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Surface tension (SFT) can shape the behavior of liquids in industrial chemical processes, 
influencing variables such as flow rate and separation efficiency. This property is commonly 
measured with experimental approaches such as Du Noüy ring and Wilhelmy plate methods. Here, 
we present machine learning (ML) methodologies that can predict the SFT of hydrocarbons. A 
comparative analysis encompassing k-nearest neighbors, random forest, and XGBoost (extreme 
gradient boosting) methods was done. Results from our study reveal that XGBoost is the most 
accurate in predicting hydrocarbon SFT, with a mean squared error (MSE) of 4.65 mN2 m-2 and 
a coefficient of determination (R2) score of 0.89. The feature importance was evaluated with the 
permutation feature importance method and Shapley analysis. Enthalpy of vaporization, density, 
molecular weight and hydrogen content are key factors in accurately predicting SFT. The successful 
integration of these methodologies holds the potential to impact efficiency in different industry 
processes.
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Introduction

Surface tension (SFT) is a key property in fluid 
mechanics, largely impacting petrochemical operations1-3 
and technological applications including microfluidics,4,5 
cleaning,6-9 medicine,10-12 and agriculture.13-15 It is related to 
the cohesive forces between molecules, and it is responsible 
for some consequent phenomena such as capillarity, the 
shape of droplets and the behavior of interfaces with liquids. 
Despite its widespread applications and importance, 
predicting the SFT of organic compounds is a difficult task. 
This is due to the intricate chemical structure and varied 
properties of organic compounds.16

SFT largely varies among organic compounds, 
influencing their behavior during oil extraction, bubble 
formation, adhesion of liquids to solid surfaces, and the 
formulation of chemical products.17 Traditional techniques 

for measuring SFT have been in use since the 1930s, 
with methods like the capillary rise method.18 Further 
research established a correlation between theoretical 
and experimental values of SFT,19 and approaches based 
on the generalized van der Waals theory presented high 
accuracy for experimental values of SFT measured for 
simple polar fluids.20 Later, a theoretical model was 
developed21 based on density functional theory (DFT) and 
Barker-Henderson perturbation theory.22 With this model, 
the authors demonstrated that the proposed state equation 
could predict SFT with a deviation of 3.3%. More recently, 
classical molecular dynamics simulations were used to 
obtain interfacial tensions of oil,23 which were then used 
to train a machine learning model which could predict the 
interfacial tensions with a minimum error of 2%.

Machine learning (ML) techniques have been applied 
to predict physical and chemical properties with great 
accuracy.24 These techniques use sophisticated mathematical 
models that can learn from experimental data and further 
classify or predict outcomes for new instances. The capacity 
of these models was shown in recent articles that accurately 
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predicted an array of hydrocarbon properties such as 
boiling points, densities, and vapor pressures.25 Another 
approach used a hybrid model that combined ML models 
such as linear regression and neural networks, with the 
aim of achieving a predictive model to obtain the SFT of 
hydrocarbons surfactants in aqueous media.26 In addition, 
convolutional neural networks (CNN) were used to estimate 
the SFT using images of hanging drops of liquids, and the 
trained models had accuracy above 97%.27 Recent efforts 
were taken to understand the features’ significance in 
accurate ML models used to predict the SFT in binary and 
ternary mixtures containing ionic liquids (IL). In one case, 
authors used data sets containing IL and organic solvent 
parameters from universal quasi-chemical functional group 
activity coefficient model and Abraham solvation parameter 
model.28 Another approach used a data set with features 
such as mole fraction, temperature, pressure, and types of 
molecules functional groups.29

