Acessibilidade / Reportar erro

Mechanism and Kinetics of the Degradation of Nitazoxanide and Hydroxychloroquine Drugs by Hydroxyl Radicals: Theoretical Approach to Ecotoxicity

Abstract

The efforts of contrasting the effects caused by the COVID-19 (coronavirus disease 2019) pandemic increased the disposal of active pharmaceutical ingredients. This paper reports the mechanisms and kinetics of the degradation in aqueous environments induced by OH of two drugs, among those most widely probed at the outbreak of coronavirus, nitazoxanide and hydroxychloroquine. The investigation exploits quantum chemistry techniques and a reaction rate theory combined with diffusion-controlled processes and quantum mechanical tunneling. The reaction rate constants are obtained in an environmentally relevant temperature range. The results show that (i) the deacetylation of nitazoxanide with formation of tizoxanide is kinetically the most favorable channel, in agreement with experimental work; (ii) for hydroxychloroquine, the present theoretical calculations show that the most favorable channel is the addition of OH at the aromatic ring. The half-life time degradation products are for both cases in the range between 12 to 138 days. Both drugs presented toxicities between harmful and toxic as obtained by computational toxicology calculations. The toxicity is also calculated for the degradation products: (i) in the nitazoxanide degradation process, tizoxanide was characterized as more toxic, while (ii) in the case of hydroxychloroquine, the major degradation product showed a decrease in the toxicity.

Keywords:
APIs; oxidative degradation process; nitazoxanide; hydroxychloroquine; COVID-19


Introduction

In recent years, the occurrence of micropollutants, such as those originated from waste of pharmaceuticals and pesticides, has turned into a global environmental concern.11 Mahase, E.; BMJ 2020, 368, m1166. [Crossref]
Crossref...
,22 Hariyanto, T. I., Halim, D. A.; Jodhinata, C.; Yanto, T. A.; Kurniawan, A.; Clin. Exp. Pharmacol. Physiol. 2021, 48, 823. [Crossref]
Crossref...
The COVID-19 (coronavirus disease 2019) pandemic worsened this scenario, since the effort to control the adverse health effects caused by the disease increased the variety and the quantities of pharmaceuticals in surface waters and sewage.33 Luo, Y.; Guo, W.; Hao, H.; Duc, L.; Ibney, F.; Zhang, J.; Liang, S.; Wang, X. C.; Sci. Total Environ. 2014, 473-474, 619. [Crossref]
Crossref...
,44 López-Pacheco, I. Y.; Silva-Núñez, A.; Salinas-Salazar, C.; Arévalo-Gallegos, A.; Lizarazo-Holguin, L. A.; Barceló, D.; Iqbal, M. N.; Parra-Saldívar, R.; Sci. Total Environ. 2019, 690, 1068. [Crossref]
Crossref...
Persistent and excessive use makes the metabolization of these drugs incomplete within the human body and a significant fraction are excreted by the organism of patients through their feces and urines, which will end up in sewage.55 López-Doval, J. C.; Montagner, C. C.; Fernandes, A.; Alburquerque, D.; Moschini-Carlos, V.; Umbuzeiro, G.; Pompêo, M.; Sci. Total Environ. 2016, 575, 1307. [Crossref]
Crossref...

When active pharmaceutical ingredients (APIs) are dispersed in the environment, they become threats to aquatic wildlife, being often associated with several negative effects, e.g., disruption of cellular processes, intracellular ion concentrations, antibiotic resistance of microorganisms and the bio-accumulation of pharmaceuticals.66 O’Flynn, D.; Lawler, J.; Yusuf, A.; Parle-Mcdermott, A.; Harold, D.; Mc Cloughlin, T.; Holland, L.; Regan, F.; White, B.; Anal. Methods 2021, 13, 575. [Crossref]
Crossref...
Furthermore, these pharmaceuticals represent a potential danger to human health since a lot of reports have been confirmed their persistence in water bodies, oceans, groundwater, and even in the drinking water of several countries around the world.55 López-Doval, J. C.; Montagner, C. C.; Fernandes, A.; Alburquerque, D.; Moschini-Carlos, V.; Umbuzeiro, G.; Pompêo, M.; Sci. Total Environ. 2016, 575, 1307. [Crossref]
Crossref...
,77 Rinaldo, A.; Rodriguez-Iturbe, I.; Rend. Lincei Sci. Fis. Nat. 2022, 33, 245. [Crossref]
Crossref...

Conventional widely used urban wastewater treatment plants, either primary (physical and physicochemical) or secondary (biological), are inefficient to remove APIs.88 Sharma, K.; Kaushik, G. In Environmental Microbiology and Biotechnology; Springer Singapore: Singapore, 2021, p. 267-292. [Crossref]
Crossref...
Over the past decades, many efforts have been allocated in the development of new technologies as an alternative to wastewater treatment plants that can eliminate pharmaceuticals from wastewater, such as granular activated carbon,99 Ek, M.; Baresel, C.; Magnér, J.; Bergström, R.; Harding, M.; Water Sci. Technol. 2014, 69, 2372. [Crossref]
Crossref...
membrane filtration,1010 Khanzada, N. K.; Farid, M. U.; Kharraz, J. A.; Choi, J.; Tang, C. Y.; Nghiem, L. D.; Jang, A.; An, A. K.; J. Membr. Sci. 2020, 598, 117672. [Crossref]
Crossref...
and AOP, advanced oxidation processes.1111 Klavarioti, M.; Mantzavinos, D.; Kassinos, D.; Environ. Int. 2009, 35, 402. [Crossref]
Crossref...
,1212 Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C.; Water 2019, 12, 102. [Crossref]
Crossref...
Researchers have been pointing out the AOP as one of the most effective and versatile advanced water treatments.

This method is based on the generations of a powerful oxidizing agent, such as the hydroxyl radical (OH) in solution, which is then able to degrade recalcitrant organic pollutants up less harmful compounds or even completely mineralize to CO2 and H2O.1313 Sirés, I.; Brillas, E.; Oturan, M. A.; Rodrigo, M. A.; Panizza, M.; Environ. Sci. Pollut. Res. Int. 2014, 21, 8336. [Crossref]
Crossref...
This method has gained increasing attention in studies of the removal of pharmaceuticals involving fast reaction rates and strong oxidation capability.1212 Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C.; Water 2019, 12, 102. [Crossref]
Crossref...
,1414 Wang, J.; Zhuan, R.; Sci. Total Environ. 2020, 701, 135023. [Crossref]
Crossref...
,1515 Basturk, I.; Varank, G.; Murat-Hocaoglu, S.; Yazici-Guvenc, S.; Can-Güven, E.; Oktem-Olgun, E. E.; Canli, O.; J. Environ. Chem. Eng. 2021, 9, 104666. [Crossref]
Crossref...
Typical AOPs (Fenton, ozonation, photocatalytic oxidation, and electrooxidation) have been used for the removal of different kinds of drugs from water or wastewater (for instance, ibuprofen,1616 Méndez-Arriaga, F.; Esplugas, S.; Giménez, J.; Water Res. 2010, 44, 589. [Crossref]
Crossref...
,1717 Madhavan, J.; Grieser, F.; Ashokkumar, M.; J. Hazard. Mater. Lett. 2010, 178, 202. [Crossref]
Crossref...
,1818 Saeid, S.; Tolvanen, P.; Kumar, N.; Eränen, K.; Peltonen, J.; Peurla, M.; Mikkola, J.-P.; Franz, A.; Salmi, T.; Appl. Catal., B 2018, 230, 77. [Crossref]
Crossref...
carbamazepine,1616 Méndez-Arriaga, F.; Esplugas, S.; Giménez, J.; Water Res. 2010, 44, 589. [Crossref]
Crossref...
,1919 Keen, O. S.; Baik, S.; Linden, K. G.; Aga, D. S.; Love, N. G.; Environ. Sci. Technol. 2012, 46, 6222. [Crossref]
Crossref...
,2020 Kowalska, K.; Maniakova, G.; Carotenuto, M.; Sacco, O.; Vaiano, V.; Lofrano, G.; Rizzo, L.; Chemosphere 2020, 238, 124665. [Crossref]
Crossref...
,2121 Monteoliva-García, A.; Martín-Pascual, J.; Muñío, M. M.; Poyatos, J. M.; Int. J. Environ. Sci. Technol. 2019, 16, 6005. [Crossref]
Crossref...
amoxicillin,2222 Souza, F. S.; da Silva, V. V.; Rosin, C. K.; Hainzenreder, L.; Arenzon, A.; Féris, L. A.; Environ. Technol. 2018, 39, 549. [Crossref]
Crossref...
,2323 de Carvalho, J. F.; de Moraes, J. E. F.; Environ. Technol 2020, 42, 4145. [Crossref]
Crossref...
,2424 Ay, F.; Kargi, F.; J. Hazard. Mater. 2010, 179, 622. [Crossref]
Crossref...
sulfamethoxazole,2525 González, O.; Sans, C.; Esplugas, S.; Malato, S.; Photochem. Photobiol. Sci. 2009, 8, 1032. [Crossref]
Crossref...
,2626 Martini, J.; Orge, C. A.; Faria, J. L.; Pereira, M. F. R.; Soares, O. S. G. P.; J. Environ. Chem. Eng. 2018, 6, 4054. [Crossref]
Crossref...
,2727 Martini, J.; Orge, C. A.; Faria, J. L.; Pereira, M. F. R.; Soares, O. S. G. P.; Appl. Sci. 2019, 9, 2652. [Crossref]
Crossref...
,2828 Du, L.; Xu, W.; Liu, Y.; Li, X.; Huang, D.; Wu, S.; Water, Air, Soil Pollut. 2020, 231, 159. [Crossref]
Crossref...
and paracetamol).2929 Sirés, I.; Arias, C.; Cabot, P. L.; Centellas, F.; Rodríguez, R. M.; Garrido, J. A.; Brillas, E.; Environ. Chem. 2004, 1, 26. [Crossref]
Crossref...
,3030 Torun, M.; Gültekin, Ö.; Şolpan, D.; Güven, O.; Environ. Technol. 2015, 36, 970. [Crossref]
Crossref...
,3131 Audino, F.; Toro Santamaria, J.; del Valle Mendoza, L.; Graells, M.; Pérez-Moya, M.; Int. J. Environ. Res. Public Health 2019, 16, 505. [Crossref]
Crossref...
,3232 Manonmani, G.; Sandhiya, L.; Senthilkumar, K.; J. Phys. Chem. A 2019, 123, 8954. [Crossref]
Crossref...

