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Nicotine and glycerol are the two important indexes of reconstituted tobacco and they determine 
the quality of the reconstituted tobacco. A hand-held near infrared spectrometer was used to collect 
the spectral data of reconstituted tobacco leaves, and three algorithms of principal component 
regression, partial least squares and support vector machine were used to build the prediction 
model of the nicotine and glycerol content in reconstituted tobacco leaves. The experimental 
results showed that the support vector machine algorithm could achieve the best prediction results 
compared with principal component regression and partial least squares algorithms. The proposed 
method can rapidly determine the nicotine and glycerol content of the reconstituted tobacco leaves 
and it provides a new technical reference for improving the quality of new tobacco.
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Introduction

As people pay more and more attention to their own 
health, heating without burning tobacco products rapidly 
occupy the market of traditional cigarettes due to their 
advantages of lower content of most harmful components 
than traditional cigarettes and closest smoking sensation 
to traditional cigarettes.1 Reconstituted tobacco was 
commonly used in tobacco industry, which can effectively 
control the composition and cost in tobacco processing. 
Reconstituted tobacco leaves were flake or filament-like 
regenerated products made from waste tobacco materials 
generated in the process of cigarette rolling, such as 
cigarette ends, stems and broken tobacco flakes, and used 
as cigarette filling materials.2 There were many indexes 
to evaluate the quality of reconstituted tobacco. Nicotine 
(NIC) and glycerol (VG) are two important indexes of 
reconstituted tobacco.3 VG can make tobacco leaves have 
smoother taste. In view of health, remanufactured tobacco 
requires appropriate NIC and VG content, and the suction 
sensation should not be blindly pursued while the impact 
on the body should be ignored.

The determination of NIC and VG components in 
reconstituted tobacco mainly include chemical analysis 
method and spectral detection method. Chemical 
analysis methods were continuous flow method and 
gas chromatography method, which are expensive and 
time-comsuming. Near infrared (NIR) spectroscopy is one 
of the spectral detection methods and the wavelength range 
is 780-2526 nm. In recent years, many researchers have 
tried to use NIR spectroscopy to detect the relevant indexes 
of tobacco leaves, such as NIC, total sugar, reducing sugar, 
total nitrogen, chlorine,4 tar, carbon monoxide,5 ash, total 
volatile acid, total volatile alkali,6 potassium7 and chlorine 
in tobacco.8,9 In most of these studies, NIR detection 
technology combined with partial least square (PLS) 
method was used to analyze the chemical composition 
of a tobacco leaf. There was no relevant research on the 
determination of NIC and VG in reconstituted tobacco 
leaves. Besides, operators are required to have certain 
professional knowledge. 

In this study, a hand-held near infrared spectrometer was 
used to collect the spectrum of reconstituted tobacco leaves. 
Different modeling methods were used to build the NIC and 
VG models, and the best prediction model was obtained. 
The experimental results showed that it was feasible to 
predict the content of NIC and VG in reconstituted tobacco 
leaves by using hand-held near infrared spectroscopy. 
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Experimental

Equipment and samples 

A hand-held NIR spectrometer used in the experiment 
was the MicroNIR 1700 device provided by Viavi Solution, 
Milpitas, CA, United States. The parameters of this hand-
held NIR spectrometer were set in Table 1.

The spectral information of 57 reconstituted tobacco 
samples (provided by Yunan Tobacco Biological Technology 
Co., Ltd., Kunming, China) was obtained by using a 
hand-held NIR spectrometer. A polytetrafluoroethylene 
(PTFE) background disc was used as the spectral reference. 
The PTFE device was provided by Viavi Solution, Milpitas, 
CA, United States. Each sample was scanned for three 
times, and the average value of the three spectra was 
set as the final spectrum of the sample. The spectrum 
of reconstituted tobacco collected by handheld NIR 
spectrometer was shown in Figure 1. The 57 samples were 
divided in a 7:3 ratio, that is, there were 40 groups in the 
training set and 17 groups in the test set. The thickness 
of the reconstituted tobacco leaves employed in the study 
was about 140-300 μm. The details of NIC and VG content 
of the samples were shown in Table 2. The range of NIC 

content was 1.48-3.06%, the average value and standard 
deviation were 2.15 and 0.38%, respectively. The range 
of VG content was 14.14-23.16%, the average value and 
standard deviation were 17.3 and 1.9%, respectively.