The development of accurate predictive models for SFT 
would allow the optimization of compound design, which is 
a key factor for improving the performance of any process 
involving fluid systems, especially hydrocarbon based. In this 
context, there is the premise that large and well cured data 
sets containing molecule characteristics (or features) such 
as thermodynamic state function values, intensive properties 
and phase transition information (e.g., melting and boiling 
points) can lead to ML predictors that successfully predict 
SFT. In the current state of these models, it is important to 
assess how features contribute to the success of the prediction 
accuracy. This optimization would determine which are the 
necessary experimental characterization of molecules to be 
taken for generating suitable data sets to feed ML models, 
thus largely reducing laboratory work and costs. In this study, 
we extend the investigation on the significance of features in 
predictive ML models for SFT. For this, we used extensive 
databases containing hydrocarbon physicochemical 
properties. These properties include enthalpy of vaporization 
at boiling point, density, thermal expansion coefficient, 
enthalpy of fusion, dipole moment, van der Waals (vdW) 
area and volume, radius of gyration, and isothermal 
compressibility. Our chosen models for analysis encompass 
linear regression (LR), K-nearest neighbor (KNN), random 
forest (RF), and XGBoost (extreme gradient boosting). By 
using the abovementioned properties, our purpose was to 
optimize the models to achieve accurate regressors for SFT. 
Finally, we evaluated the feature importance in the models 
with the methods of permutation feature importance (PFI) 
method and Shapley analysis (SHAP). The determination of 
feature importance is crucial to understand which molecular 
properties are necessary for the model to accurately predict 
the SFT.

Methodology

Data acquisition

We have obtained physical properties of hydrocarbons 
from Yaws.30 Details on the number of molecules (instances) 
available in the handbook are shown in Table 1. To extract 
the data from Yaws’ text, Tabula31 was used to convert the 
PDF into CSV files. This allowed data manipulation using 
Python libraries such as Pandas32,33 and Numpy,34 which 
facilitate working with tabular data. To analyze and extract 
information from the molecular formula, two libraries, 
mol-mass (Molmass PyPI) and chemparse (Chemparse 
PyPI),35 were utilized. This allowed the incorporation of 
information on atomic composition and molecular mass 
into the data sets.

Data preparation

To ensure data consistency, certain conditions were used 
during the data cross-referencing process, such as having a 
common molecular identifier (the CAS number) in all tables 
and discarding non-standard information. Additionally, 
only SFT calculated at a temperature of 298.15 K were 
included. With these premises, we assembled four data 
sets combining different physicochemical properties 
obtained from the extraction of the handbook (see Table 2). 
Upon inspection of the last row and the distribution of 
the table, it becomes apparent that the four data sets are 
not uniform. They differ in the terms of the measured 
properties (features) and the number of molecules included 
(instances). As can be concluded by comparing data sets 0 
and 3, the more completeness in terms of features (number 
of physicochemical properties considered) present in the data 

Table 1. Number of instances present in the handbook30 used to obtain 
the physicochemical properties of the molecules

Chapter/feature No. of molecules

Enthalpy of vaporization at boiling 21337

Density solid 13781

Critical properties 9927

Density liquid 9766

Surface tension 9766

Thermal expansion coefficient 9766

Enthalpy of vaporization 8646

Enthalpy of fusion 5846

Dipole moment 1454

vdW area and volume 1411

Radius gyration 1103

Isothermal compressibility 650

vdW: van der Waals.
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set the less number of instances (molecules). Therefore, it is 
natural to investigate which data set significantly contributes 
to the prediction of the SFT in hydrocarbons.

Machine learning models

The methodology depicted in Figure 1 describes the 
approach taken to address the task of SFT prediction (ŷ) 
using a set of physicochemical properties (features) 
xfeats ∈ Rn. This procedure is applied to all available data 
sets consistently. Considering the planned methodology, 
it is crucial to assess the dimensions of each data set to 
prevent the “curse of dimensionality”.36 The dimensions of 
the data sets are as follows: data set 0 consists of 497 rows 
and 22 columns, data set 1 has 820 rows and 20 columns, 
data set 2 contains 3377 rows and 20 columns, and data set 
3 comprises 4170 rows and 21 columns. The goal of the 
proposed work is to identify the data set that yields accurate 
predictions of ŷ using the ML-based regression algorithm. 
Although addressing correlations can be challenging in ML 
algorithms, it can be mitigated by transforming the features 
space to a lower-dimensional space while preserving 
high variance. In our approach, we employed a principal 
component analysis based (PCA-based) mapping technique 
to determine its contribution to the regression process. It 
is important to note that there is a trade-off when applying 

such techniques, as the interpretability of the original data 
set can be impaired in favor of the mapping process.