The reactive elementary steps for mitigation of micropollutants by OH radicals evolve primarily along three paths:3232 Manonmani, G.; Sandhiya, L.; Senthilkumar, K.; J. Phys. Chem. A 2019, 123, 8954. [Crossref]
Crossref...
,3333 Manonmani, G.; Sandhiya, L.; Senthilkumar, K.; Environ. Sci. Pollut. Res. 2020, 27, 12080. [Crossref]
Crossref...
,3434 Mei, Q.; Sun, J.; Han, D.; Wei, B.; An, Z.; Wang, X.; Xie, J.; Zhan, J.; He, M.; Chem. Eng. J. 2019, 373, 668. [Crossref]
Crossref...
,3535 An, T.; Gao, Y.; Li, G.; Kamat, P. V.; Peller, J.; Joyce, M. V.; Environ. Sci. Technol. 2014, 48, 641. [Crossref]
Crossref...
addition of OH to an aromatic ring or to other unsaturated bonds, hydrogen-atom transfer (HAT), and single electron transfer (SET). The identifcation and elucidation of the degradation mechanisms from experimental techniques are complex, equipment-dependent and expensive.3434 Mei, Q.; Sun, J.; Han, D.; Wei, B.; An, Z.; Wang, X.; Xie, J.; Zhan, J.; He, M.; Chem. Eng. J. 2019, 373, 668. [Crossref]
Crossref...
,3535 An, T.; Gao, Y.; Li, G.; Kamat, P. V.; Peller, J.; Joyce, M. V.; Environ. Sci. Technol. 2014, 48, 641. [Crossref]
Crossref...
,3636 Milenković, D. A.; Dimić, D. S.; Avdović, E. H.; Amić, A. D.; Dimitrić Marković, J. M.; Marković, Z. S.; Chem. Eng. J. 2020, 395, 124971. [Crossref]
Crossref...
These arduous experimental procedures provide a detailed investigation of the real network and an assessment of the involved reaction kinetics.3737 Xiao, R.; Ma, J.; Luo, Z.; Zeng, W.; Wei, Z.; Spinney, R.; Hu, W.; Dionysiou, D. D.; Environ. Pollut. 2020, 257, 113498. [Crossref]
Crossref...
,3838 Sanches-Neto, F. O.; Ramos, B.; Lastre-Acosta, A. M.; Teixeira, A. C. S. C.; Carvalho-Silva, V. H.; Chemosphere 2021, 278, 130401. [Crossref]
Crossref...
,3939 Yang, Z.; Su, R.; Luo, S.; Spinney, R.; Cai, M.; Xiao, R.; Wei, Z.; Sci. Total Environ. 2017, 590-591, 751. [Crossref]
Crossref...
,4040 Wang, P.; Bu, L.; Wu, Y.; Ma, W.; Zhu, S.; Zhou, S.; Chemosphere 2021, 267, 128883. [Crossref]
Crossref...

As soon as the SARS-COV-2 pandemic emerged, there has been a huge number of reports from all over the world proposing options for treatments of the disease and also for preventive therapy. Today we have some drugs indicated for use in specific conditions of COVID-19, such as monoclonal and antiviral antibodies,4141 Hammond, J.; Leister-Tebbe, H.; Annie, G.; Abreu, P.; Weihang, B.; Wayne, W.; MaryLynn, B.; Hendrick, V.; Damle, B.; Simón-Campos Abraham, Pypstra, R.; Rusnak, J. M.; N. Engl. J. Med. 2022, 386, 1397. [Crossref]
Crossref...
,4242 Jayk Bernal, A.; Gomes da Silva, M. M.; Musungaie, D. B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M. L.; Du, J.; Pedley, A.; Assaid, C.; Strizki, J.; Grobler, J. A.; Shamsuddin, H. H.; Tipping, R.; Wan, H.; Paschke, A.; Butterton, J. R.; Johnson, M. G.; de Anda, C.; N. Engl. J. Med. 2022, 386, 509. [Crossref]
Crossref...
in parallel keep going investigations for the development of effective vaccines. However, large quantities of drugs such as chloroquine/ hydroxychloroquine, lopinavir/ritonavir, azithromycin, nitazoxanide, and colchicine have been produced for testing, and also prescribed by doctors to patients worldwide, even with several studies indicating ineffectiveness against COVID-19.11 Mahase, E.; BMJ 2020, 368, m1166. [Crossref]
Crossref...
,4343 Tarighi, P.; Eftekhari, S.; Chizari, M.; Sabernavaei, M.; Jafari, D.; Mirzabeigi, P.; Eur. J. Pharmacol. 2021, 895, 173890. [Crossref]
Crossref...
,4444 Mahase, E.; BMJ 2020, 368, 1. [Crossref]
Crossref...
Their fate and removal represent a relevant environmental worldwide concern. In this study, we focus from a theoretical point of view on the degradation mediated by OH radicals of two of those drugs, nitazoxanide and hydroxychloroquine, that have been widely produced and distributed, especially in Brazil.

Nitazoxanide (NTZ) belongs to the class of drugs known as thiazolides, which has broad-spectrum antiparasitic and antiviral properties.4545 Rossignol, J.-F.; Antiviral Res. 2014, 110, 94. [Crossref]
Crossref...
Very recently, a multicenter, randomized, double-blind, placebo-controlled study involving COVID-19 patients,4646 Rocco, P. R. M.; Silva, P. L.; Cruz, F. F.; Junior, M. A. C. M.; Tierno, P. F. G. M. M.; Moura, M. A.; De Oliveira, L. F. G.; Lima, C. C.; Dos Santos, E. A.; Junior, W. F.; Fernandes, A. P. S. M.; Franchini, K. G.; Magri, E.; de Moraes, N. F.; Gonçalves, J. M. J.; Carbonieri, M. N.; dos Santos, I. S.; Paes, N. F.; Maciel, P. V. M.; Rocha, R. P.; de Carvalho, A. F.; Alves, P. A.; Modena, J. L. P.; Cordeiro, A. T.; Trivella, D. B. B.; Marques, R. E.; Luiz, R. R.; Pelosi, P.; Lapa e Silva, J. R.; Eur. Respir. J. 2020, 2003725. [Crossref]
Crossref...
showed that five days of NTZ treatment did not accelerate symptom resolution but reduced the viral load compared to the placebo group with no serious adverse events.4646 Rocco, P. R. M.; Silva, P. L.; Cruz, F. F.; Junior, M. A. C. M.; Tierno, P. F. G. M. M.; Moura, M. A.; De Oliveira, L. F. G.; Lima, C. C.; Dos Santos, E. A.; Junior, W. F.; Fernandes, A. P. S. M.; Franchini, K. G.; Magri, E.; de Moraes, N. F.; Gonçalves, J. M. J.; Carbonieri, M. N.; dos Santos, I. S.; Paes, N. F.; Maciel, P. V. M.; Rocha, R. P.; de Carvalho, A. F.; Alves, P. A.; Modena, J. L. P.; Cordeiro, A. T.; Trivella, D. B. B.; Marques, R. E.; Luiz, R. R.; Pelosi, P.; Lapa e Silva, J. R.; Eur. Respir. J. 2020, 2003725. [Crossref]
Crossref...
Specifically, this study has some methodological flaws that will not be discussed in this work. Stress degradation study4747 Malesuik, M. D.; Gonçalves, H. M. L.; Garcia, C. V.; Trein, M. R.; Nardi, N. B.; Schapoval, E. E. S.; Steppe, M.; Talanta 2012, 93, 206. [Crossref]
Crossref...
of raw material and NTZ showed that the major degradation product is tizoxanide (2-hydroxy-N-(5-nitro-2-thiazolyl)benzamide) originated from its deacetylation for all tested stress conditions (thermal, acid, alkaline and oxidative).

