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O planejamento de coleções combinatórias de compostos constitui, atualmente, um dos principais
paradigmas da química medicinal. Muitos dos procedimentos publicados na literatura são “ótimos”
por satisfazerem certos objetivos previamente definidos. Suas eficiências podem ser comparadas,
mas em geral, torna-se muito difícil a comparação com coleções geradas por métodos diferentes ou
mesmo por métodos que utilizem parametrizações diferentes. Isto é particularmente verdadeiro
quando parâmetros outros que não os de diversidade molecular são  importantes. Este artigo discute
várias maneiras de comparar coleções de compostos, visual e numericamente.

A great deal of effort is currently going into the design of combinatorial libraries. Published
approaches are generally “optimal” in that each best satisfies the target objective function it employs.
Relative efficiencies can be compared in such cases, but it is often difficult to compare libraries
generated by different methods or even by different parameterizations of the same method. This is
particularly true once it is appreciated that attributes other than molecular diversity are important.
This paper will discuss several ways in which library designs can be meaningfully compared to one
another, visually as well as numerically.

Keywords: combinatorial library design, molecular diversity, representativeness, OptiSim,
dissimilarity selection.

Introduction

The incorporation of high-throughput screening (HTS)
into the drug discovery and development process has
prompted many pharmaceutical companies to shift from
synthesis of individual compounds to combinatorial
synthesis programs. This has led in turn to a broadening of
the range of chemistry amenable to combinatorial approaches.
One can now easily generate a virtual library composed mostly
(if not entirely) of reasonably drug-like, synthetically
accessible compounds the full realization of which would
bankrupt any existing or conceivable pharmaceutical
company many times over. This situation creates a pressing
need for design tools to help chemists decide which particular
products from such a virtual library should actually be made
and tested. Many programs have been created for generating
such sublibrary designs, with the most recent work focusing
on choosing reagents so as to maximize some property of the
specified products.1 In many cases, the property being
optimized is molecular diversity (substructural or
pharmacophoric) among the products, though other objective
functions have been used as well.2

In all cases, however, the intrinsic redundancy of
combinatorial libraries guarantees that there will be many
different solutions which are essentially equivalent with
regard to the specific criterion being evaluated.
Representativeness, in particular, is an important secondary
consideration. Chemists need to be able to compare such
alternative sublibraries in some general, detailed way. In
addition, computational chemists need a meaningful way
to evaluate the effectiveness of different design programs3

and of reagent versus product-based design tools.4 Here
we use a series of sublibraries designed to be both
representative and diverse to illustrate general analytical
approaches based on Tanimoto similarities between
substructural fingerprints. We use nearest neighbor
similarity profiles and a recently developed variation on
non-linear mapping for visualization to compare the
various sublibraries.5

Methods

Diversity analysis

Molecular diversity was determined by comparing
UNITY® substructural fingerprints6 for the compounds in
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question. These are bit vectors in which elements are set to
1 if particular substructures are present.7 The similarity
between fingerprints was evaluated in terms of the Tanimoto
coefficient8 T as applied to bit set vectors x and y:
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where the bracketing vertical bars indicate cardinality. For
diversity selection, the similarity between two sets is taken
as the maximum similarity found between any member of
one set and a member of the other, i.e., the largest nearest
neighbor similarity. This criterion underlies the maximal
diversity selection algorithm9 used in the dbdiss program
distributed as part of the Selector module in SYBYL®.

A broader sense of the similarity of two (sub)sets can
be obtained by examining the distribution of nearest
neighbor similarities of one (sub)set with respect to the
other. The nearest neighbor similarity profiles discussed
here were obtained using the dbcmpr program, which is
also part of the Selector module of SYBYL.

It is often enlightening to use dbcmpr to compare a set
to itself – i.e., to take the same set as target and reference.
As discussed elsewhere,10 it is particularly enlightening to
do this when the set in question is a maximally diverse
subset obtained using the algorithm embodied in dbdiss.
The self-similarity profiles for such maximally diverse
subsets can provide valuable insight into the structural
scope of the data sets (here, sublibraries) from which they
spring. The procedure is analogous to characterizing the
area of a room by spreading a set number of dimes around
it so as to maximize the distance (dissimilarity) between
them. Having done so, the proximity (similarity) of the
dimes characterizes the area (here, hypervolume) and shape
of the room.