NIC and VG contents information were acquired by 
continuous flow and gas chromatography.10 The continuous 
flow method used water to extract tobacco samples. The 
total phytocides (in terms of NIC) in the extract reacted 
with p-aminobenzene sulfonic acid (provided by Shanghai 
Aladdin Biochemical Technology Co., Ltd., Shanghai, 
China) and cyanide chloride (provided by Shanghai Yiji 
Industrial Co., Ltd., Shanghai, China), which was produced 
by on-line reaction of potassium cyanide and chloramine T 
(provided by Hebei Fangqian New Material Technology 
Co. Ltd.,  Shijiazhuang, China). The reactants were 
determined by colorimeter (provided by Light Analysis 
Technology Co., Hong Kong, China) at 460 nm. The 
details of the method are provided in YCT 160-2002.11 In 
gas chromatography, VG was extracted from samples by 
methanol solution with internal label and determined by 
meteorological chromatograph equipped with hydrogen 
flame detector. The meteorological chromatograph was the 
GC-8890 device provided by Shandong Zhipu Information 
Technology Co. Ltd., Zaozhuang, China. The details of the 
method are provided in YCT 243-2008.12 The rest of the 
devices and reagents provided by Yunnan Comtestor Co. 
Ltd., Kunming, China.

In this paper, the work was completed with the help 
of MATLAB13 and Origin14 software. For the SVR 
calculations, a MATLAB toolbox developed and described 
by Gunn was used.15

Theory of principal component regression

Principal component analysis (PCA) was mainly used 
to extract independent index information from the data 
set. There are several PCA algorithms of which non-linear 
iterative partial least-squares (NIPALS) and singular value 
decomposition (SVD) are two of the most common. PCA 
decomposes an X matrix into two smaller matrices, one of 
scores (T) and the other of loadings (P) as follows:

X = T ∙ P (1)

Table 1. Related parameter settings of MicroNIR

Parameter

Detector array 128-pixel

Resolution of spectra / nm 6.25

Acquisition mode reflectance

Spectral range / nm 900-1650

Integration time / ms 10

Each spectrum scans average 60 scans

Measurement time / s 0.6

Table 2. Details of nicotine and glycerol  content

Indicator
Max value / 

%
Min 

value / %
Average 
value / %

Standard 
deviation / %

NIC 3.06 1.48 2.15 0.38

VG 23.16 14.14 17.30 1.90

NIC: nicotine; VG: glycerol.

Figure 1. Near infrared spectrum of reconstituted tobacco leaves.
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Hence each principal component, a, is characterized by: 
(i) a scores vector ta being the ath column of T, (ii) a loadings 
vector pa being the ath row of P; and (iii) an eigenvalue ga 
which may be defined by:

 (2)

Principal components (PCs) are often presented 
geometrically. Spectra can be represented as points in J 
dimensional space where each of the J axes represents the 
intensity at each wavelength. The first PC can be defined as 
the best fit straight line in this multi-dimensional space. The 
scores represent the distance along this line, and the loadings 
the direction (angle) of the straight line. If there is only one 
compound in a series of spectra, all the spectra will fall 
approximately on the straight line, since the intensity of each 
spectrum will relate directly to concentration. This distance 
is the score of the PC. If there are two components, ideally 
two PCs will be calculated, representing the axes of a plane.

Another important property of PCs is often loosely 
called orthogonality. Numerically this means that:

 (3)

 (4)

or ta ∙ tb = 0 and pa ∙ pb = 0 for two components a and b 
using vector notation. Some authors state that principal 
components are uncorrelated. Strictly speaking this 
property depends on data preprocessing, and is only true 
if the variables have been centred (down each column) 
prior to PCA. We will, however, use the terminology 
‘orthogonality’ to refer to these properties below.