Hydroxychloroquine (HQC) belongs to the group of 4-aminoquinolines that has been used in the treatment of malarial and rheumatology diseases.4848 Ben-Zvi, I.; Kivity, S.; Langevitz, P.; Shoenfeld, Y.; Clin. Rev. Allergy Immunol. 2012, 42, 145. [Crossref]
Crossref...
,4949 Al-Bari, M. A. A.; J. Antimicrob. Chemother. 2015, 70, 1608. [Crossref]
Crossref...
,5050 Howard, B. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, 2007, p. 1-4. [Crossref]
Crossref...
Recently, it has been used in the treatment of COVID-19, but until the time of this paper, several articles showed that there is no support for its use against COVID-19.5151 Gasmi, A.; Peana, M.; Noor, S.; Lysiuk, R.; Menzel, A.; Gasmi Benahmed, A.; Bjørklund, G.; Appl. Microbiol. Biotechnol. 2021, 105, 1333. [Crossref]
Crossref...
,5252 Kumar, R.; Sharma, A.; Srivastava, J. K.; Siddiqui, M. H.; Uddin, M. S.; Aleya, L.; Environ. Sci. Pollut. Res. 2021, 28, 40431. [Crossref]
Crossref...
,5353 Elavarasi, A.; Prasad, M.; Seth, T.; Sahoo, R. K.; Madan, K.; Nischal, N.; Soneja, M.; Sharma, A.; Maulik, S. K.; Shalimar; Garg, P.; J. Gen. Intern. Med. 2020, 35, 3308. [Crossref]
Crossref...
The nitrogenous heterocyclic quinolone increases hydrophilicity which rising the persistence of HCQ that bioaccumulate in the environment. Investigations of fate and degradation of HCQ in aqueous environment are rare and concentrate specifically on the photochemical degradation of HCQ in water solution.5454 Saini, B.; Bansal, G.; J. Pharm. Biomed. Anal. 2013, 84, 224. [Crossref]
Crossref...
,5555 Dabić, D.; Babić, S.; Škorić, I.; Chemosphere 2019, 230, 268. [Crossref]
Crossref...
Bensalah et al.5656 Bensalah, N.; Midassi, S.; Ahmad, M. I.; Bedoui, A.; Chem. Eng. J. 2020, 402, 126279. [Crossref]
Crossref...
recently presented a study of the degradation of HCQ in water solution by elaborated electrochemical involving oxidation treatment including boron doped diamond combined with sonication and UV irradiation. It was demonstrated that release of chloride ions at the first stages of degradation of HCQ, followed by conversion of organic nitrogen compounds into NO3 and NH4+, confirming the formation of 7-chloro-4-quinolinamine, oxamic and oxalic acids as final products of HCQ degradation by electrochemical oxidation.

Thus, the focus of this work is to provide a detailed understanding of the mechanism and kinetics of nitazoxanide and hydroxychloroquine degradation mediated by OH radicals using a combination of quantum chemistry calculations and reaction rate theory. In addition, we provide the toxicity of nitazoxanide and hydroxychloroquine and of their main degradation products from Ecological Structure-Activity Relationships predictive model. As far as we are aware, of the two most common mechanisms, radical adduct formation to the carbon (RAF) and hydrogen atom transfer (HAT) reactions involving OH are the major steps for mitigation of contaminants because the energetic barrier involved in SET reactions are much higher,3838 Sanches-Neto, F. O.; Ramos, B.; Lastre-Acosta, A. M.; Teixeira, A. C. S. C.; Carvalho-Silva, V. H.; Chemosphere 2021, 278, 130401. [Crossref]
Crossref...
,3939 Yang, Z.; Su, R.; Luo, S.; Spinney, R.; Cai, M.; Xiao, R.; Wei, Z.; Sci. Total Environ. 2017, 590-591, 751. [Crossref]
Crossref...
,5757 Han, D.; Li, J.; Cao, H.; He, M.; Hu, J.; Yao, S.; Chemosphere 2014, 95, 50. [Crossref]
Crossref...
and consequently it is of no concern here.

Methodology

Quantum chemical calculations of properties of reactants, products, and transition states

To identify the most reactive sites of the APIs (NTZ and HCQ) with the OH radical, appropriate local reactivity descriptors, such as the Fukui function (f)5858 López, P.; Méndez, F.; Org. Lett. 2004, 6, 1781. [Crossref]
Crossref...
,5959 Melin, J.; Ayers, P. W.; Ortiz, J. V.; J. Phys. Chem. A 2007, 111, 10017. [Crossref]
Crossref...
were calculated according to equations f+=i|ci|HOMO2,f=i|ci|HOMO2, and f0(f++f). It was used Multiwfn package program,6060 Lu, T.; Chen, F.; J. Comput. Chem. 2012, 33, 580. [Crossref]
Crossref...
where the contributions of the atomic orbitals of the frontier molecular orbital are weighted by the ci coefficients of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) orbitals.

All the quantum chemical calculations were carried out using the Gaussian 16 package.6161 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.; Gaussian16 Revision C.01, Gaussian Inc., Wallingford CT, 2016. The electronic structure properties of the reactants, products, and the transition states of the degradation channels of the pharmaceutical compounds (NTZ and HCQ) by OH radicals were calculated at the MP2/6-31+G//M06HF/6-31G(d) level of calculation, including the SMD version of the Continuum Solvation Model6262 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G.; J. Phys. Chem. B 2009, 113, 6378. [Crossref]
Crossref...
to simulate the aqueous environment. The stationary points were characterized by analytical harmonic frequency analysis of the optimized structures, no imaginary frequency individuating local minima, one imaginary frequency individuating transition states. The zero-point vibrational energy contributions have been considered in the calculation of the energy barrier.

Reaction rate theory

The reaction rate constants of the degradation of the pharmaceuticals compounds (HCQ and NTZ) by •OH radicals were calculated using a combination of formulations derived from the Transition State Theory. To account for the tunneling effect, the deformed Transition State Theory (d-TST)6363 Carvalho-Silva, V. H.; Aquilanti, V.; de Oliveira, H. C. B.; Mundim, K. C.; J. Comput. Chem. 2017, 38, 178. [Crossref]
Crossref...
was adopted (equation 1):

(1) k d TST = k B T h Q TS Q Reac ( 1 d E 0 RT ) 1 / d

where h is the Planck’s constant, kB is the Boltzmann constant, R is the universal gas constant, d is the deformation parameter, while QReac and QTS are the partition functions of the reactants and transition state, respectively. To include the contribution of molecular diffusion in solution, the calculated rate constant kd - TST is combined with the Smoluchowski rate constant, kD, following the steady-state suggestion by Collins and Kimball,6464 Collins, F. C.; Kimball, G. E.; Ind. Eng. Chem. 1949, 41, 2551. [Crossref]
Crossref...
yielding the overall rate constant kOBS, according to equation 2:

(2) 1 k OBS = 1 k d TST + 1 k D

Additional details about the parameter d and the calculation of kD can be found elsewhere6565 Sanches-Neto, F. O.; Coutinho, N. D.; Palazzetti, F.; Carvalho-Silva, V. H.; Struct. Chem. 2020, 31, 609. [Crossref]
Crossref...
and the references therein. The overall reaction rate constant for the Ri channel were used to calculate the total reaction rate constant kTotal=ikRi. The Aquilanti-Mundim formula6666 Aquilanti, V.; Mundim, K. C.; Elango, M.; Kleijn, S.; Kasai, T.; Chem. Phys. Lett. 2010, 498, 209. [Crossref]
Crossref...
(equation 3) was used to represent the temperature dependence our results for kTotal(T) for comparison with other works and for use in kinetic models.

(3) k Total = A ( 1 d ¯ E ¯ RT ) 1 / d ¯

where A and d¯ are the pre-exponential factor and the deformation parameter, respectively. Note a change in the notation here, needed in order to avoid ambiguities: in general, the parameters d¯ and Ē from the fitting equation 3 can differ from the d and E0 parameter in equation 1. Equation 3 permits to evaluate prototypical systems where the temperature dependence of the rate constant according to this equation is described by E¯>0andd¯>0ord¯<0, corresponding to convex (Super-Arrhenius) and concave (sub-Arrhenius). In the limit d¯0, the term (1d¯E¯RT)1/d¯ can be identified with the Arrhenius exponential law. Other case for Ē < 0 will also be documented and indicated as anti-Arrhenius.

