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The inhibition of the fatty acid amide hydrolase (FAAH), an endocannabinoid system component, 
emerged as a potentially new therapeutic target for a range of clinical disorders such as acute and 
chronic pain. Some α-ketoheterocycle derivatives demonstrated interesting analgesic and anti-
inflammatory activities in vitro. Ligand-Based Drug Design techniques such as knowledge graph 
convolutional networks (kGCN) and hologram quantitative structure-activity relationship (HQSAR) 
using α-ketoheterocycle derivatives from five different datasets were generated to discover the relation 
between the chemical structures and the inhibition activity. Meanwhile, structure-based drug design 
simulations as interaction fields (MIF), molecular docking, and ligand sites studies (LSI) from FAAH 
were performed using Autogrid software and FTmap/FTsite servers. The results of both studies were 
merged to propose predictive models. The resulting kGCN model demonstrated adequate accuracy 
area under the curve by receiver operating characteristic (AUC-ROC 0.7922). From contribution maps 
of the Ligand-Based Drug Design (LBDD) models and the generated probes using MIF and LSI, it 
was observed that the oxazole ring, the ketone group, and the apolar chain present in the structures 
of the inhibitors are important, besides the evidence of the Cys269 and Val270 residues importance 
for the potential interaction, confirmed by carried docking studies. These fragments and structural 
information can be used to carry out new FAAH potential inhibitors studies and report kGCN as an 
accurate classification technique. 
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Introduction

Fatty acid amide hydrolase (FAAH) belongs to a large 
group of enzymes termed the amidase signature family 
and is the main enzyme responsible for the metabolism 
of N-arachidonoyl ethanolamine (anandamide, AEA) 
and 2-arachidonoylglycerol (2-AG). AEA and 2-AG are 
biosynthetic ligands of cannabinoid G-protein coupled 
receptors CB1 and CB2 which are widely distributed in the 
central nervous system (CNS), the immune system, and 
the peripheral tissues of mammals (e.g., human, monkey, 
dog, mouse and rat). These components are part of the 
endocannabinoid system, an endogenous signaling system 
with physiological action on homeostasis regulation.1-3

The activation of cannabinoid receptors (CB1 and CB2) 
has been shown to relieve pain and inflammation, regulate 
motility and appetite, and produce anxiolytic effects in pre-

clinical studies.2-4 The corporal levels of AEA and 2-AG 
are modulated by its metabolism: FAAH metabolizes AEA 
into arachidonic acid (AA) and ethanolamine, while another 
enzyme, the monoacylglycerol lipase (MAGL), has been 
demonstrated to be the major hydrolase responsible for the 
transformation of 2-AG into AA and glycerol (Figure 1). 
Therefore, FAAH inhibitors can alter the signaling of 
AEA and, thereby, induce numerous biological responses 
by increasing the stimulation of CB1/CB2 receptors by 
endocannabinoid ligands.2-4 

Despite being studied for over twenty years and 
having no inhibitors available on the market, FAAH 
remains a promising molecular target for the design 
of substances as potential treatment for inflammation 
conditions such as osteoarthritis of the knee, and 
neurodegenerative diseases such as schizophrenia and 
Tourette syndrome.5-7 The development of FAAH inhibitors 
has significantly progressed and several selective inhibitors 
have been designed and synthesized over the last years: 
α-ketoheterocycle derivatives, carbamates, sulfonyl 

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

https://orcid.org/0000-0001-9675-5907


Integration of LBDD and SBDD Studies on Drug Design: A Fatty Acid Amide Hydrolase (FAAH) Case StudySantana et al.

2 of 12 J. Braz. Chem. Soc. 2025, 36, 2, e-20240117

fluorides, ureas, boronic acids, aryl thiol heterocycles, 
3-carboxamido-5-aryl isoxazole, 1,3,4-oxadiazol-2-ones, 
and others.3,8

The development of new FAAH inhibitors is, actually, 
extensively explored, and the use of computational techniques 
is a useful ally to make a more rational and assertive 
development regarding the pharmacological properties 
of new molecules. Since 2000, Boger and co‑workers9-13 
have been developing and reporting several derivatives of 
the α-ketoheterocycle with FAAH’s inhibition activities. 
With the structure and activity information, it is possible 
to develop computational models to predict the activity of 
new molecules, orient synthesis, and optimize structures 
of FAAH inhibitors.