OptiSim selection

Optimizable k-dissimilarity (OptiSim11) selection
entails selection of the “best” candidate from each of a
series of subsamples of size k drawn at random from the
data set of interest.12 Redundancy is prevented by checking
each potential candidate against those items (here,
compounds) selected in previous iterations; if it is too
similar to any item already chosen, it is disqualified from
further consideration. For most applications, a modified
form of uniform random sampling without replacement is
used, so that all potential candidates are considered before
any candidate is reconsidered. The criterion used here to
determine which candidate is “best” is structural diversity
with respect to the compounds selected during previous

iterations, with the first selection drawn at random or
specified externally. To preclude structural redundancy,13

candidates were excluded from subsamples if their
fingerprints exhibited a Tanimoto similarity to those
already selected greater than 0.90, corresponding to a
“Tanimoto distance” (d

T
 = 1 – T) less than 0.10.

When applied to a large combinatorial library, the
stochastic component of this simple strategy leads to
selection of a set of compounds representative of the library
as a whole. Choosing that candidate from each subsample
which is least similar to those already selected, on the
other hand, enhances the diversity of the selection set with
respect to simple random selection. The balance between
representativeness and diversity is set by the choice of k,
with smaller subsample sizes favoring representativeness
and larger sizes favoring diversity. Studies to date indicate
that values of k in the range of 3 to 5 increase diversity
without sacrificing much representativeness.12

Sublibrary block design

Combinatorial sublibraries were created by applying
an extension of OptiSim selection5 in which successive
reagent selections alternate between reagent classes.
Consider, for example, two reagent sets A and B such that
A + B + X → AXB, where X is a common core or scaffold.
Seed reagents A

0
 and B

0
 are selected at random. A subsample

comprised of k candidates (a
11

, a
12

,…, a
1k

) chosen at random
from A is then created, taking care that none of the products
of reaction with B

0
 (e.g., a

11
XB

0
) are too similar to A

0
XB

0
.

The reagent leading to the product with the lowest
Tanimoto similarity to A

0
XB

0
 is taken as the “best”

candidate reagent; it becomes A
1
. The design then pivots

to consider reagents from B, with b
11

, b
12

,…, b
1k

 chosen at
random, subject to the constraint that no product A

i
Xb

1j
 is

too similar to either A
0
XB

0
 or A

1
XB

0
. The best candidate

b
1j
 is then determined by identifying the one for which the

similarity to the two products already selected is smallest.
This candidate becomes B

1
, the products A

0
XB

1
 and A

1
XB

1

are added to the selection set, and the program proceeds to
consider a new subsample of k candidate reagents from A.

In many cases, an unbalanced design is desired. If a
larger reagent subset is specified for B than for A, pivoting
stops once the quota for As has been fulfilled and
subsamples of reagents are drawn from B until the block is
completed. A new block is then initiated by drawing k
products at random from the parent library and comparing
them against all products included in the first block, and a
new block is grown. The pattern of product selection
produced by application of this method is illustrated in
Figure 1. The designs described here were produced using



790 Clark J. Braz. Chem. Soc.

a prototypical implementation of the method written in
SYBYL programming language (SPL).

It bears noting that filters other than simple redundancy
– e.g., acceptability of expected physical properties - can
readily be put in place for determining the eligibility of
candidate reagents for the subsample. Similarly, the “best”
candidate in each subsample need not be determined by
structural diversity, as it is here; similarity to a lead
compound or incremental goodness of fit of the selected
population to some target profile can be substituted. It
should also be noted, however, that applying the diversity
criterion to a series of subsamples rather than to the library
as a whole serves to shift the properties of the sublibraries
obtained away from simple diversity.

Non-linear mapping with horizon (NLM-H)

UNITY substructural fingerprints are made up of 988
binary elements. It is impossible for a human being to
directly perceive relationships in such a high-dimensional
space, and the Cartesian space to which we are accustomed
is not the most appropriate one for making such
comparisons anyway. As noted above, the Tanimoto
similarity coefficient is better suited for this purpose, but
it can only be directly applied to pairwise comparisons.
Hence a tool is needed which can project most of the
relevant information contained in the 988-dimensional
“fingerprint space” down into two or three dimensions
without unduly distorting important underlying Tanimoto
relationships.

One way to accomplish this is by using principal

components analysis (PCA) to get initial coordinates, and
then using non-linear mapping (NLM)14 to relieve
distortions created by that projection. Behavior in such
projections is dominated by long-range relationships,
however, whereas it is local similarities that contain the
most important information in fingerprint space;
differences between low similarities tend to be
meaningless.15 Worse, long range relationships in this space
are intrinsically very high dimensional, leading to large
residual distortions in the projections obtained. Local
relationships, on the other hand, tend to be of relatively
low dimensionality, because the space is typically quite
sparse. The best strategy in such a case is to modify the
stress function so that any Tanimoto distance beyond a
particular “horizon” contributes nothing to the aggregate
stress for the projection unless it is projected to fall inside
the horizon.5 This NLM-H procedure is equivalent to
cutting the space through unoccupied areas of the
fingerprint space and unfolding it into two or three
dimensions.