All kinetic and associated parameters have been calculated with the Transitivity Code version 1.0.4.6767 Machado, H. G.; Sanches-Neto, F. O.; Coutinho, N. D.; Mundim, K. C.; Palazzetti, F.; Carvalho-Silva, V. H.; Molecules 2019, 24, 3478. [Crossref]
Crossref...
Details of the computational program can be found on the literature.6868 Mphyschem, http://www.mphyschem.com/transitivity, accessed in January 2023.
http://www.mphyschem.com/transitivity...

Assessment of toxicity

The ecotoxicity of NTZ and HCQ and its main degradation products were determined using the Ecological Structure-Activity Relationship Model (ECOSAR V2.0).6969 ECOSAR, v2.0; U.S. EPA, Washington, USA, 2017. [Link] accessed in January 2023
Link...
ECOSAR is an effective predictive program and has been successfully applied to the ecotoxicity assessment of organic contaminants.7070 Sanderson, H.; Johnson, D. J.; Wilson, C. J.; Brain, R. A.; Solomon, K. R.; Toxicol. Lett. 2003, 144, 383. [Crossref]
Crossref...
,7171 Reuschenbach, P.; Silvani, M.; Dammann, M.; Warnecke, D.; Knacker, T.; Chemosphere 2008, 71, 1986. [Crossref]
Crossref...
Three aquatic organisms (green algae, daphnia, and fish) were chosen as targets. Acute toxicity (feature characterized by LC50 and EC50 values) and chronic toxicity (defined by ChV) of the compounds studied were obtained from ECOSAR platform. LC50 means the concentration of a chemical compound (in mgL-1) that causes the death of half of the fish and daphnia population after exposures of 96 and 48 h, respectively. In addition, EC50 represents the concentration that permits 50% of green algae to grow normally after 96 h of exposure (in mg L-1).

Results and Discussion

The results of the present study can help understanding the mechanism and kinetic of reactions of nitazoxanide and hydroxychloroquine with •OH, also providing relevant clues on risk assessment in aqueous environments. Fukui functions are descriptors that allow the identification of the most reactive sites on a molecule, both for electrophilic as for nucleophilic and radical reactions.7272 Silva, V. H. C.; Camargo, L.; Napolitano, H. B.; Pérez, C. N.; Camargo, A. J.; J. Mol. Graphics Modell. 2010, 29, 206. [Crossref]
Crossref...
Here, f parameters identify the most important reactive sites on NTZ and HCQ under OH attack.3636 Milenković, D. A.; Dimić, D. S.; Avdović, E. H.; Amić, A. D.; Dimitrić Marković, J. M.; Marković, Z. S.; Chem. Eng. J. 2020, 395, 124971. [Crossref]
Crossref...
,5858 López, P.; Méndez, F.; Org. Lett. 2004, 6, 1781. [Crossref]
Crossref...
,5959 Melin, J.; Ayers, P. W.; Ortiz, J. V.; J. Phys. Chem. A 2007, 111, 10017. [Crossref]
Crossref...
,7373 Timonen, R. S.; Seetula, J. A.; Gutman, D.; J. Chem. Inf. Model. 1990, 94, 3005. [Crossref]
Crossref...
The relevant values of the Fukui function are shown in Figures S1 and S2 in Supplementary Information Supplementary Information Supplementary data are available free of charge at http://jbcs.sbq.org.br as PDF file. (SI) section for the selected atoms.

Nitazoxanide

The nomenclature and main mechanism of hydrogen atom abstraction and addition reaction of NTZ and •OH radicals are shown in Figure 1: (i) hydrogen atom transfer (HAT) from carbon (R1, R2, and R4) or nitrogen (R3) of NTZ to the •OH radical and (ii) •OH addition (RAF) to the carbon of the NTZ (R5 and R6).

Figure 1
Scheme of hydrogen atom abstraction (HAT) and addition reactions (RAF) with nitazoxanide and OH radical. Reaction barrier energies (E0) and free energies (∆G) in kcal mol-1 were calculated at the MP2/6-31+G//M06HF/6-31G(d) level of theory.

Figure 1 shows the energetic kinetic and thermodynamic parameters of the reaction of NTZ with •OH radicals showing that R1, R5 and R6 channels are thermodynamically favorable (free energy ∆G° < 0) (while R5 channel shows the lowest barrier heights (reaction barrier energies (E0) = -3.55 kcal mol-1), indicating that R5 is the most kinetically favorable channel and tizoxanide (2-hydroxy-N-(5-nitro-2-thiazolyl)benzamide) is the majority degradation product: this agrees with previous experimental results.5151 Gasmi, A.; Peana, M.; Noor, S.; Lysiuk, R.; Menzel, A.; Gasmi Benahmed, A.; Bjørklund, G.; Appl. Microbiol. Biotechnol. 2021, 105, 1333. [Crossref]
Crossref...

Here, it is worth noting that the rate of some process increase as temperature decreases accordingly to an apparently negative activation energy. These processes are classified as anti-Arrhenius. In gas-phase reactions the anti-Arrhenius behavior is often found in molecule-radical reactions.7474 Seetula, J. A.; J. Chem. Soc., Faraday Trans. 1998, 94, 891. [Crossref]
Crossref...
,7575 Jaramillo, V. I.; Gougeon, S.; Le Picard, S. D. S. D.; Canosa, A. A.; Smith, M. A.; Rowe, B. R.; Int. J. Chem. Kinet. 2002, 34, 339. [Crossref]
Crossref...
,7676 Stone, D.; Rowley, D. M.; Phys. Chem. Chem. Phys. 2005, 7, 2156. [Crossref]
Crossref...
,7777 Campuzano-Jost, P.; Crowley, J. N.; J. Phys. Chem. A 1999, 103, 2712. [Crossref]
Crossref...
,7878 Coutinho, N. D.; Silva, V. H. C.; de Oliveira, H. C. B.; Camargo, A. J.; Mundim, K. C.; Aquilanti, V.; J. Phys. Chem. Lett. 2015, 6, 1553. [Crossref]
Crossref...
An interpretation of negative dependence of the rate constant on temperature for OH + HBr and OH + HI reactions was provided using first principle Born-Oppenheimer molecular dynamics.7979 Coutinho, N. D.; Aquilanti, V.; Silva, V. H. C.; Camargo, A. J.; Mundim, K. C.; de Oliveira, H. C. B.; J. Phys. Chem. A 2016, 120, 5408. [Crossref]
Crossref...
,8080 Sudhakaran, S.; Amy, G. L.; Water Res. 2013, 47, 1111. [Crossref]
Crossref...
,8181 de Souza, L. P.; Sanches-Neto, F. O.; Yuki Jr., G. M.; Ramos, B.; Lastre-Acosta, A. M.; Carvalho-Silva, V. H.; Teixeira, A. C. S. C.; Process Saf. Environ. Prot. 2022, 166, 478. [Crossref]
Crossref...
The simulations confirmed the suggestion obtained experimentally: the stereodynamical effect arises at low temperature permitting, the reactants reorient to find the propitious alignment leading to reaction; however, this adjustment is progressively less effective for higher temperatures, where the wandering paths evidence the roaming effect.

The Cartesian coordinates of the transition states and NTZ calculated in this work are listed in Table S1 (SI section). Geometric parameters and imaginary frequencies of the transition states involved in the reaction of OH radicals with NTZ are listed in Table S2 (SI section). For the transition state of the R5 channel, we found the values 97.76° for C5-O7-H8 angle, the imaginary frequency of 525 cm-1, energy barrier E0 = -3.55 kcal mol-1 and deformation parameter d = -0.0149.

Reaction rate constants

Reaction rate constants are key quantities for evaluating the efficiency of the kinetics for degradation of drugs8080 Sudhakaran, S.; Amy, G. L.; Water Res. 2013, 47, 1111. [Crossref]
Crossref...
permitting to quantify the relevance of the alternative reactive paths for the global conversion of each compound. Inclusion of molecular diffusion in solution is performed by the combination of the rate constant kd – TST and the steady-state Smoluchowski rate constant kD, according to the Collins-Kimball theory at 250-310 K (see equation 2 and results in Table 1). Our calculations provided values of the total reaction rate constant around 5.82 × 101212 Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C.; Water 2019, 12, 102. [Crossref]
Crossref...
cm33 Luo, Y.; Guo, W.; Hao, H.; Duc, L.; Ibney, F.; Zhang, J.; Liang, S.; Wang, X. C.; Sci. Total Environ. 2014, 473-474, 619. [Crossref]
Crossref...
mol-1 s-1 at 298.15 K, however, the comparison with experimental data is impeditive since there is no known data. The reaction rate constant are much larger than the overall reaction rate constants (see Table S3, SI Supplementary Information Supplementary data are available free of charge at http://jbcs.sbq.org.br as PDF file. section), reporting diffusion-controlled processes.