Principal components are sometimes called abstract 
factors, and are primarily mathematical entities. PCR uses 
regression (sometimes called transformation or rotation) to 
convert PC scores onto concentrations.16,17

Theory of partial least squares

Partial least squares (PLS) was a regression modeling 
method of multiple dependent variables to multiple 
independent variables. The PLS method mainly uses the 
following formulation:

 (5)

where, Xtest is the spectral data matrix, ŷtest is the data 

matrix formed by the corresponding label of Xtest. The 
decomposition renders the score matrix T, the loading 
matrix P, and the weight loading matrix W. b is the 
vector of PLS regression coefficients obtained during the 
calibration step from:

b = W(PTW)–1T+ŷtest (6)

where the superscript ‘+’ indicates the pseudoinverse 
operation.18

PLS sets the PCA method and other advantages of 
multiple regression analysis methods in one, because of its 
“response” matrix and the existence of prediction function, 
it can avoid some potential problems, such as the data 
was not in accordance with the normal distribution, data 
structure asymmetry. Hence, it was often used as a linear 
regression model in the analysis of predictive data.

Theory of support vector machine

Support vector machine (SVM) might be regarded as 
the perfect candidate for spectral regression purposes. A 
large advantage of SVM-based techniques is their ability 
to model nonlinear relationships. SVM has the advantage 
of leading to a global model that is capable of efficiently 
dealing with high dimensional input vectors.19,20

The regression of SVM can be defined by minimizing 
the following cost function:

minimize: 

subject to: yn – f(Xn)b – b0 ≤ ε + en, en ≥ 0  (7)

f(Xn)b + b0 – yn ≤ ε + en
*, en

* ≥ 0

The cost function L in equation 7 consists of a 2-norm 
penalty on the regression vector and an error term multiplied 
by the error weight, c, to simultaneously minimize both 
the regression vector size and the prediction errors as 
defined in terms of some margin ε according to the two 
sets of inequality constraints. The problem is commonly 
solved by introducing Lagrange multipliers (βn, βn

*) for the 
constraints and reformulating the optimization problem 
in equation 7 as a quadratic programming problem. The 
regression vectors are then obtained from an expansion of 
the Lagrange multipliers multiplied by the corresponding 
training observations as follows:

 (8)
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where  . Based on equation 8, without the bias 
of b0, the prediction of inputs can be produced by the inner 
product as , where the 
Gram matrix f(X)f(X) is defined as a dot product of inputs, 
and is referred to as the kernel matrix, K, that is required to 
meet certain conditions (Mercer’s conditions), such that the  

kernel matrix   is symmetric and positive  

semi-definite (i.e., has non-negative eigenvalues). Among 
many possible options of kernel functions, the typical kernel 
function used in SVM is the Gaussian kernel function.21

Process and evaluation methods 

The specific process of data processing was shown in 
Figure 2, which mainly consists of the following steps: 

(i) The collected reconstituted tobacco samples were 
divided into two parts: training and test samples, the 
samples were divided randomly; 

(ii) the handheld near-infrared spectrometer was used 
to collect spectroscopic data for the three samples, and 
the corresponding NIC and VG content information was 
obtained using standard chemical methods; 

(iii) the spectroscopic data was successively 
preprocessed, and the characteristic spectral ranges were 
selected; 

(iv) three algorithms PCR, PLS and SVM were used to 
build the respective training models and the optimal model 
was obtained by analyzing the results;

(v) in the subsequent procedure, the NIC and VG 
content of the test samples could be obtained in real time 
by substituting the spectral data into the training model.