For the work described here, the NLM-H horizon h was
set to a Tanimoto similarity of 0.70 ( i.e., d

T
 = 0.30). Isolated

compounds – those for which all other compounds in the
set under consideration fall beyond the horizon – are
placed at the border of the plot in a “hedge” of singletons.
The plots shown here were obtained using a prototype
version of SARNavigator.16

Results and Discussion

A virtual library composed of 4-ureidopiperidines was
created using the Selector and Legion modules of the SYBYL
Molecular Diversity Manager.17 This entailed using
UNITY 6 to search for commercially available18 reagent
candidates bearing ten or fewer rotatable bonds, filtering
out those containing undesirable substructures and
exhibiting physical properties (molecular weight or
volume, estimated hydrophobicity, etc.) too different from
those exhibited by known drugs; details have been
presented elsewhere.5 The 308 primary amines and 154
sulfonyl chlorides so identified were then “reacted” in
silico to give a virtual library of 47,432 potential products:

Three sublibraries comprised of 200 members each were
drawn from this parent library. One was generated by
applying “classical” OptiSim selection. The products
included in this cherry-picked design come from entirely

Figure 1. Schematic illustration of the order of selection for the first
52 products generated by the OptiSim multi-block 4x6 combinato-
rial matrix design program.  The inset numbers indicate the iteration
at which the corresponding product (A

i
XB

j
) was selected.  Italics

and boldface print set off products from each level of reagent selec-
tion (A

1
 and B

1
, A

2
 and B

2
, etc.).  See text for details.
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unconnected reactions, so 200 different amines and 200
different sulfonyl chlorides would be required were the
sublibrary to be realized through actual synthesis. A
second, single block sublibrary was generated by selecting
20 amines and 10 sulfonyl chlorides as described above,
with all possible cross-products included in the sublibrary.
A third, four block sublibrary was generated wherein each
block was made up of products resulting from all possible
combinations of 10 amines and 5 sulfonyl chlorides. The
library design program selected 20 distinct sulfonyl
chlorides for this design but only called for 32 amines.
Fewer than 40 amines were required because candidate
reagents are selected with replacement. Hence the same
amine can – and does – show up in different blocks.

All three designs were created using a subsample size k
of 5, the same initial product, and the same random number
seed. This produced a product distribution similar to that
illustrated schematically on a smaller (48 compound) scale
in Figure 2. Note that all three designs have some products
in common, including the “seed” compound, and that the
first block of products from the four block sublibrary is, by
design, wholly included in the single block sublibrary.

Nearest neighbor profiles

Direct comparisons of the two extreme designs – cherry-
picked and single block – highlight the complexities of
such profiles as well as the inherent asymmetry of such

comparisons. When the single block design is taken as
reference (Figure 3A), some compounds in the cherry picked
design find similar products therein but many do not.
Hence that nearest neighbor (NN) profile is broad and is
displaced to the left, towards lower similarities. In contrast,
most compounds in the single block design can find a
near neighbor in the cherry picked design, so taking the
latter as reference produces a distinctly sharper profile
displaced to the right (Figure 3B). This difference is indeed
clear from the overall distribution statistics for the two
profiles (mean 0.74±0.09 and median 0.72 for Figure 3A
versus a mean of 0.81±0.09 and a median of 0.80 for Figure
3B), but the relationship is clearly more complex than is
indicated by these numbers alone.

A somewhat more subtle way to compare two designs
is to extract maximally diverse subsets from each and
calculate self-similarity profiles for them.10 Figure 4 shows
the results of doing this for the three sublibraries under
consideration here, with twenty compounds drawn from

Figure 2. Schematic illustration of relationships among 48-member
single block, four block, and cherry picked sublibraries analogous
to those discussed in the text.  Rows and columns indicate individual
reagents.  Solid circles correspond to products present in all three
libraries, whereas open circles represent compounds found only in
the cherry-picked library.  Gray symbols are included only in the
single block set and white stippled circles represent products found
only in the four block set.  Diagonal hashing identifies products
found in the cherry picked sublibrary and one or the other of the
block designs, whereas gray stippled circles represent products in-
cluded in both block designs but not in the cherry picked sublibrary.