Table 1
Reaction rate constants of NTZ degradation by •OH attack calculated at the MP2/6-31+G//M06HF/6-31G(d) level with the SMD continuous solvation model using d-TST formulation combined with the steady-state Smoluchowski rate constant

Web applications recently developed by our group used machine learning and a molecular fingerprint algorithm to evaluate the reaction rate constants for the degradation of contaminants in aqueous and atmospheric environments (the pySiRC platform).8181 de Souza, L. P.; Sanches-Neto, F. O.; Yuki Jr., G. M.; Ramos, B.; Lastre-Acosta, A. M.; Carvalho-Silva, V. H.; Teixeira, A. C. S. C.; Process Saf. Environ. Prot. 2022, 166, 478. [Crossref]
Crossref...
,8282 PYSIRC, http://www.pysirc.com.br, accessed in January 2023.
http://www.pysirc.com.br...
The reaction rate constant calculated by the Random Forest Machine Learning model in pySiRC platform demonstrated an excellent agreement with high-level reaction rate constant calculated with a value of 5.04 × 101212 Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C.; Water 2019, 12, 102. [Crossref]
Crossref...
cm33 Luo, Y.; Guo, W.; Hao, H.; Duc, L.; Ibney, F.; Zhang, J.; Liang, S.; Wang, X. C.; Sci. Total Environ. 2014, 473-474, 619. [Crossref]
Crossref...
mol-1 s-1. The CAS-numbers used for NTZ and HCQ are 55981-09-4 and 118-42-3, respectively.

To evaluate the total reaction rate constant of NTZ with •OH radicals, we fitted the temperature dependence using the Aquilanti-Mundim (AM) formula (equation 3), which has been used successfully to describe the temperature dependence k of chemical processes under condition from Non-Arrhenius behavior.7878 Coutinho, N. D.; Silva, V. H. C.; de Oliveira, H. C. B.; Camargo, A. J.; Mundim, K. C.; Aquilanti, V.; J. Phys. Chem. Lett. 2015, 6, 1553. [Crossref]
Crossref...
The equation obtained from fit for the overall rate constant is expressed as:

The phenomenological parameters obtained from the fit by the AM formula were Ē = 3.764 kcal mol-1 andd¯=0.0344. Positive values of these parameters are characteristic of the super-Arrhenius behavior of the viscosity of the solvent involved in the reaction.

From the data of the total reaction rate constant of NTZ with the •OH radical, it is possible to calculate the half-life time using t1/2=ln2/(kTotal×[·OH]), where [•OH] is the concentration of •OH radicals in the specific aqueous medium. The half-life of the reaction was studied by us in the temperature range 273.15-310 K, using [·OH]=10151018molL1, which usually represents values typical of surface waters. The calculated half-lives are shown in Figure 2 and they vary from 14 to 138 days at 298.15 K, considering a concentration of •OH radicals in the restricted range 10-16-10-17 mol L-1.

Figure 2
Half-life time, in days, of nitazoxanide degradation as a function of •OH concentration, in mol L-1, in the temperature range 273.15-310 K of interest in natural waters.

Hydroxychloroquine

Based on Fukui functions, we proposed seven degradation channels by •OH attack in the neutral form of HCQ. The nomenclature is shown in Figure 3 being: (i ) •OH addition to the carbon (RAF) of the HCQ (R1-R4); (ii) hydrogen transfer from carbon (HAT) of HCQ to the •OH radical (R5-R7).

Figure 3
Scheme of hydrogen atom abstraction and addition reactions with HCQ and •OH radical. Reaction barrier energies (E0) and free energies (∆G) in kcal mol-1 were calculated at the MP2/6-31+G//M06HF/6-31G(d) level of theory.

The calculated energy parameters of the reaction of HCQ with •OH radicals show that, with the exception of R6, all other channels are thermodynamically favorable (∆G° < 0), wherein R2 is the most favorable one (∆G° = -19.01 kcal mol-1), while the R6 channel shows the lowest barrier height (E0 = -18.86 kacl mol-1). The Cartesian coordinates and imaginary frequencies of the transition states and HCQ calculated in this work are listed in Tables S4 and S5 (SI Supplementary Information Supplementary data are available free of charge at http://jbcs.sbq.org.br as PDF file. section).

Reaction rate constant

The reaction rate constants for all seven channels were combined with the Collins-Kimball formulation in the relevant temperature range 250.0-310.0 K to elucidate the most important products of degradation. The results are presented in Table 2. The R2 channel was found to have the fastest reaction rate constant, and its product is most kinetically favorable by OH attack in HCQ. The value of the total reaction rate constant at 298.15 K is 6.64 × 1012 cm3 mol-1 s-1, however, there are no experimental reaction rate constants in the same theoretical conditions simulated and consequently, these results and the mechanism proposed here can be confronted with future experimental results. For R2 channel, we found the values E0 = -4.21 kcal mol-1 for energy barrier and d = -0.1642 for deformed parameter.

Table 2
Reaction rate constants of HCQ degradation by •OH attack calculated at the MP2/6-31+G//M06HF/6-31G(d) level with the SMD continuous solvation model using Collins-Kimball formulation

As observed for NTZ, the reaction rate constant for HCQ showed a diffusion-controlled process (see Table S6, SI Supplementary Information Supplementary data are available free of charge at http://jbcs.sbq.org.br as PDF file. section). The reaction rate constant estimated by the random forest machine learning (ML) model in pySiRC showed a value of 6.09 × 1012 cm3 mol-1 s-1, which showed a good agreement with high-level reaction rate constant calculation. The fitting of temperature dependence of the rate constant using AM formula is expressed as:

(5) k Total = 9.1510 9 cm 3 molecules 1 s 1 ( 1 66.76 T ) 26.61

The phenomenological parameters obtained from the fit by the AM formula were Ē = 3.517 kcal mol-1 and d¯=0.0376. Similarly to kinetic behavior observed for the NTZ drug, here the parameters also presented positive values, which are related with super-Arrhenius behavior.

In an advanced oxidative experimental study, Lu and Chen6060 Lu, T.; Chen, F.; J. Comput. Chem. 2012, 33, 580. [Crossref]
Crossref...
evidenced the formation of the CQLA (7-chloro-4-quinolinamine) as one of the most important intermediate degradant products, however, in their experimental conditions, two of the functional groups exist in protonated forms, which may facilitate the rupture of C-N bonds by •OH radical attack.

The half-life of the reaction was studied by us in the temperature range 273.15-310 K, using [·OH]=10151018molL1, which usually represents values typical of surface waters.8383 Brezonik, P. L.; Fulkerson-Brekken, J.; Environ. Sci. Technol. 1998, 32, 3004. [Crossref]
Crossref...
,8484 Yang, J.; Wang, Z.; Lv, G.; Liu, W.; Wang, Y.; Sun, X.; Gao, J.; Ecotoxicol. Environ. Saf. 2020, 197, 110644. [Crossref]
Crossref...
,8585 Burns, J. M.; Cooper, W. J.; Ferry, J. L.; King, D. W.; DiMento, B. P.; McNeill, K.; Miller, C. J.; Miller, W. L.; Peake, B. M.; Rusak, S. A.; Rose, L. A.; Waite, T. D.; Aquat. Sci. 2012, 74, 683. [Crossref]
Crossref...
The calculated half-lives are shown in Figure 4, and they vary from 12 to 121 days at 298.15 K, considering a concentration of •OH radicals in the restricted range 10-16-10-17 mol L-1.

Figure 4
Half-life time, in days, of hydroxychloroquine degradation as a function of •OH concentration, in mol L 1, in the temperature range 273.15-310 K of interest in natural waters.

Evaluation of toxicity

Table 3 exploit discrimination criteria established by the European Union8686 Commission of the European Communities; Annex VI of Directive 67/548/EEC, General Classification and Labelling Requirements for Dangerous Substances and Preparation, vol. 225; Official Journal of the European Union, 2001. [Link] accessed in February 2023
Link...
and Chinese Regulations8787 Chinese Hazard Evaluation; HJ/T 154-2004: The Guidelines for the Hazard Evaluation of New Chemical Substances, 2004. [Link] accessed in February 2023
Link...
for acute toxicity (LC50 or EC50) and chronic toxicity (ChV), respectively (see technical details in “Assessment of toxicity” sub-section).

Table 3
Classification of acute and chronic toxicity according to the criteria established by the European Union8686 Commission of the European Communities; Annex VI of Directive 67/548/EEC, General Classification and Labelling Requirements for Dangerous Substances and Preparation, vol. 225; Official Journal of the European Union, 2001. [Link] accessed in February 2023
Link...
and Chinese Regulations8787 Chinese Hazard Evaluation; HJ/T 154-2004: The Guidelines for the Hazard Evaluation of New Chemical Substances, 2004. [Link] accessed in February 2023
Link...