Coefficient of determination (R2), root mean square 
error (RMSE) and mean absolute error (MAE) were the 
mostly used as the evaluation indexes in the evaluation of 
the established spectral model. The determined coefficients 
were random variables sampled at random and can be 
used to test the reliability of the model. It was calculated 
as follows:

 (9)

where n was the sample size, yi was the actual value of the 
sample, ŷi was the predicted value of the sample obtained 
by the established model, ȳm was the average value of the 
sample, and the R2 value of 0 < R2 < 1, the R2 closer to 1, 
the better the performance of the model.

The root mean square error (RMSE) can well reflect 
the precision of the measured object, and its calculation 
formula was as follows:

   (10)

If the prediction was more accurate, the RMSE was 
smaller, so the smaller the RMSE was, the better the model 
was. In the experiment, the root mean square error of the 
training set was usually denoted as RMSEC, while the root 
mean square error of prediction was denoted as RMSEP.

Mean absolute error (MAE) can accurately reflect the 
size of the actual prediction error. It was calculated as 
follows:

  (11)

Theoretically, the smaller the MAE was, the better the 
model was.

In this study, R2, RMSEC, RMSEP and MAE will be 
used as the evaluation indexes of the model.

Results and Discussion

Compared to desktop NIR spectroscopy instrument, 
the spectral data collected by a handheld NIR device 
have more noise and a relatively lower signal-to-noise 
ratio. In order to reduce the effect of noise and improve 
the accuracy of the prediction model, it was necessary 
to do some pre-processing operations on the spectra 
data. MSC, standard normal variate  (SNV), Savitzky-

Figure 2. Procedure workflow.
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Golay convolution smoothing method combining with 
1st derivatives (SG1) and with 2nd derivatives (SG2), were 
chosen in the pre-processing process. The details of four 
different pre-processing results were shown in Table 3. 
In Table 3, the optimal SVM model of NIC and VG 
could be obtained by using the SNV pretreatment when 
the coefficient of determination (R2) was the highest and 
RMSEP was the lowest. The best predicted R2 and RMSEP 
for NIC and VG indicators were 0.8525, 0.0484% and 
0.8008, 0.0631% with the best preprocessing of SNV, 
respectively. It indicated that the SVM model could 
achieve the best performance with the SNV method. Here, 
a mean result was obtained by calculating the average 
of 20 times each result. Figure 3 was the pre-processing 
result and it showed that the effect of scattering of 
the spectrum could be eliminated effectively via SNV 
operation. The spectral absorption ability of information 
was enhanced and the signal-to-noise ratio was improved.

Table 4 showed the results of SVM model with different 
parameters. In Table 4, the SVM model achieved the 
highest R2 and the lowest RMSEP for the NIC indicator 
when the parameters were set radial basis function as 
the kernel function type and ε-SVM (epsilon-support 
vector regression). The same conclusion holes for the VG 
indicator was achieved. The R2 and RMSEP for NIC and 
VG indicator were 0.8525, 0.0484% and 0.8008, 0.0631%, 
respectively. Hence, the same parameters would be used 
for modeling in all subsequent experiments. In this study, 

SVM was applied by choosing the ε-SVR algorithm with 
the following parameters: radial basis function (RBF) as 
kernel type, the gamma (γ) and error costs (C)  for NIC and 
VG indicator were 0.0055, 11.3137 and 0.001, 32.

Table 5 showed R2 and RMSEC of the training 
model with the optimal pretreatment and PCR, PLS, 
SVM algorithms. It could be seen from Table 5 that the 
performance of two models by using SVM algorithms was 
better than that of PCR and PLS algorithms. The R2 of NIC 
training model by SVM algorithms was 0.9610, which was 
0.237 and 0.0732 higher than that of PCR and PLS; the 
RMSEC of NIC training model by SVM algorithms was 
0.0103%, which was 0.1914 and 0.1183% lower than that 
of PCR and PLS. The R2 of VG training model by SVM 
algorithms was 0.9117, which was 0.1706 and 0.0373 
higher than that of PCR and PLS; the RMSEC of VG 
training model by SVM algorithms was 0.0180%, which 
was 0.9467 and 0.6539% lower than that of PCR and PLS.