Figure 3. Nearest neighbor similarity profiles comparing the cherry
picked and single block sublibraries; frequency and cumulative
frequency curves are both shown.  (A) NN similarity for products in
the cherry picked set, taking the single block sublibrary as refer-
ence; (B) NN similarity for products from the single block design,
taking the cherry picked sublibrary as reference.
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each subset. The cherry-picked sublibrary shows a single
large peak at a NN similarity of 0.53, with a slight skew
towards lower similarities (Figure 4A); such a profile
suggests a relatively even coverage. The single block
sublibrary exhibits a small peak in this area but has a much
larger peak at 0.635, suggesting considerable clumpiness
in its spread in structural space. Not too surprisingly, the
subset from the four block sublibrary produces a profile
falling somewhere in between, with a broad envelope of
peaks between 0.525 and 0.57. These differences are even
easier to appreciate in the cumulative distributions plotted
in Figure 4B. Again, it would be difficult to capture this
complexity in any single number.

Fingerprint visualization

Taking candidate sublibrary comparisons from point
(zero dimensional) characterization in terms of a single
diversity measure to the one-dimensional NN profiles
clearly increases the level of useful detail in the information
conveyed, but it is still limited. Perhaps most importantly,
NN similarity profiles only support pairwise comparisons.
By moving to NLM-H projection into two dimensions

(Figure 5), it becomes possible to see how all three
sublibraries relate to one another simultaneously.

The NN self-similarity profiles in Figure 4 suggested
that the single block products were more unevenly
distributed than were those from the cherry picked
sublibrary. This suggestion is confirmed and elaborated in
Figure 5, where it is clear that all three sublibraries “cover”
the extremes of the combinatorial space with respect to
the distinctive sulfonylthiophene region at the upper left
of the projection and the sulfonyl(di)azole area at the
bottom. Distribution within the central mass of
phenylalkylaminobenzenesulfonamides is similar as well,
though the single block library exhibits significantly more
clumping; these products make up the bulk of those
possible simply because the respective reagent classes
dominate those which are commercially available. The
single block coverage is more clearly inadequate for the
alkylamino alkylsulfonamides, which fall to the right in
this plot.

Coverage by the four block design is generally similar
to that obtained by cherry-picking products and is clearly
better than that seen for the single block sublibrary,
particularly in terms of reduced redundancy. Indeed, the
only area where the four block library is seriously deficient
is in the area enclosed by the ellipse in Figure 5, a
deficiency which could be corrected by incorporating a
few products from the cherry picked sublibrary, or by
increasing the four block diversity by re-running the design
program using a larger subsample size k.

In one respect, the four block design is actually superior
to the cherry picked sublibrary. The latter generates eight
products that fall into the singleton “hedge”, whereas the
former only generates two. Such structurally isolated
compounds (“outliers”) are generally undesirable
candidates for screening, because their activity (or inactivity)
is unlikely to be useful in formulating the structure-activity
relationships (SAR) required for effective lead follow-up.

Conclusions

Different design strategies will almost inevitably
generate different sublibrary designs when applied to a
single combinatorial parent library, with many possible
solutions exhibiting similar if not identical aggregate
properties. Nearest neighbor fingerprint similarity profiles
provide a quick and easy way to characterize the overlap
between candidate designs, whereas self-similarity profiles
for maximally dissimilar subsets provide a useful way
to compare design spreads and coverage for individual
sublibraries. Non-linear mapping of fingerprint similarities
incorporating an horizon (NLM-H) can provide greater

Figure 4. NN similarity profiles for maximally diverse subsets of 20
compounds drawn from each sublibrary. Solid lines correspond to
the subset derived from the cherry picked sublibrary, whereas dashed
and dotted lines represent the four block and single block sublibrary,
respectively. (A) Frequency distributions. (B) Cumulative frequency
distributions.
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Figure 5. Nonlinear mapping projection of pooled sublibraries from fingerprint space into two dimensions based on Tanimoto similarity and
a dissimilarity horizon 0.30.  The first two principal components were taken as starting coordinates.  The X in the representative products shown
corresponds to the shared carboxamidopiperidine core. The small symbols and large black symbols represent cherry-picked products.  The large
gray and medium sized symbols represent products from the single and four block sublibraries, respectively.

insight when making more detailed multiway comparisons.
It is generally the case that a cherry-picked design will

cover more structural space than will a fully combinatorial
(i.e., single block) one.4 Multiblock designs will necessarily
display intermediate coverage, approaching cherry-picked
sublibraries as the number of blocks increases. At least for
the ureidopiperidine sulfonamide library considered here,
application of the analytical tools described here showed
that an OptiSim-based four block design using a total of
52 reagents was able to afford qualitatively similar
coverage to that obtained by cherry picked products, which
would require 400 reagents to synthesize. A similarly
obtained single block design, though its realization would
require significantly fewer (30) reagents, was clearly
inferior to the four-block design in terms of both
redundancy and coverage of structural space.
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