The experimental cytotoxicity assay with mononuclear cell showed that the tizoxanide, the main degradation product (R5 channel), has a higher cytotoxicity when compared to NTZ with a reduction in cell viability of 75.25%, i.e., 27% higher than that obtained with NTZ in the concentration and tested conditions.8080 Sudhakaran, S.; Amy, G. L.; Water Res. 2013, 47, 1111. [Crossref]
Crossref...
As can be seen in Table 4, the estimated toxicities of the compounds to fish, daphnia, and green algae showed that tizoxanide is more toxic than NTZ, in agreement with experimental results: it is attributed the harmful classification according to the European Union and Chinese Regulations.

Table 4
Toxicity of NTZ and its main by-product generated through •OH radical attack. The definition on Table 3 was used to classify the toxicity of compounds

The degradation of HCQ occurs by successive steps that lead to the formation of organic intermediates that end to mineralize. Here, we identified that R2 product is the most degradant product of neutral form of HQC. As can be seen in Table 5, the estimated toxicities of the compounds to fish, daphnia, and green algae showed that the R2 product is less toxic than HCQ.

Table 5
Toxicity of HCQ and of its main by-product generated through •OH radical attack. The definition on Table 3 was used to classify the toxicity of compounds

Conclusions

In the “Reaction rate theory” section, the parameters couple (E0, d) and (E¯,d¯) were differentiated to avoid confusion. The former is related to molecular parameters at potential energy channel of the elementary step evaluated. The late is related with several contributions to the overall reaction rate constant. In both drugs, the energetic barriers E0 and deformation parameters d for the most probable degradation product show apparent negative activation energy4747 Malesuik, M. D.; Gonçalves, H. M. L.; Garcia, C. V.; Trein, M. R.; Nardi, N. B.; Schapoval, E. E. S.; Steppe, M.; Talanta 2012, 93, 206. [Crossref]
Crossref...
,8585 Burns, J. M.; Cooper, W. J.; Ferry, J. L.; King, D. W.; DiMento, B. P.; McNeill, K.; Miller, C. J.; Miller, W. L.; Peake, B. M.; Rusak, S. A.; Rose, L. A.; Waite, T. D.; Aquat. Sci. 2012, 74, 683. [Crossref]
Crossref...
and propensity to quantum tunneling effect.8888 Coutinho, N. D.; Sanches-Neto, F. O.; Carvalho-Silva, V. H.; de Oliveira, H. C. B.; Ribeiro, L. A.; Aquilanti, V.; J. Comput. Chem. 2018, 39, 2508. [Crossref]
Crossref...
,8989 Sanches-Neto, F. O.; Coutinho, N. D.; Carvalho-Silva, V. H.; Phys. Chem. Chem. Phys. 2017, 19, 24467. [Crossref]
Crossref...
These molecular phenomena guide the kinetic behavior to anti-Arrhenius and sub-Arrhenius behavior.9090 Carvalho-Silva, V. H.; Coutinho, N. D.; Aquilanti, V.; Molecules 2020, 25, 2098. [Crossref]
Crossref...
,9191 Carvalho-Silva, V. H.; Coutinho, N. D.; Aquilanti, V.; Front. Chem. 2019, 7, 380. [Crossref]
Crossref...
However, these reactions are diffusion-controlled processes which are typical cases of classical and cooperative effects mediated by the viscosity of the solvent in reactive molecular encounters.9191 Carvalho-Silva, V. H.; Coutinho, N. D.; Aquilanti, V.; Front. Chem. 2019, 7, 380. [Crossref]
Crossref...
,9292 Aquilanti, V.; Coutinho, N. D.; Carvalho-Silva, V. H.; Philos. Trans. R. Soc., A 2017, 375, 20160201. [Crossref]
Crossref...
Equations 4 and 5 capture the majority contribution of the solvent effect in reactive processes providing positive phenomenological parameters (E¯,d¯) with kinetic behavior befitting with super-Arrhenius cases, where transport phenomena, e.g., diffusion and viscosity, decelerate as the temperature decreases.

(4) k Total = 1.2610 8 cm 3 molecules 1 s 1 ( 1 65.40 T ) 29.07

A theoretical study was performed on the degradation of nitazoxanide and hydroxychloroquine via •OH radicals in aqueous media using a combination of quantum chemistry calculations and reaction rate theories. The degradation mechanism and reaction kinetics were reported, and the results showed that deacetylation of nitazoxanide with formation of tizoxanide was the most kinetic favorable channel agreeing with experimental work. For hydroxychloroquine, the theoretical calculations showed that the addition •OH at carbon of aromatic ring (R2) was the most kinetic favorable channel. The reaction rate constants were calculated by formulations derived both from the Transition State Theory modified for quantum tunneling and from the theory of diffusion-controlled processes. The halflives time for NTZ and HCQ degradation varied from 12 to 138 days. Both drugs presented toxicities between harmful and toxic. However, in the nitazoxanide degradation process, the R5 degradation compound was characterized as more toxic, while in the case of hydroxychloroquine the major degradation product, R2, showed a decrease in the toxicity.

Acknowledgments

The authors acknowledge the Brazilian funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial suport and CNPq Research Productivity Grant (314698/2021-3). Valter H. Carvalho-Silva thanks Goiana Agency (FAPEG) for the research funding programs (Auxílio à Pesquisa Colaborativa FAPEG-FAPESP/ GSP2019011000037). This research is also supported by the High-Performance Computing Center at the Subsecretaria de Tecnologia da Informação (STI), in the Secretaria de Desenvolvimento e Inovação (SEDI), Brazil.

Supplementary Information

Supplementary data are available free of charge at http://jbcs.sbq.org.br as PDF file.