Cheminformatic studies using machine learning (ML) 
and quantitative structure-activity relationship (QSAR) 
models are widely implemented in the search and 
development of bioactive compounds. Multiple approaches 
to QSAR modeling using various statistical or machine 
learning techniques and different types of chemical 
descriptors have been developed over the years.14-16

The prediction of potential interactions between a 
biomolecular target and its ligands can be made using 
computational studies such as molecular interaction 
fields (MIF) and ligand site interactions (LSI). The LSI 
technique is based on the identification of energetically 
important ligand site regions, called hotspots, through its 
interactions with a standardized set of probes (organic 
small molecules). On the other hand, the MIF studies 
are based on the exploration of the electronic and steric 
complementarity of the protein ligand site and some 
probes set (atoms). In general, the MIF and LSI studies 
can provide a characterization of the drugabillity of some 
potential inhibitors and binding sites.17,18 A FAAH MIF 
study reported in 200919 identified some important potential 
interactions between the enzyme and some carbamates 

derivatives, but focusing on the steric proprieties of this 
compound and not taking into account conformational 
aspects of FAAH or the importance of the electrophilic 
group to the inhibition activity.

After that, the main objective of this work is to apply 
a graph-based neural network classification methodology, 
specifically the graph convolutional neural network (kGCN) 
method from Kojima et al.,20 to understand the structure-
activity relationship of a series of α-keto heterocyclic 
derivatives FAAH inhibitors. In addition, a comparison 
between obtained the results with other Ligand-Based Drug 
Design (LBDD) and Structure-Based Drug Design (SBDD) 
techniques will be helpful in designing novel derivatives 
of FAAH inhibitors. 

Methodology

Dataset curation

Five datasets of α-ketoheterocycle derivatives inhibitors 
of FAAH used for the LBDD studies were selected from 
the literature (Table 1).9-13 The selected articles have similar 
or equivalent inhibition experimental conditions. The 
compounds with no defined stereochemistry and/or did not 
have an exact inhibition constant (Ki) value were excluded 
from the analysis. In other words, biological activities 
annotations with <, >, ≥ and ≤ relations were not used for 
models’ generation.

First, the generation of the 2D molecular structures was 
performed using the Marvin Sketch software.21 After, the 
conversion for 3D format and lowest energy conformers were 
carried out using OMEGA 2.5.1.422,23 followed by correction 
of ionization state at physiological pH (7.4) using fixpka 
software implemented on QUACPAC 1.6.3.1 package.24

The Ki values were converted to the corresponding 
pKi (-logKi) value and used as dependent variables 
in the hologram quantitative structure-activity 
relationship (HQSAR) analyses and active/inactive cutoff 
to kGCN models’ generation. It is important to mention that 
the values of Ki were retrieved from the literature and were 
measured under the same experimental conditions, which 
is considered a fundamental requirement for successful 
LBDD studies. All the inhibition studies were performed 
at 20-23 °C with purified recombinant rat FAAH expressed 
in Escherichia coli or with solubilized COS-7 (a cell line 
derived from monkey kidney cells) membrane extracts 
from cells transiently transfected with human FAAH cDNA 
(complementary DNA) and the Ki of the inhibitions was 
calculated by the Dixon method.9-13

The studied compounds were divided into training 
and test sets containing 80 and 20%, respectively, of 

Figure 1. Hydrolysis of AEA and 2-AG mediated by FAAH and MAGL 
enzymes.
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the total number of compounds in each dataset. For this 
division, MASSA algorithm25,26 was employed as well 
as the hierarchical cluster analysis (HCA) performed 
with the KNIME Analytics Platform,27 using a specific 
workflow.14 The training set compounds were used to 
construct the HQSAR and knowledge graph convolutional 
networks (kGCN) models and the test set compounds were 
used to perform external validations.