To determine the optimal regressor that yields the best 
performance with the most representative data set, it is 
necessary to establish a performance measurement criterion 
for the algorithms. Since the problem at hand involves 
regression, two metrics were utilized to assess algorithm 
performance: mean squared error (MSE) and the coefficient 
of determination (R2) score. Therefore, the best regressor 
for the available data sets will exhibit the lowest MSE and 
the highest R2 score. To accomplish this, a straightforward 
routine was applied, wherein each data set is loaded 
individually and the same procedure is applied to all of them 
to ensure a fair comparison among the techniques. In this 
case, four algorithms are tested to address the regression: 
(i) LR, (ii) KNN, (iii) RF and (iv) XGBoost.

The choice of these algorithms is based on their potential 
for generalization. LR is used as a baseline for comparing 
the performance of other algorithms. A LR model is a 
statistical technique used to establish linear relationships 
between dependent variables. More complex algorithms 
may demonstrate improved metrics if LR has sufficient 
generalization capability for the prediction task. The 
selection of other algorithms is based on their performance 
with tabular data, with RF and XGBoost being particularly 
effective according to the state of the art.37 In a decision 
tree algorithm, data records are structured hierarchically, 
comprising nodes and branches guided by specific rules, 
rendering them suitable for classification and numerical 
(regression) data sets.38 The RF algorithm extends the 
decision tree algorithm by creating and growing multiple 
decision trees for evaluation purposes.39 Conversely, 
XGBoost is a scalable and distributed model based on 
gradient-boosted decision trees, featuring parallel tree 
boosting capabilities.37 KNN was included as an intermediate 
choice to provide additional performance comparisons. This 

Table 2. Data sets generated after data extraction (from Yaws handbook)30 and after data crossing

Measurement Data set 0 Data set 1 Data set 2 Data set 3

Surface tension 9766 9766 9766 9766

Density liquid 9766 9766 9766 9766

Enthalpy of vaporization at boiling 21337 21337 21337 21337

Enthalpy of vaporization 8646 8646 8646 8646

Enthalpy of fusion 5846 5846 5846 -

Thermal expansion coefficient 9766 9766 9766 9766

Dipole moment 1454 - - -

Radius of gyration 1103 - - -

vdW area and volume 1411 1411 - -

Number of molecules 498 820 3377 4170

vdW: van der Waals.

Figure 1. Diagram summarizing the approach used to obtain machine 
learning models capable of predicting SFT from tabulated physicochemical 
properties of molecules.
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algorithm is commonly used for classification and regression 
tasks, relying on the majority class or average value of the 
‘k’ nearest neighbors in the feature space to make predictions 
for new data points. It operates without assumptions about 
data distribution, directly learning from the training data 
by measuring distances and selecting the nearest neighbors 
based on a specified value of “k”.40

Regarding the data distribution, each available data 
set is divided into two subsets: one exclusively for 
training the ML algorithms (85%) and another for testing 
the models generated by the algorithms (15%). A grid 
search is conducted for each model to explore a set of 
hyperparameters. Additionally, k-fold cross-validation 
is performed on a portion of the training data, ensuring 
accurate selection of the best model. In simplified terms, 
a set of potential regressors is obtained and those with 
the best performance on data not used for training is 
selected, considering metrics, hyperparameters, and the 
data set representativeness, these results are shown in the 
Supplementary Information (SI) section. Once the best 
regressor is chosen, the model is tested. This process is 
then repeated for each algorithm.