References

  • 1
    Mahase, E.; BMJ 2020, 368, m1166. [Crossref]
    » Crossref
  • 2
    Hariyanto, T. I., Halim, D. A.; Jodhinata, C.; Yanto, T. A.; Kurniawan, A.; Clin. Exp. Pharmacol. Physiol. 2021, 48, 823. [Crossref]
    » Crossref
  • 3
    Luo, Y.; Guo, W.; Hao, H.; Duc, L.; Ibney, F.; Zhang, J.; Liang, S.; Wang, X. C.; Sci. Total Environ. 2014, 473-474, 619. [Crossref]
    » Crossref
  • 4
    López-Pacheco, I. Y.; Silva-Núñez, A.; Salinas-Salazar, C.; Arévalo-Gallegos, A.; Lizarazo-Holguin, L. A.; Barceló, D.; Iqbal, M. N.; Parra-Saldívar, R.; Sci. Total Environ. 2019, 690, 1068. [Crossref]
    » Crossref
  • 5
    López-Doval, J. C.; Montagner, C. C.; Fernandes, A.; Alburquerque, D.; Moschini-Carlos, V.; Umbuzeiro, G.; Pompêo, M.; Sci. Total Environ. 2016, 575, 1307. [Crossref]
    » Crossref
  • 6
    O’Flynn, D.; Lawler, J.; Yusuf, A.; Parle-Mcdermott, A.; Harold, D.; Mc Cloughlin, T.; Holland, L.; Regan, F.; White, B.; Anal. Methods 2021, 13, 575. [Crossref]
    » Crossref
  • 7
    Rinaldo, A.; Rodriguez-Iturbe, I.; Rend. Lincei Sci. Fis. Nat. 2022, 33, 245. [Crossref]
    » Crossref
  • 8
    Sharma, K.; Kaushik, G. In Environmental Microbiology and Biotechnology; Springer Singapore: Singapore, 2021, p. 267-292. [Crossref]
    » Crossref
  • 9
    Ek, M.; Baresel, C.; Magnér, J.; Bergström, R.; Harding, M.; Water Sci. Technol. 2014, 69, 2372. [Crossref]
    » Crossref
  • 10
    Khanzada, N. K.; Farid, M. U.; Kharraz, J. A.; Choi, J.; Tang, C. Y.; Nghiem, L. D.; Jang, A.; An, A. K.; J. Membr. Sci. 2020, 598, 117672. [Crossref]
    » Crossref
  • 11
    Klavarioti, M.; Mantzavinos, D.; Kassinos, D.; Environ. Int. 2009, 35, 402. [Crossref]
    » Crossref
  • 12
    Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C.; Water 2019, 12, 102. [Crossref]
    » Crossref
  • 13
    Sirés, I.; Brillas, E.; Oturan, M. A.; Rodrigo, M. A.; Panizza, M.; Environ. Sci. Pollut. Res. Int 2014, 21, 8336. [Crossref]
    » Crossref
  • 14
    Wang, J.; Zhuan, R.; Sci. Total Environ. 2020, 701, 135023. [Crossref]
    » Crossref
  • 15
    Basturk, I.; Varank, G.; Murat-Hocaoglu, S.; Yazici-Guvenc, S.; Can-Güven, E.; Oktem-Olgun, E. E.; Canli, O.; J. Environ. Chem. Eng. 2021, 9, 104666. [Crossref]
    » Crossref
  • 16
    Méndez-Arriaga, F.; Esplugas, S.; Giménez, J.; Water Res. 2010, 44, 589. [Crossref]
    » Crossref
  • 17
    Madhavan, J.; Grieser, F.; Ashokkumar, M.; J. Hazard. Mater. Lett. 2010, 178, 202. [Crossref]
    » Crossref
  • 18
    Saeid, S.; Tolvanen, P.; Kumar, N.; Eränen, K.; Peltonen, J.; Peurla, M.; Mikkola, J.-P.; Franz, A.; Salmi, T.; Appl. Catal., B 2018, 230, 77. [Crossref]
    » Crossref
  • 19
    Keen, O. S.; Baik, S.; Linden, K. G.; Aga, D. S.; Love, N. G.; Environ. Sci. Technol. 2012, 46, 6222. [Crossref]
    » Crossref
  • 20
    Kowalska, K.; Maniakova, G.; Carotenuto, M.; Sacco, O.; Vaiano, V.; Lofrano, G.; Rizzo, L.; Chemosphere 2020, 238, 124665. [Crossref]
    » Crossref
  • 21
    Monteoliva-García, A.; Martín-Pascual, J.; Muñío, M. M.; Poyatos, J. M.; Int. J. Environ. Sci. Technol. 2019, 16, 6005. [Crossref]
    » Crossref
  • 22
    Souza, F. S.; da Silva, V. V.; Rosin, C. K.; Hainzenreder, L.; Arenzon, A.; Féris, L. A.; Environ. Technol. 2018, 39, 549. [Crossref]
    » Crossref
  • 23
    de Carvalho, J. F.; de Moraes, J. E. F.; Environ. Technol 2020, 42, 4145. [Crossref]
    » Crossref
  • 24
    Ay, F.; Kargi, F.; J. Hazard. Mater. 2010, 179, 622. [Crossref]
    » Crossref
  • 25
    González, O.; Sans, C.; Esplugas, S.; Malato, S.; Photochem. Photobiol. Sci. 2009, 8, 1032. [Crossref]
    » Crossref
  • 26
    Martini, J.; Orge, C. A.; Faria, J. L.; Pereira, M. F. R.; Soares, O. S. G. P.; J. Environ. Chem. Eng. 2018, 6, 4054. [Crossref]
    » Crossref
  • 27
    Martini, J.; Orge, C. A.; Faria, J. L.; Pereira, M. F. R.; Soares, O. S. G. P.; Appl. Sci. 2019, 9, 2652. [Crossref]
    » Crossref
  • 28
    Du, L.; Xu, W.; Liu, Y.; Li, X.; Huang, D.; Wu, S.; Water, Air, Soil Pollut. 2020, 231, 159. [Crossref]
    » Crossref
  • 29
    Sirés, I.; Arias, C.; Cabot, P. L.; Centellas, F.; Rodríguez, R. M.; Garrido, J. A.; Brillas, E.; Environ. Chem. 2004, 1, 26. [Crossref]
    » Crossref
  • 30
    Torun, M.; Gültekin, Ö.; Şolpan, D.; Güven, O.; Environ. Technol. 2015, 36, 970. [Crossref]
    » Crossref
  • 31
    Audino, F.; Toro Santamaria, J.; del Valle Mendoza, L.; Graells, M.; Pérez-Moya, M.; Int. J. Environ. Res. Public Health 2019, 16, 505. [Crossref]
    » Crossref
  • 32
    Manonmani, G.; Sandhiya, L.; Senthilkumar, K.; J. Phys. Chem. A 2019, 123, 8954. [Crossref]
    » Crossref
  • 33
    Manonmani, G.; Sandhiya, L.; Senthilkumar, K.; Environ. Sci. Pollut. Res. 2020, 27, 12080. [Crossref]
    » Crossref
  • 34
    Mei, Q.; Sun, J.; Han, D.; Wei, B.; An, Z.; Wang, X.; Xie, J.; Zhan, J.; He, M.; Chem. Eng. J. 2019, 373, 668. [Crossref]
    » Crossref
  • 35
    An, T.; Gao, Y.; Li, G.; Kamat, P. V.; Peller, J.; Joyce, M. V.; Environ. Sci. Technol. 2014, 48, 641. [Crossref]
    » Crossref
  • 36
    Milenković, D. A.; Dimić, D. S.; Avdović, E. H.; Amić, A. D.; Dimitrić Marković, J. M.; Marković, Z. S.; Chem. Eng. J. 2020, 395, 124971. [Crossref]
    » Crossref
  • 37
    Xiao, R.; Ma, J.; Luo, Z.; Zeng, W.; Wei, Z.; Spinney, R.; Hu, W.; Dionysiou, D. D.; Environ. Pollut. 2020, 257, 113498. [Crossref]
    » Crossref
  • 38
    Sanches-Neto, F. O.; Ramos, B.; Lastre-Acosta, A. M.; Teixeira, A. C. S. C.; Carvalho-Silva, V. H.; Chemosphere 2021, 278, 130401. [Crossref]
    » Crossref
  • 39
    Yang, Z.; Su, R.; Luo, S.; Spinney, R.; Cai, M.; Xiao, R.; Wei, Z.; Sci. Total Environ. 2017, 590-591, 751. [Crossref]
    » Crossref
  • 40
    Wang, P.; Bu, L.; Wu, Y.; Ma, W.; Zhu, S.; Zhou, S.; Chemosphere 2021, 267, 128883. [Crossref]
    » Crossref
  • 41
    Hammond, J.; Leister-Tebbe, H.; Annie, G.; Abreu, P.; Weihang, B.; Wayne, W.; MaryLynn, B.; Hendrick, V.; Damle, B.; Simón-Campos Abraham, Pypstra, R.; Rusnak, J. M.; N. Engl. J. Med. 2022, 386, 1397. [Crossref]
    » Crossref
  • 42
    Jayk Bernal, A.; Gomes da Silva, M. M.; Musungaie, D. B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M. L.; Du, J.; Pedley, A.; Assaid, C.; Strizki, J.; Grobler, J. A.; Shamsuddin, H. H.; Tipping, R.; Wan, H.; Paschke, A.; Butterton, J. R.; Johnson, M. G.; de Anda, C.; N. Engl. J. Med. 2022, 386, 509. [Crossref]
    » Crossref
  • 43
    Tarighi, P.; Eftekhari, S.; Chizari, M.; Sabernavaei, M.; Jafari, D.; Mirzabeigi, P.; Eur. J. Pharmacol. 2021, 895, 173890. [Crossref]
    » Crossref
  • 44
    Mahase, E.; BMJ 2020, 368, 1. [Crossref]
    » Crossref
  • 45
    Rossignol, J.-F.; Antiviral Res. 2014, 110, 94. [Crossref]
    » Crossref
  • 46
    Rocco, P. R. M.; Silva, P. L.; Cruz, F. F.; Junior, M. A. C. M.; Tierno, P. F. G. M. M.; Moura, M. A.; De Oliveira, L. F. G.; Lima, C. C.; Dos Santos, E. A.; Junior, W. F.; Fernandes, A. P. S. M.; Franchini, K. G.; Magri, E.; de Moraes, N. F.; Gonçalves, J. M. J.; Carbonieri, M. N.; dos Santos, I. S.; Paes, N. F.; Maciel, P. V. M.; Rocha, R. P.; de Carvalho, A. F.; Alves, P. A.; Modena, J. L. P.; Cordeiro, A. T.; Trivella, D. B. B.; Marques, R. E.; Luiz, R. R.; Pelosi, P.; Lapa e Silva, J. R.; Eur. Respir. J. 2020, 2003725. [Crossref]