Models’ generation 

The generation of kGCN models was performed 
according to the protocol reported by Veríssimo et al.16 
To classify the substances as active and inactive, the mean 
pKi value of the training set compounds was used as basis. 
The learning rate values were defined as 0.001, 0.01, 0.1, 
and 0.3, while the batch size was variated in the interval of 
1 to 40, by steps of 5 units (1,5,10,15, …40). The number 
of epochs was fixed in 1000. 

The generation of HQSAR modeling analyses was 
performed using the Sybyl X 2.1 package.28 Several 
parameters were varied, such as hologram length (HL, 
variable that controls the number of bins in the hologram, 
ranging from 53 to 401), fragment size (Fsize, parameter 
that controls the minimum and maximum length of atoms 
to be included in fragments) and fragment distinction (Fdist, 
fragments could be composed by atoms (A), bonds (B), 
connections (C), hydrogen atoms (HA), chirality (Ch),  

and/or H-bond donor/acceptor groups (DA)). These 
parameters affect the hologram generation and consequently 
the statistical evaluation of constructed HQSAR models.

First, all the models applying different combinations of 
Fdist were generated using default Fsize (4 to 7 atoms) and 
the 13-default series of HL. Next, the influence of Fsize 
was further investigated for the three most robust models 
from the previous step. 

Afterwards, the models were validated (internally 
and externally) and the most robust were used for the 
contribution map’s generation.

Internal and external validations

The kGCN models were evaluated and compared by 
their AUC (area under the curve, by receiver operating 
characteristic, ROC curve) cross and external validation 
values, accuracy (ACC), Matthew’s correlation coefficient 
(MCC), true positive rate (TPR), and F1-score.29

The quality of the constructed models was evaluated 
by internal and external validations. All obtained models 
in the HQSAR study were generated using the partial 
least squares (PLS) method and each one was fully cross-
validated by the leave-one-out (LOO) method.30 The 
external validations consist of the prediction of inhibition 
activity for test set compounds. Afterwards, metrics 
for regression-based models were calculated aiming to 
evaluate model’s quality and predictability: r2m metrics, 

Table 1. Literature articles: reference, total number of compounds, selected compounds, pKi range and general structure

Dataset Reference
Total number of 

compounds
Selected 

compounds
pKi range General structure

1 Boger et al.9 79 74 4.0-9.8

 

2 Ezzili et al.13 72 67 4.9-9.3

 

3 Hardouin et al.10 109 101 4.7-9.4

 

4 Kimball et al.12 100 94 4.3-9.7

 

5 Romero et al.11 96 94 5.2-9.5

 

pKi: negative logarithm of the inhibition constant.
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concordance correlation coefficient (CCC), root mean 
squared error (RMSE), and mean absolute error (MAE), 
which guided us in the selection of the most predictive 
model.30,31 In summary, LOO cross-validation was 
employed to select the most robust models and external 
validations metrics were calculated to select most predictive 
models. In addition, two other validation procedures were 
performed only for final selected model. The additional 
robustness test was performed employing another 
cross‑validation (CV) method with predetermined groups of 
compounds (from 5 to 70 groups, called leave-many-out or 
LMO). All CV steps of LMO were carried out in triplicate 
and the average q2 (coefficient of determination of the 
predicted vs. experimental values during cross‑validation), 
the mean, and the standard deviation values were also 
calculated. Finally, the Y-scrambling validation was 
performed for final selected model. This was employed 
as a method to verify if the generated model was obtained 
by chance. In this technique, the response vector (pKi) 
is shuffled multiple times, twenty other data sets were 
randomly created and a scrambled HQSAR models 
were generated. Thus, the results were obtained, and it 
is expected that the scrambled model does not have good 
statistical metrics (q² and standard error of prediction, SEP) 
as the original HQSAR model.