Models are often considered black boxes, making 
it challenging to directly understand how each property 
influences the predictions. In this context, we used the 
permutation feature importance method (PFI) and the 
SHAP (Shapley additive explanations)41,42 analysis to create 
detailed explanations of the model and to provide a clearer 
interpretation on how the features influence the target values. 
PFI assesses the importance of each feature in a machine 
learning model by observing how much the performance of 
the model drops when the values of a feature are randomly 
rearranged. Features that lead to significant drops in 
performance upon shuffling are considered more influential 
for the predictive ability of the model. On the other hand, 
the SHAP algorithm calculates Shapley values,43 indicating 
the impact of each feature on the prediction. Negative SHAP 
values indicate an influence towards a lower target value and 
positive values indicate an influence towards a higher target. 
Additionally, Shapley values are useful in generating feature 
importance indicators. The relevance of applying this method 
lies in its ability to generate knowledge that can be applied 
even without the model, playing a crucial role, especially in 
the design of new materials.

Results and Discussion

PCA analysis on the features influence in the data sets

The primary objective of PCA is to keep a significant 
amount of information from the original data while 

reducing its dimensionality. However, this reduction comes 
at the cost of losing variability in the data set. Figure S1  
(SI section) demonstrates that by adding components to 
the data set the variance is largely increased, while the 
first component of each data set captures the highest 
variance. However, to preserve a substantial amount of 
variance (ca. 0.99), nearly all components are required. 
This poses a challenge for applying PCA since the 
reduction in dimensionality comes at the expense of 
losing interpretability of the original data sets. Since the 
dimensionality remains nearly the same, training an ML 
algorithm based on this representation would be redundant. 
Therefore, this representation is discarded as it loses 
interpretability while achieving a dimensionality similar 
to that of the original data, as illustrated in Figure  S1 
(SI section).

ML performance evaluation

The outcomes obtained from the data preprocessing 
and training of the ML algorithms are presented in Table 3. 
It is evident that the performance of each algorithm varies 
across the different data sets, with data set 2 yielding 
the best results for all implemented techniques. Among 
the algorithms, XGBoost (XGB) demonstrates the 
highest performance, indicating superior generalization 
capabilities on unseen data during training. This is 
reflected in the R2 and MSE metrics (see Table 3). It 
is interesting to note that data set 0 has more features, 
including the dipole moment, radius of gyration, and 
vdW area and volume. These features could be important 
in the prediction of the SFT. On the other hand, the low 
performance of models for this data set is possibly related 
to its small size. The same can be observed for the data 
set 1 (it retained the vdW area and volume), which is the 
second-smallest data set. For the data sets 2 and 3, the 
only difference among them is the enthalpy of fusion 
(present in data set 2). Although the removal of enthalpy 
of fusion in data set 3 lowers the number of molecules 
in the data set, it was observed that this feature has a 
positive effect on the performance of the model. Hence, 
there is a balance between the size of the data set and the 
information provided by its features. One can also see 
from Table 3 that the XGBoost regressor performed better 
than all the other methods in almost all cases.

To observe the performance of each technique on 
unseen data, a random subset of the data is partitioned 
multiple times. The experiment is repeated 100 times to 
generate Figure 2, which displays the boxplots for each 
algorithm and the corresponding metrics. The focus is 
solely on data set 2, as it consistently produced the best 
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results with all ML algorithms, as previously demonstrated. 
Notably, XGBoost (XGB) exhibits superior performance 
compared to the other algorithms in both metrics. It 
maintains a lower error level (approximately 4.5 mN2 m-2; 
see Figure 2b), while achieving the highest prediction score 
(approximately 0.89; see Figure 2a). The results presented 
in Table 3 align with the boxplots shown in Figure 2, as the 

values in the table deviate slightly from the median in the 
boxplots, but remain close to the expected values.