    » Crossref
  • 47
    Malesuik, M. D.; Gonçalves, H. M. L.; Garcia, C. V.; Trein, M. R.; Nardi, N. B.; Schapoval, E. E. S.; Steppe, M.; Talanta 2012, 93, 206. [Crossref]
    » Crossref
  • 48
    Ben-Zvi, I.; Kivity, S.; Langevitz, P.; Shoenfeld, Y.; Clin. Rev. Allergy Immunol. 2012, 42, 145. [Crossref]
    » Crossref
  • 49
    Al-Bari, M. A. A.; J. Antimicrob. Chemother. 2015, 70, 1608. [Crossref]
    » Crossref
  • 50
    Howard, B. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, 2007, p. 1-4. [Crossref]
    » Crossref
  • 51
    Gasmi, A.; Peana, M.; Noor, S.; Lysiuk, R.; Menzel, A.; Gasmi Benahmed, A.; Bjørklund, G.; Appl. Microbiol. Biotechnol. 2021, 105, 1333. [Crossref]
    » Crossref
  • 52
    Kumar, R.; Sharma, A.; Srivastava, J. K.; Siddiqui, M. H.; Uddin, M. S.; Aleya, L.; Environ. Sci. Pollut. Res. 2021, 28, 40431. [Crossref]
    » Crossref
  • 53
    Elavarasi, A.; Prasad, M.; Seth, T.; Sahoo, R. K.; Madan, K.; Nischal, N.; Soneja, M.; Sharma, A.; Maulik, S. K.; Shalimar; Garg, P.; J. Gen. Intern. Med. 2020, 35, 3308. [Crossref]
    » Crossref
  • 54
    Saini, B.; Bansal, G.; J. Pharm. Biomed. Anal. 2013, 84, 224. [Crossref]
    » Crossref
  • 55
    Dabić, D.; Babić, S.; Škorić, I.; Chemosphere 2019, 230, 268. [Crossref]
    » Crossref
  • 56
    Bensalah, N.; Midassi, S.; Ahmad, M. I.; Bedoui, A.; Chem. Eng. J 2020, 402, 126279. [Crossref]
    » Crossref
  • 57
    Han, D.; Li, J.; Cao, H.; He, M.; Hu, J.; Yao, S.; Chemosphere 2014, 95, 50. [Crossref]
    » Crossref
  • 58
    López, P.; Méndez, F.; Org. Lett. 2004, 6, 1781. [Crossref]
    » Crossref
  • 59
    Melin, J.; Ayers, P. W.; Ortiz, J. V.; J. Phys. Chem. A 2007, 111, 10017. [Crossref]
    » Crossref
  • 60
    Lu, T.; Chen, F.; J. Comput. Chem. 2012, 33, 580. [Crossref]
    » Crossref
  • 61
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J.; Gaussian16 Revision C.01, Gaussian Inc., Wallingford CT, 2016.
  • 62
    Marenich, A. V.; Cramer, C. J.; Truhlar, D. G.; J. Phys. Chem. B 2009, 113, 6378. [Crossref]
    » Crossref
  • 63
    Carvalho-Silva, V. H.; Aquilanti, V.; de Oliveira, H. C. B.; Mundim, K. C.; J. Comput. Chem. 2017, 38, 178. [Crossref]
    » Crossref
  • 64
    Collins, F. C.; Kimball, G. E.; Ind. Eng. Chem. 1949, 41, 2551. [Crossref]
    » Crossref
  • 65
    Sanches-Neto, F. O.; Coutinho, N. D.; Palazzetti, F.; Carvalho-Silva, V. H.; Struct. Chem. 2020, 31, 609. [Crossref]
    » Crossref
  • 66
    Aquilanti, V.; Mundim, K. C.; Elango, M.; Kleijn, S.; Kasai, T.; Chem. Phys. Lett. 2010, 498, 209. [Crossref]
    » Crossref
  • 67
    Machado, H. G.; Sanches-Neto, F. O.; Coutinho, N. D.; Mundim, K. C.; Palazzetti, F.; Carvalho-Silva, V. H.; Molecules 2019, 24, 3478. [Crossref]
    » Crossref
  • 68
    Mphyschem, http://www.mphyschem.com/transitivity, accessed in January 2023.
    » http://www.mphyschem.com/transitivity
  • 69
    ECOSAR, v2.0; U.S. EPA, Washington, USA, 2017. [Link] accessed in January 2023
    » Link
  • 70
    Sanderson, H.; Johnson, D. J.; Wilson, C. J.; Brain, R. A.; Solomon, K. R.; Toxicol. Lett. 2003, 144, 383. [Crossref]
    » Crossref
  • 71
    Reuschenbach, P.; Silvani, M.; Dammann, M.; Warnecke, D.; Knacker, T.; Chemosphere 2008, 71, 1986. [Crossref]
    » Crossref
  • 72
    Silva, V. H. C.; Camargo, L.; Napolitano, H. B.; Pérez, C. N.; Camargo, A. J.; J. Mol. Graphics Modell. 2010, 29, 206. [Crossref]
    » Crossref
  • 73
    Timonen, R. S.; Seetula, J. A.; Gutman, D.; J. Chem. Inf. Model. 1990, 94, 3005. [Crossref]
    » Crossref
  • 74
    Seetula, J. A.; J. Chem. Soc., Faraday Trans. 1998, 94, 891. [Crossref]
    » Crossref
  • 75
    Jaramillo, V. I.; Gougeon, S.; Le Picard, S. D. S. D.; Canosa, A. A.; Smith, M. A.; Rowe, B. R.; Int. J. Chem. Kinet. 2002, 34, 339. [Crossref]
    » Crossref
  • 76
    Stone, D.; Rowley, D. M.; Phys. Chem. Chem. Phys. 2005, 7, 2156. [Crossref]
    » Crossref
  • 77
    Campuzano-Jost, P.; Crowley, J. N.; J. Phys. Chem. A 1999, 103, 2712. [Crossref]
    » Crossref
  • 78
    Coutinho, N. D.; Silva, V. H. C.; de Oliveira, H. C. B.; Camargo, A. J.; Mundim, K. C.; Aquilanti, V.; J. Phys. Chem. Lett. 2015, 6, 1553. [Crossref]
    » Crossref
  • 79
    Coutinho, N. D.; Aquilanti, V.; Silva, V. H. C.; Camargo, A. J.; Mundim, K. C.; de Oliveira, H. C. B.; J. Phys. Chem. A 2016, 120, 5408. [Crossref]
    » Crossref
  • 80
    Sudhakaran, S.; Amy, G. L.; Water Res. 2013, 47, 1111. [Crossref]
    » Crossref
  • 81
    de Souza, L. P.; Sanches-Neto, F. O.; Yuki Jr., G. M.; Ramos, B.; Lastre-Acosta, A. M.; Carvalho-Silva, V. H.; Teixeira, A. C. S. C.; Process Saf. Environ. Prot. 2022, 166, 478. [Crossref]
    » Crossref
  • 82
    PYSIRC, http://www.pysirc.com.br, accessed in January 2023.
    » http://www.pysirc.com.br
  • 83
    Brezonik, P. L.; Fulkerson-Brekken, J.; Environ. Sci. Technol. 1998, 32, 3004. [Crossref]
    » Crossref
  • 84
    Yang, J.; Wang, Z.; Lv, G.; Liu, W.; Wang, Y.; Sun, X.; Gao, J.; Ecotoxicol. Environ. Saf. 2020, 197, 110644. [Crossref]
    » Crossref
  • 85
    Burns, J. M.; Cooper, W. J.; Ferry, J. L.; King, D. W.; DiMento, B. P.; McNeill, K.; Miller, C. J.; Miller, W. L.; Peake, B. M.; Rusak, S. A.; Rose, L. A.; Waite, T. D.; Aquat. Sci. 2012, 74, 683. [Crossref]
    » Crossref
  • 86
    Commission of the European Communities; Annex VI of Directive 67/548/EEC, General Classification and Labelling Requirements for Dangerous Substances and Preparation, vol. 225; Official Journal of the European Union, 2001. [Link] accessed in February 2023
    » Link
  • 87
    Chinese Hazard Evaluation; HJ/T 154-2004: The Guidelines for the Hazard Evaluation of New Chemical Substances, 2004. [Link] accessed in February 2023
    » Link
  • 88
    Coutinho, N. D.; Sanches-Neto, F. O.; Carvalho-Silva, V. H.; de Oliveira, H. C. B.; Ribeiro, L. A.; Aquilanti, V.; J. Comput. Chem. 2018, 39, 2508. [Crossref]
    » Crossref
  • 89
    Sanches-Neto, F. O.; Coutinho, N. D.; Carvalho-Silva, V. H.; Phys. Chem. Chem. Phys. 2017, 19, 24467. [Crossref]
    » Crossref
  • 90
    Carvalho-Silva, V. H.; Coutinho, N. D.; Aquilanti, V.; Molecules 2020, 25, 2098. [Crossref]
    » Crossref
  • 91
    Carvalho-Silva, V. H.; Coutinho, N. D.; Aquilanti, V.; Front. Chem. 2019, 7, 380. [Crossref]
    » Crossref
  • 92
    Aquilanti, V.; Coutinho, N. D.; Carvalho-Silva, V. H.; Philos. Trans. R. Soc., A 2017, 375, 20160201. [Crossref]
    » Crossref

Edited by

Editor handled this article: Paula Homem-de-Mello (Associate)

Publication Dates

  • Publication in this collection
    24 July 2023
  • Date of issue
    Aug 2023

History

  • Received
    02 Sept 2022
  • Accepted
    24 Feb 2023
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br