Applicability domain

For comparison of the models obtained with full dataset 
(compounds from the 5 literature sources) and dataset 4 
(used for final reported HQSAR model), the chemical space 
was calculated and represented in four different approaches: 
(i) using Morgan fingerprint with 1024 bits and radius equals 
to 2; (ii) AtomPair fingerprint with 1024 bits, minimum 
and maximum lengths equal to 1 and 30, respectively; 
(iii) molecular access system (MACCS) fingerprint with 
default parameters; (iv) and using drug‑like physicochemical 
properties such as molecular weight (MW), calculated logP 
(SlogP), number of hydrogen bond donors and acceptors 
(HBD and HBA, respectively), number of rotatable bonds 
(nRtB), and fraction of sp3 carbon atoms (fCsp3). The three 
first approaches were carried out to represent the structural 
space because even they represent the same concept, distinct 
fingerprints result different profile of similarities between 
ligands.32 After calculation of fingerprints and properties, 
each approach was followed by principal component 
analysis (PCA). The properties from druglike space (iv) 
were normalized before PCA. Lastly, the two first principal 
components for each analysis were plotted as a representation 
of the applicability domain (AD) of datasets. All steps 
involved in AD representation were calculated in KNIME 

platform.27 Calculation of fingerprints and properties were 
performed with RDkit nodes.33-35

Molecular interaction fields and ligand sites interaction 
analyses

First, appropriate 3D structures were chosen by an 
extensive search on Protein Data Bank (PDB) based on 
some quality parameters, such as resolution and minimal 
amount of unmodeled fragments. In the interaction fields and 
ligand sites experiments, the crystalline complex structure 
chosen from PDB was 3K7F.36 This complex is employed 
with the humanized rFAAH protein, with proper resolution 
(1.95 Å) and not important unmodelled sequences, that 
is, the regions with incomplete density or that were not 
modeled correctly does not interfere with the active site or 
binding site of the enzyme. Also, the co-crystalized ligand 
F2C (6-[2-(7-phenylheptanoyl)-1,3 oxazol-5-yl]pyridine-
2‑carboxylic acid) (Figure 2) is a α-keto heterocyclic 
derivative (as the dataset compounds studies), which 
interactions results could corroborate with the simulations. 

Also, the complex is composed by the two monomers 
(A and B) that compound the active FAAH protein, the 
co‑crystalized ligand, and crystallized waters. MIFs and LSI 
were inferred using the 3D structure of rFAAH (humanized 
rat’s FAAH) and performed by the program AutoGrid,37,38 
FTSite39-41 and FTMap39,41,42 servers, respectively. 

For the MIF analyses, the AutoGrid from AutoDock 
software37,38 was employed to generate 3D maps of 
potential interaction regions within the inhibitor binding 
site. The monomers of the selected protein model were 
separated, the crystallized water molecules were excluded, 
the hydrogen atoms were added, and the partial atom’s 
charge was calculated. Then, to the simulation, each 
monomer was submitted individually to the GRID 
software, and the grid box was (region of exploration 
with the probes) defined as 60 × 60 × 60 Å, being the 
centroid defined as the center of mass of the ligand 
present in the structure. In this study, the selected probes 
were: hydrophobic, represented by aliphatic carbon 
(C); hydrogen-bond donor, represented by the donor 
hydrogen (HD) and hydrogen-bond acceptor, represented 
by the oxygen acceptor (OA). 

The LSI studies were performed using the servers 
FTSite and FTMap, the first used to calculate the protein 

Figure 2. Co-crystalized ligand (F2C) of 3K7F complex.
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cavities as potential interaction sites and the second used 
to calculate its potential interaction types. The chosen 
PDB were treated (the co-crystalized ligand excluded) 
and each monomer was submitted, individually, to the 
servers. FTsite generated a file containing the sites and 
their amino acid residues, while the FTMap resulted 
file contains the probes that interacted with the protein 
amino acid residues. To calculate and classify the 
potential interactions, both files were merged, using the 
PyMOL software43 version 1.9c and the Discovery Studio 
Software,44 which allows for verification of the probes 
and their interactions with the protein residues. After 
that, it was possible to estimate what residues participate 
in most interactions, as well as to propose the potentially 
important ligand groups.

Molecular docking

The molecular docking study was performed using 
AutoDock Vina software38,45,46 and the monomer A of 
the crystalline complex structure 3K7F.36 The gridbox 
site was defined as dimensions of 50 × 50 × 50 Å of the 
co‑crystalized ligand’s (F2C) center mass. All experimental 
water molecules were excluded. The simulation parameters, 
such as the number of runs, were evaluated by the redocking 
validation. The software PyMOL was applied to the 
image generation and visual interpretation of the potential 
interactions.