Although the metrics already indicate the ability of 
the trained model to generalize, further interpretability 
is desired, especially considering that dimensionality 
reduction was not performed. To gain insights into 
which features are relevant for predicting SFT (ŷ), we 
analyzed the feature importance with the PFI method. 
Since XGBoost (XGB) was the best performing classifier, 
we focus on reporting the importance analysis for this 
algorithm trained on data set 2. Figure 3 illustrates that the 
most important features for XGBoost are the enthalpy of 
vaporization, density, molecular weight, and the number 
of oxygen atoms in the molecule (O). In a more detailed 
interpretation of this result, we understand that features 
like density can be easily correlated with the SFT, since 
this latter can increase with an increasing density value 
due to intermolecular forces and interactions (although 
there is not a universal trend for this relation). However, 
the expected importance of the molecule hydrogen (H) 
and carbon (C) content in the prediction process was not 

Table 3. Overall ML algorithms performance for all data sets considering MSE and R2 values

Technique Data set 0 Data set 1 Data set 2 Data set 3

LR
MSE / (mN2 m-2) 642.68 168.26 11.59 19.70

R2 0.31 0.20 0.71 0.74

KNN
MSE / (mN2 m-2) 769.37 14.27 6.62 15.74

R2 0.17 0.81 0.83 0.79

RF
MSE / (mN2 m-2) 671.48 10.29 5.46 15.99

R2 0.28 0.86 0.87 0.80

XGBoost
MSE / (mN2 m-2) 707.91 16.05 4.65 11.32

R2 0.24 0.78 0.89 0.85

LR: linear regression; KNN: K-nearest neighbor; RF: random forest; XGBoost: extreme gradient boosting; MSE: mean squared error; R2: xxx.

Figure 2. Box plot depicting the performance of each model trained with 
data set 2. Performance was analyzed in terms of (a) the R2 score and 
(b) mean squared error (MSE). The diamonds depicted in the boxplots 
represent outliers.

Figure 3. Feature importance obtained with the PFI method for the 
XGBoost algorithm, measured as the percentage of importance in the 
prediction process of the target variable γ̂ (using data set 2).
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substantial. One possible explanation at the model level 
is that these two variables are highly correlated, which is 
expected given that hydrocarbons predominantly consist 
of these two atoms, and usually most of the hydrogens are 
bonded to carbon atoms.

It is important to note that not all trained algorithms 
exhibit the same features with the same level of relevance. 
We analyzed the feature importance for the other algorithms 
as well as for data set 3. Figure S2 (SI section) showcases 
the most relevant features for algorithms that typically rely 
on decision trees, particularly RF and XGBoost. It can 
be observed the significance of the density as a relevant 
parameter in both regressors for all data sets. However, 
Figure S2 highlights that the importance of density varies 
across the models and data sets. Additionally, there are other 
features that are consistently shared among all models, 
such as the number of hydrogen atoms in the molecule (H), 
enthalpy of vaporization and molecular weight.

The feature importance obtained with the Shapley 
(SHAP) analysis for XGBoost algorithm on data set 2 is 
shown in Figure 4. The enthalpy of vaporization, density, 
molecular weight and hydrogen content are among the 
most important features (see Figure 4). The molecule 
oxygen content (O) is more critical for the PFI than for 
the SHAP analysis. The order of the feature importance 
also changed among the two methods. Considering the 
SHAP values for enthalpy of vaporization the lower the 
value the lower the interfacial tension (see Figure 5). 
This could be explained by the fact that a lower enthalpy 
of vaporization implies that the molecules have weaker 
intermolecular interactions at the surface, thus requiring 
less energy to be separated.44 The same trend is observed 
for the lower values of density, as the molecule tends 
to have lower interfacial tensions (although with some 
exceptions).45 This happens because denser liquids tend 
to require some energy to alter its surface area, i.e., 
molecules can be more closely packed, which, in turn, 
means stronger intermolecular forces.46 For the molecular 
weight, it is commonly known that long chain surfactants 
can have lower interfacial tensions.47 The carbon and 
hydrogen content (C and H) also shows lower SFT for 
higher contents (see Figure 5). This can be related to the 
size of the hydrocarbon chain, as longer chains have more 
carbon/hydrogen atoms and present smaller SFT values. 