Table 6 showed R2 and RMSEP of the prediction 
model with the optimal pretreatment and PCR, PLS, 
SVM algorithms. It could be seen from Table 6 that the 
performance of two models by using SVM algorithms 
was better than that of PCR and PLS algorithms. The R2 
of NIC test model by SVM algorithms was 0.8525, which 
was 0.232 and 0.0846 higher than that of PCR and PLS; 
the RMSEP of NIC test model by SVM algorithms was 
0.0484%, which was 0.1897 and 0.1399% lower than that of 
PCR and PLS. The R2 of VG test model by SVM algorithms 
was 0.8008, which was 0.142 and 0.0256 higher than that 
of PCR and PLS; the RMSEP of VG test model by SVM 
algorithms was 0.0631%, which was 1.0467 and 0.8405% 
lower than that of PCR and PLS. Regression by SVM can 
be very useful due to its ability to find nonlinear, global 
solutions and its ability to work with high dimensional 
input vectors.

Table 3. Results of SVM model of nicotine and propylene glycol using 
different preprocessing methods

Indicator
Preprocessing 

method

SVM

R2 RMSEP / %

NIC

NO 0.6958 0.0936

MSC 0.8141 0.0491

SNV 0.8525 0.0484

SG1 0.7068 0.0743

SG2 0.7070 0.0735

VG

NO 0.6240 0.0865

MSC 0.7865 0.0712

SNV 0.8008 0.0631

SG1 0.7418 0.0692

SG2 0.7847 0.0710

SVM: support vector machine; R2: coefficient of determination; 
RMSEP: the root mean square error of prediction; NIC: nicotine; 
NO: no preprocessing method is used; MSC: multiplicative scatter 
correction; SNV: standard normal variate transform; SG1: Savitzky-Golay 
convolution smoothing method combining the first derivatives; SG2: 
Savitzky-Golay convolution smoothing method combining the second 
derivatives; VG: glycerol.

Figure 3. Spectral data after SNV preprocessing operation.
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Table 7 showed MAE of the prediction model in all 
cases with the optimal pretreatment. The table presented 
that either nicotine or glycerol leads to the same conclusion: 
the model built by SVM algorithm had a minimum MAE 
value in the same SNV preprocessing. The MAE for NIC 
and VG indicators were 0.0587 and 0.3474%, respectively. 
The MAE of NIC indicator was 0.0587, which was 0.0996 
and 0.0417 lower than that of PCR and PLS; the MAE of 
VG indicator was 0.3474, which was 0.4588 and 0.1697 
lower than that of PCR and PLS. The explanation was that, 
the predicted value of the model built by SVM algorithm 
was closer to the true value. That is, for SVM algorithm 
was the best to predict nictine and glycerol content than 
PCR and PLS.

Figure 4 showed the nicotine and glycerol estimated 
vs. nominal. Figures 4a, 4b and 4c present NIC prediction 
by PCR, PLS and SVM algorithms, respectively, whereas 
Figures 4d, 4e and 4f show VG prediction by PCR, PLS 
and SVM algorithms, respectively. In Figures 4a, 4b and 
4c, the x axis represents the NIC value acquired by the 

continuous flow protocol and the y axis shows the values 
acquired by NIR spectroscopy. In Figures 4d, 4e and 4f, 
the x axis represents the VG value acquired by the gas 
chromatography protocol and the y axis shows the values 
acquired by NIR spectroscopy. These figures indicate 
the model was operating properly and that the spectral 
measurements closely fit the NIC and VG content values 
by the use of the SVM algorithm.