After establishing the most appropriate docking 
protocol, the two most active and inactive compounds (by 
their pKi value) were submitted to the simulation, and their 

potential interactions were evaluated and compared to the 
results of SBDD studies. 

Results and Discussion

LBDD techniques

Initially, the generation of kGCN models resulted 
in 32 models using the complete dataset, generated by 
varying batch size and learning rate values, fixing in 1000 
the number of epochs. Every model was internally and 
externally validated, and its AUC-ROC5-fold and AUC‑ROCext 
were compared (Figure 3). The most predictive model 
was set (learning rate = 0.001 and batch size = 10) and 
showed adequate accuracy along validation metrics, such 
as internal and external AUC-ROC values (0.7922 and 
0.7722, respectively) (Table 2).

In sequence, the HQSAR modeling with the entire 
dataset resulted in 32 initial models internally validated. 
None of the models demonstrated acceptable robustness 
(q2 < 0.6). However, as proof of the unsuitability of the 

Table 2. Calculated internal and external metrics of the most predictive 
model (learning rate = 0.001, batch size = 10, and epochs = 1000)

AUC ACC MCC F1-score TPR

Internal 0.792 0.746 0.478 0.692 -

External 0.772 0.725 0.448 0.744 0.761

AUC: area under curve; ACC: accuracy; MCC: Matthew’s correlation 
coefficient; F1-score: harmonic mean of the precision and recall; TRP: true 
positive rate.

Figure 3. AUC-ROCS values by (a) internal validation; (b) external validation and (c) average of AUC values by learning rate sets.
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dataset, the three most robust models were evaluated 
(q2 equals 0.538, 0.503, and 0.494) even after variation of 
fragment length. Still, none of the simulation’s parameter 
changes generated a suitable model using this data 
set (Table 3) (more information in the Supplementary 
Information (SI) section, Table S1). These results could be 
explained due to the fact that kGCN method is considered 
a deep-learning machine-learning technique and, in theory, 
the more samples for the learning procedure the better. 
Furthermore, the kGCN performs a classification task 
(predicts compounds as active or inactive/less active), 
the presence of experimental noise will cause lower 
interference in the predictions.

Following, the full dataset was divided into five 
smaller datasets (grouping compounds according to 
the original publications) early mentioned aiming to 
investigate the suitability of the dataset to model FAAH 
affinity and further comparison with kGCN results. This 
procedure would allow the generation of robust individual 
models. In that sense, all the other data sets generated 
models with q2 > 0.6, except dataset 5. The highest q2 
values were 0.760 for training set 1, 0.621 for training 
set 2, 0.696 for training set 3, 0.843 for training set 4 and 
0.460 for training set 5 (Table 4). This preliminary result 
indicates that individual datasets are more suitable for 

QSAR modeling in this case. Potentially, interference of 
inter-experimental results and, maybe, inter-laboratory 
handling generated noise that affected the modelability 
of the full dataset.47

The fragment size of the most robust model of each set 
was variated to evaluate the influence of this parameter on 
statistical results. As a result, the most internally robust 
model was submitted to external validation, using the test 
data set (details in Tables S2-S4, SI section). The HQSAR 
final model derived from training set molecules of dataset 
4 (fragment distinction A/B; fragment size as 6 to 8 atoms, 
maximum compound 15 and best length 83, Table 5). 
Figure 4a shows the distribution of training and test values 
of pKi demonstrating that the model does not have any 
Y-outlier. It means that the test set compounds were well 
predicted. Furthermore, the MASSA algorithm used in 
training/test splitting was designed to avoid the presence 
of outliers in test set compounds.25,26 

After choosing the best model and doing the internal 
and external validation, two additional validations were 
carried out. The robustness test suggests that the constructed 
model has acceptable internal consistency since all average 
q2 values for each number of cross-validation groups 
were higher than 0.6 (Figure 4b). After that, the LMO 
and Y-scrambling validations were performed for the best 

Table 3. The three most robust HQSAR models with fragment sizes of 4 to 7 atoms

Fdist q2 SEV r2 SEE HL PC Size
A,C,Ch 0.494 0.819 0.771 0.551 353 11 4 to 7
A,B,Ch,DA 0.503 0.817 0.823 0.488 401 15 4 to 7
A,B,C,Ch 0.538 0.786 0.828 0.480 307 14 4 to 7
Fdist: fragment distinction; q2: LOO internal validation coefficient; r2: no validation calibration coefficient; HL: hologram length; PC: number of PLS 
principal components; SEV: standard error of validation; SEE: standard error of estimation.

