved, resulting in a reliability rate of 93.3% in 
contrast to Hard PLS-DA’s reliability rate of 81.3%. Notably, 

Figure 3. Scores graphs for (a) Hard PLS-DA and (b) SS-PLS-DA model with pure and adulterated specialty coffees with bark (1 to 10 wt.%).



Authentication of Specialty Coffees from the Fluminense Northwest and Caparaó Regions (Brazil)Caldeira et al.

8 of 10 J. Braz. Chem. Soc. 2024, 35, 3, e-20230144

the false positives covered the entire range of adulteration 
tested, suggesting that there was no tendency to discriminate 
only a specific percentage.

Figure 5a presents the Hard PLS-DA model built 
for discrimination of pure and adulterated specialty 
coffees with low-quality beans (10 to 75 wt.%). The 
model demonstrated a sensitivity of 76.7%, which can be 
attributed to the misclassification of 7 pure specialty coffee 
samples as adulterated (false negatives). The SS-PLS-DA 
showed a sensitivity of 83.3% due to the lower number of 
false negatives (FN = 5). Moreover, the SS-PLD-DA model 
showed a higher specificity (SPE = 97.2%) than the Hard 
PLS-DA model (SPE = 93.3%). Additionally, similar to the 
other models, the inclusion of synthetic samples improved 
the discrimination ability, resulting in a higher reliability 
rate (RLR = 84.0%) than that of the Hard PLS-DA model 
(RLR = 70.0%). Lastly, the false positives covered the entire 
range of adulteration tested, indicating no preference for 
discriminating a specific percentage.

Conclusions 

The discriminant methods (Hard and SS-PLS-DA) 
showed good sensitivity rates, specificity rates and 
reliability rates, particularly for the SS-PLS-DA models 
(SEN > 83.3%, SPE > 97.2%, and RLR > 84.0%), achieving 
effective discrimination of adulterations made with bark, 
straw, and low-quality beans. The introduction of synthetic 
samples in the training set promoted the balancing of the 
target class (pure specialty coffees) and improved the 
model’s performance. Notably, this study is the first to 
incorporate the creation of synthetic samples in the analysis 
of specialty coffees.

However, the one-class methodologies (SIMCA and 
DD-SIMCA) showed low specificity (< 47.1%), obtaining 
models with low capacity to detect samples adulterated 
with bark, straw, and low-quality beans. This was due 
to the high heterogeneity of samples of pure specialty 
coffees produced in different cities in the Fluminense 

Figure 4. Graphs of scores of (a) Hard PLS-DA and (b) SS-PLS-DA model with pure and special coffees adulterated with straw (1 to 10 wt.%).

Figure 5. Scores graphs of (a) Hard Model PLS-DA and (b) SS-PLS-DA model with pure and adulterated specialty coffees with low-quality beans  
(10 to 75 wt.%).
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northwest and Caparaó regions, generating a dataset with 
high variability. 

Finally, this work contributes to the strengthening of 
coffees sold in the Fluminense northwest region, as the 
National Institute of Industrial Property (INPI) has been 
requested to provide a Geographical Indication (IG) for 
the coffees produced in this region. This will ensure that 
the coffees grown in this region have their own identity 
(special coffees from the “Alto Noroeste Fluminense”), 
guaranteeing greater added value to these coffees and 
generating greater income, especially for small family 
coffee growers in the region.

Supplementary Information 

Supplementary information is available free of charge 
at http://jbcs.sbq.org.br as PDF file.
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