Just with four features (enthalpy of vaporization, 
density, molecular weight and the molecule hydrogen 
content) the model achieved an explainability of 
approximately 80% (see Figure 4). All the other features 
should play a secondary role in determining the SFT. 
Features like thermal expansion, oxygen amount  (O), 
enthalpy of fusion and all other 9 features (see Figure 3) 

did not manifest a clear correlation in SHAP results. 
For instance, an increase in the amount of oxygen in 
the molecule (O) is associated with both large and small 
values of SFT (see Figure 5), thus indicating a more 
complex correlation for this feature. The presence of 
oxygen is directly related to the manifestation of hydrogen 
bonds in the system, which, in turn, modifies the SFT. 
However, hydrogen bonds are also strongly related to the 
molecule stereochemistry. This is why this feature did not 
present an easily explainable SHAP result. 

A limitation observed for the most accurate model 
here described (XGBoost trained on data set 2) was the 
prediction of SFT in regions of the features space containing 
little data density. In these regions, we found a larger error 
for the model, as seen in Figure 6. For the test set described 
in Figure 6 we used 507 molecules (instances). Possibly, 
by increasing the number of molecules in the set we should 
observe a better accuracy of the model in these regions (of 
low data density).

Recent efforts were made to create predictive models 
for SFT. Using the simplified molecular input line 
entry specification (SMILES), researchers were able 
to predict SFT with great accuracy (R2 of 0.98-0.99) 
using ML‑based models trained with 244 molecules.48 
Another article reported ML models capable of predicting 
15 physicochemical properties for 23 fuel types, including 
alkanes, alkenes, alcohols, aldehydes, ketones, esters, ethers, 
aromatics, peroxide and carboxylic acids.49 The authors 

Figure 4. Feature importance using the Shapley (SHAP) analysis for the 
XGBoost algorithm trained with data set 2. The upper x-axis represents 
the composition ratio, and the lower x-axis represents the cumulative 
ratio. The bars are related to the composition ratio, and the line is related 
to the cumulative ratio.
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used quantitative structure property relationship (QSPR) as 
input to the models and achieved accuracies of 0.9898 (R2) 
and 0.7993 mN m-1 (RMSE, root-mean-square error). 
However, they used just 488 molecules as instances. In 
another recent article,26 a group of 154 model hydrocarbon 
surfactants had their SFT predicted with an accuracy 
of 0.69-0.87 (R2 value). Although high accuracies were 
previously obtained in SFT predictive ML models, the 
generalization capacity of these models remains to be 
evaluated. To the best of our knowledge, the models 
presented here were trained with larger data sets of 
hydrocarbon molecules. In this sense, their generalization 
capacity (considering unseen molecules) was more tested in 
comparison with the previous ones reported in the literature. 
Just for comparison, in the testing set of our models we 
have used more molecules than the whole training data set 
of previous articles (> 500 molecules).

Conclusions

Following a thorough exploration of various 
machine learning algorithms for predicting hydrocarbon 
surface tension (SFT), we observed that XGBoost has 
superior performance in terms of predictive accuracy 
and generalization capabilities compared to other ML 
algorithms. This conclusion was taken after exploring 
data sets with different sizes and number of features, and 
a balance was found among these two properties of the 
data sets. The most accurate machine learning model was 
XGBoost (trained with 3377 molecules), with a mean 
squared error (MSE) of 4.65 mN m-1 and an R2 score of 
0.89. The models also indicate that the SFT prediction can 
be accurately done using enthalpy of vaporization, density, 
molecular weight and hydrogen content as data input. In 
this sense, this work provides a guide for selecting the 
most important molecule characterization experiments to 
be performed to feed predictive machine learning models 
for SFT.

In conclusion, this study presents a promising 
framework for predicting hydrocarbon SFT, which holds 
potential applications in diverse fields, including the oil 
and gas industry and materials science. Further exploration 
and refinement of these predictive models can contribute 
to advancements in various practical domains. While our 
discoveries shed light on the molecular properties that 
impact SFT, this work leaves the perspective for additional 
investigation into other molecular properties.

Supplementary Information

Supplementary information (models hyperparameters, 
PCA results and feature importance analysis for all data 
sets) is available free of charge at http://jbcs.sbq.org.br as 
PDF file.
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