Table 4. Most robust HQSAR models with fragment size of 4 to 7 atoms for each studied dataset

Fdist Dataset q2 SEV r2 SEE HL PC
A,B,C 1 0.760 0.72 0.924 0.406 59 11
A,C,Ch 2 0.621 0.699 0.757 0.560 59 5
A,HA,Ch 3 0.696 0.678 0.951 0.272 307 11
A, B 4 0.843 0.503 0.962 0.246 401 15
A,HA,Ch 5 0.460 0.759 0.915 0.301 401 9
Fdist: fragment distinction; q2: LOO internal validation coefficient; r2: no validation calibration coefficient; HL: hologram length; PC: number of PLS 
principal components; SEV: standard error of validation; SEE: standard error of estimation.

Table 5. External validation metrics of the most robust HQSAR model of dataset 4

Dataset
Model 

(Fdist/Fsize)
CCC r2m r2m’ AVGr2m Δr2m RMSE

4 A, B / 6 to 8 0.941 0.870 0.813 0.841 0.057 0.410

CCC: concordance correlation coefficient to check the correlation between precision and accuracy; r2m: Roy’s coefficient of predictive potential; r2m’: 
Roy’s coefficient of predictive potential calculated with inverted axis; AVGr2m: average between r2m and r2m’; Δr2m: difference between r2m and r2m’; 
RMSE: root mean squared error to measure the model’s ability to predict.
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HQSAR model. When the graph of Y-scrambling validation 
was plotted (Figure 4c), it could be seen that the difference 
between the final HQSAR chosen model to the other 
20 models had the pKi values randomized. The highest q2 
was 0.074 showing that the randomized pKi did not create 
a statistical validated model. Thus, it can be concluded that 
the HQSAR model was not susceptible to over-fitting and 
variations in training set (from LMO analysis) and was not 
obtained by chance (from Y-scrambling analysis).

Therefore, all CV internal validation methods (LOO 
and LMO) as well as the external validation provided 
acceptable quality according to the scientific literature31,32 
which indicated that the HQSAR model and their respective 
fragments information were suitable to predict the 
inhibition activity.

Although the HQSAR model using only dataset 4 is 
considered suitable for further studies according to the 
calculated internal and external validation metrics, it is 
important to highlight that split our initial full dataset 
into a partial (only dataset 4) result in a drastic decrease 
in chemical representativity.29 This aspect can be noted in 
Figure 5, the compounds from dataset 4 underrepresent 
the full dataset comprised with compounds from the 
five selected articles. As the PCA using three different 
fingerprints could not be fully reliable to interpret due to the 
low amount of retained information in the two first principal 
components (< 30%), a PCA with physicochemical 
properties was also carried out and dataset 4 represents 
only a fraction of the entire used chemical space. In this 

sense, kGCN reported model is more suitable for further 
predictions since the applicability domain is larger than 
HQSAR model. Therefore, the use of a validated model 
for drug design with a broad chemical space coverage is 
important to avoid false positives in future virtual screening 
and predictions.48

Therefore, both classification and prediction studies 
models provided good results (according to their validation 
metrics), which indicated that the HQSAR and kGCN 
models and their respective fragments information were 
suitable for predicting and classifying the inhibition activity 
of compounds. Finally, the contribution maps (from both 
studies’ models) of the two highest and the lowest bioactive 
molecules were analyzed. Figure 6 shows the structure 
of these molecules and their representative structural 
contributions from each model.