The elliptic joint confidence region (EJCR) method was 
applied to assess the prediction ability of the supervised 

Table 4. Results of SVM model of nicotine and propylene glycol using different parameters

Indicator Type of kernel function Type of SVM R2 RMSEP / %

NIC

linear epsilon-SVM 0.6511 0.1117

polynomial epsilon-SVM 0.7222 0.0686

radial basis function epsilon-SVM 0.8525 0.0484

sigmoid epsilon-SVM 0.4925 0.1859

VG

linear epsilon-SVM 0.6506 0.1353

polynomial epsilon-SVM 0.4734 0.3965

radial basis function epsilon-SVM 0.8008 0.0631

sigmoid epsilon-SVM 0.7203 0.0740

SVM: support vector machine; R2: coefficient of determination; RMSEP: the root mean square error of prediction; NIC: nicotine; VG: glycerol.

Table 5. R2 and RMSEC of the training model with different modeling algorithms

Indicator
Preprocessing 

method

PCR PLS SVM

R2 RMSEC / % R2 RMSEC / % R2 RMSEC / %

NIC SNV 0.7240 0.2017 0.8878 0.1286 0.9610 0.0103

VG SNV 0.7411 0.9647 0.8744 0.6719 0.9117 0.0180

PCR: principal component regression; PLS: partial least squares; SVM: support vector machine; R2: coefficient of determination; RMSEC: the root mean 
square error of the training set; NIC: nicotine; SNV: standard normal variate transform; VG: glycerol.

Table 6. R2 and RMSEP of the prediction model with different modeling algorithms

Indicator
Preprocessing 

method

PCR PLS SVM

R2 RMSEP / % R2 RMSEP / % R2 RMSEP / %

NIC SNV 0.6205 0.2381 0.7679 0.1883 0.8525 0.0484

VG SNV 0.6588 1.1098 0.7752 0.9036 0.8008 0.0631

PCR: principal component regression; PLS: partial least squares; SVM: support vector machine; R2: coefficient of determination; RMSEC: the root mean 
square error of the training set; NIC: nicotine; SNV: standard normal variate transform; VG: glycerol.

Table 7. MAE of the prediction model

Preprocessing 
method

Algorithm NIC / % VG / %

SNV PCR 0.1583 0.8062

SNV PLS 0.1004 0.5171

SNV SVM 0.0587 0.3474

NIC: nicotine; VG: glycerol; SNV: standard normal variate transform; 
PCR: principal component regression; PLS: partial least squares; 
SVM: support vector machine.
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pattern recognition methods.22 Indeed, using the EJCR, it is 
possible to investigate the existence of systematic errors and 
to evaluate the accuracy of the methodology employed.23 
Figure 5 showed the EJCR of estimated vs. nominal values, 
the 95% confidence level was chosen in each subgraph. 

Figures 5a, 5b and 5c present NIC prediction by PCR, PLS 
and SVM algorithms, respectively, whereas Figures  5d, 
5e and 5f show the VG prediction by PCR, PLS and SVM 
algorithms, respectively. The EJCR for all SVM models 
showed there were no significant differences between the 

Figure 4. Plots of estimated vs. nominal values of nicotine by (a) PCR, (b) PLS, (c) SVM algorithms; glycerol by (d) PCR, (e) PLS, (f) SVM algorithms. 
The red lines indicate the perfect fit.

Figure 5. The elliptic joint confidence region (EJCR) of estimated vs. nominal values of nicotine by (a) PCR, (b) PLS, (c) SVM algorithms; glycerol by 
(d) PCR, (e) PLS, (f) SVM algorithms.
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estimated values and SVM nominal values as well as that 
there was no evidence of bias (not shown). Therefore, 
all SVM models were able to quantify the NIC and VG 
contents in samples with excellent results.

Conclusions

Considering the advantages of a hand-held NIR 
spectrometer, the study focused on how to determine NIC 
and VG content of a reconstituted tobacco leave rapidly. A 
hand-held NIR spectrometer was used to collect the spectral 
data of reconstituted tobacco leaves and the models of NIC 
and VG were built by using a SVM algorithm. Besides, 
the performances of SVM models were also compared 
with PCR and PLS models. The experimental results 
showed that a hand-held NIR spectrometer combined with 
SVM algorithm can determine NIC and VG content of a 
reconstituted tobacco leave rapidly.
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