When the HQSAR and kGCN maps of compounds 5 
and 6 are analyzed, the positive contribution colors 
demonstrated that the main structure of α-ketooxazole 
is very important to the inhibition activity. The carbon of 
the ketone and the oxygen and nitrogen of oxazole seem 
to be important to the activity in these molecules when 
these are connected to electronegative groups. By the 
way, when compound 101 is analyzed on the contribution 
map of HQSAR, it can be seen that the oxazole lost its 
importance when it is connected to less electronegative 
groups. At the same time, on compound 5, the presence 
of more electronegative groups increases the importance 
of the ketone group, which can be explained by the rise 

Figure 4. Validations: (a) correlation between experimentally determined and predicted pKi values for the best model; (b) experimental and predicted 
pKi values for training (grey dot) and test (black dot). Robustness test of the best constructed HQSAR model. (c) Y-scrambling statistical validation 
comparing the best models (cross-validated coefficient: q2 LOO, which is q2 obtained by leave-one-out technique, and standard deviation: SEV, in black) 
and randomly scrambled models (in grey).
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of its electrophilic character (and the possibility of the 
well-reported reversible Ser addition to the electrophilic 
carbonyl, that forms a hemiacetal at the enzyme active 
site).11

 The values obtained in the validation were considered 
acceptable in the literature.30,31 From the interpretation 
of the maps, it is possible to evaluate the importance of 
oxazole and ketone for biological activity.

SBDD studies

For the ligand site evaluation, the generated fields 
and probes were individually evaluated and counted. The 
generated probes resulted from FTmap and the sites resulted 
from FTsite were merged, and only the common probes 
were evaluated (Figures S1 and S2, SI section).

Both monomers showed minor differences in the 
distribution by type of interaction (Figure 7a). As 
an absolute number of interactions with the probes, 
monomer A formed 125 interactions while monomer  B 
formed  120. Nonetheless, the Van der Waals (VdW) 
interactions demonstrated the highest frequencies on the 
found interactions, followed by the hydrogen bonds (HBA 
and HBD). In fact, the interaction differences could be 
explained by the recently discovered allosteric inhibition 
propriety of the FAAH dimer.47

Figure 5. Principal component analysis of chemical space using Morgan fingerprint (a), AtomPair fingerprint (b), MACCS fingerprint (c), and drug-like 
physicochemical properties (d) of the full dataset. Compounds of datasets 1, 2, 3, and 5 were colored in blue while compounds from dataset 4 were colored 
in brown.

Figure 6. HQSAR and kGCN maps of the most active (compounds 5 
and 6 from Kimball et al.12) and least active (compound 101 from 
Kimball et al.12) compounds from dataset 4 and their fragment and atomic 
contribution.
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The amino acids of FAAH involved in the interactions 
were also evaluated: the common residues demonstrated 
a similar frequency of interactions and the Cys269 
(19 and 20%), and Val270 (17 and 18%) are the most 
frequent regarding the total number of interactions. 
Interestingly, both residues have already been reported 
as important interaction sites of some FAAH inhibitors.49 
The monomers A and B demonstrated a similar trend of 
percentual interactions of amino acids (Figure 7b). 

The MIF results corroborate with the analysis of the 
SBDD studies about the importance of the ketone group. 

As can be seen in Figures 7c and 7d, the HBA MIFs (OA 
probes) overlap the oxygen atom of the ketone in both 
monomers. This explains the potential hydrogen bonds 
between the amino acids of the catalytic region (Ser241 
and Ser217) and the inhibitor, observed by the frequency 
of interactions on the ligand site studies. 

The acid group of the polar head of the inhibitor F2C 
is also overlapped by the OA and HD probes (Figures 7e 
and 7f), showing its interesting potential hydrogen bonds 
between the Cys269 and Val270 residues and the inhibitor. 
In this case, the inhibitor acts as a hydrogen bond acceptor.

Figure 7. Interaction frequencies between the two FAAH’s monomers by interaction types (a) and amino acid residues (b). Generated hotspots on MIF 
studies: OA probes of chain A (c) and chain B (d); HD probes of chain A (e) and chain B (f); C probes of chain A (g) and chain B (h).
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The hydrophobic MIF (probe C) overlays most 
parts of the inhibitor structure, except the ketone group, 
demonstrating the hydrophobic nature of the active site of 
the FAAH, and explaining the high frequency of Van der 
Waals interactions found in the exploration of hotspots 
(Figures 7g and 7h). 

The molecular docking experiments reinforce the MIF 
studies results. The docking protocol was validated by 
redocking simulation and its RMSD value equal to 1.58 Å. 
The cysteine (Cys269) and valine (Val270) are involved in 
interactions with the active compounds, but not with the 
inactive ones (Figure 8). The lateral carbonic chain of the 
compounds is all involved in hydrophobic interactions with 
the ACP region of FAAH. The ketone group, present in both 
active compounds, interacts with the well-pointed hydrogen 
donors Ser271, Ile238, and Gly239. Otherwise, the inactive 
compound can be observed outside of the active site, which 
decreases its interactions with the mentioned residues. 

In conclusion, when the SBDD and the LBDD studies 
are compared, it is possible to correlate their results 
(Figure 9). The oxazol-ketone group, appointed as essential 
to the inhibition activity by HQSAR and kGCN best 
models, is also an HBA, which it can be inferred that fits 
the HBD region suggested by MIF studies and confirmed 
by docking analyses. Also, the oxazole ring demonstrated 
a positive contribution to the FAAH’s inhibition by the 
HQSAR, while the MIF appointed polar groups substituents 
as ideal to fit on the HBD/OA regions of the enzyme. On 

the other hand, MIF studies indicate that apolar groups on 
the lateral chain of inhibitor compounds could fit in the 
hydrophobic pockets of FAAH, interacting with its apolar 
residues, confirmed by the potential interactions observed 
in the docking study.

The integration of LBDD and SBDD to FAAH 
shows the complementary structural information of the 
potential interaction compounds of each one. After that, 
with the results of the developed studies, it is possible to 
design potential FAAH inhibitors for future drug design 
campaigns. 

Conclusions

Firstly, graph-based classification models were suitable 
to generate robust models for datasets with compounds 
from different sources in contrast to PLS regression. In 
that sense, the most robust classification (kGCN) model 
(learning rate = 0.001 and batch size = 10) was constructed 
using the full data set and presented high robustness and 
predictability with AUC-ROC values equal to 0.792 and 
0.772 for internal and external validations, respectively. 
The constructed predictive model (HQSAR) using the 
full α-ketoheterocycle dataset did not have good internal 
consistency and external predictivity, but the models built 
using the five sets, individually, had. Dataset 4 gave the 
best HQSAR model (fragment distinction A/B; fragment 
size 6-8, maximum compound 15, and best length 83). The 
quality of the best models concerning internal and external 
predictiveness was evaluated by statistical parameters, such 
as leave-one-out cross-validation q2 (0.857) and quality of 
test set predictions CCC (0.941) to the HQSAR model. All 
the validation metrics’ values calculated were considered 
acceptable in the literature. Additionally, the employment 
of kGCN was important to model a dataset containing 
compounds from different sources due to the superior 
ability of data generalization and, therefore, increasing 
the coverage of chemical space. From the interpretation of 
the maps, it is possible to evaluate the importance of the 
oxazole and the ketone for the activity. The MIF and LSI 
studies were carried out using the monomers of the FAAH 
enzyme and evaluated. The absolute number of interactions 

Figure 8. Potential interactions observed in docking simulations.

Figure 9. Compared LBDD and SBDD studies results.
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was different among the monomers A and B (125 and 120, 
respectively), but the more frequent amino acid residues 
were similar (Cys269 and Val270) and compatible with 
the data already described in the literature. Furthermore, 
the interpretation of kGCN was corroborated by HQSAR 
(a widely employed QSAR technique) and other SBDD 
methods highlighting the suitability of graph-based 
classification algorithms in the drug design field. The 
studies proved the importance of the oxazole-ketone group 
of FAAH inhibitors, such as the hydrophobic nature of the 
ligand site of the enzyme. The development of prediction 
and classification models and potential FAAH hotspots 
provided complementary information about the structural 
proprieties of ketoheterocycle FAAH inhibitors. 

Supplementary Information

Experimental protocols and detailed data are available 
free of charge at http://jbcs.sbq.org.br as PDF file.
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