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Basis Set Convergence in Hartree-Fock Calculations of Some Diatomic Molecules Containing
First and Second-Row Atoms
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Investiga-se a convergência de conjuntos de bases em direção ao limite numérico da energia
Hartree-Fock (HF) total para as seqüências hierárquicas dos conjuntos de bases XZP e cc-
pVXZ. Para as duas hierarquias, melhoramentos significativos são obtidos com cada incremento
em X. Para estimar o limite do conjunto de base completo, uma forma exponencial foi usada.
Entre as várias aproximações consideradas aqui, uma extrapolação exponencial de três parâmetros
aplicada aos resultados TZP, QZP e 5ZP deu os limites do conjunto de bases mais precisos. Em
adição, energias HF dos orbitais moleculares ocupados mais altos de algumas moléculas
diatômicas foram calculadas com o conjunto 5ZP e comparadas com as correspondentes obtidas
com o conjunto cc-pV5Z e com um método numérico HF.

Basis set convergence towards the numerical limit of the total Hartree-Fock (HF) energy is
investigated for the hierarchical sequences of the XZP and cc-pVXZ basis sets. For both
hierarchies, solid improvements are obtained with each increment in X. To estimate the complete
basis set limit, an exponential form was used. Among the various approaches considered here,
a three-parameter exponential extrapolation applied to the TZP, QZP, and 5ZP results yields the
most accurate basis set limits. In addition, 5ZP highest occupied molecular orbital HF energies
of some diatomic molecules are evaluated and compared with the corresponding ones obtained
with the cc-pV5Z and numerical HF results.
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Introduction

The use of finite expansions in analytic basis functions
lies at the heart of computational molecular electronic
structure theory.1,2 It is the choice of basis set that ultimately
determines the accuracy of a calculation. The growth of
central processing power, in uniprocessor and multiprocessor
environments, and memory in high-performance computers
facilitates the use of increasingly large flexible basis sets in
molecular electronic structure calculations which in turn
allows calculations of increasing accuracy by reducing the
error associated with basis set truncation.

A step towards a systematic way of improving basis set
for describing the correlation energy was the atomic natural
orbital analysis by Almlöf and Taylor,3 which lead Dunning
and co-workers4,5 to propose the correlation consistent basis
sets of double, triple, quadruple, etc. (cc-pVXZ, X=D, T,
Q, and 5) quality. We recall that these sets were constructed
from the general contraction scheme of Raffenetti.6

Recently, Jorge and co-workers7 presented segmented
contracted double, triple and quadruple,8 and quintuple9

zeta valence quality plus polarization function (XZP, X=D,
T, Q, and 5, respectively) basis sets for the atoms from H to
Ar. At the Hartree-Fock (HF) and Mφller-Plesset second-
order levels, these sets were applied with success in
calculations of energies, dissociation energy, harmonic
vibrational frequency, and electric dipole moment of a set
of diatomic molecules containing atoms of the first- and
second-row8-10 and second-row diatomic hydrides.11 We
verified8-10 that the Jorge’s sets, when compared with the
corresponding sets of Dunning and co-workers,4,5 appear
to be the best compromise of accuracy and computational
cost.

Basis set convergence and extrapolations are among
the most important issues of contemporary molecular ab
initio theory.12-15 For total energies, it is known that the
convergence of the correlation part is significantly slower
than of the HF part. This suggests that, when studying the
basis set convergence of the energy, one should treat the
HF and correlation parts separately. When examining basis
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set convergence, it is mandatory to have a hierarchical
sequence of basis sets with systematic improvements from
level to level. The cc-pVXZ basis sets4,5 constitute such a
hierarchy and have been extensively used in previous
works on basis set convergence studies.

In this work, total HF energies for C2, FH, N2, CO, F2,
PN, SC, and ClB calculated with the XZP sets7-9 were
compared with the results obtained with numerical HF
(NHF) methods15-18 and with the sets of Dunning and co-
workers4,5 Comparing with numerical solutions of the HF
equations, we have also examined the complete basis set
(CBS) limit of the HF method using XPZ and cc-pVXZ
basis sets. For PN, SC, and ClB, 5ZP molecular orbital
HF energies were also computed and compared with
results obtained with other approaches. Thus, the main
purpose of this short report is to compare the performance
of the two hierarchical sequences of basis sets when used
to achieve the CBS limit.

Extrapolation to the complete basis set

In a previous study, Halkier et al.15 used different
equations for extrapolation and came to the conclusion
that an exponential form, which was at first time used by
Feller19 for estimating the CBS limit, is the best among
others to estimate the HF energy, namely:

ER(L) = ER(∞) + A e-BL (1)

In this equation ER(L) is the total energy computed at the
inter-nuclear distance R and L denotes the highest angular
functions of the basis sets used in extrapolation. In XZP and
cc-pVXZ hierarchies L ranges from 2 (DZP and cc-pVDZ)
to 5 (5ZP and cc-pV5Z). Also ER(∞) is the total energy in
CBS limit. The quantities A and B are fitting parameters
without physical significance. Since there are three unknown
quantities in this equation [ER(∞), A, and B], at least three
consecutive basis sets are needed for extrapolation.
Restricting ourselves to this requirement, we have used three
member groups (L, L+1, L+2) in each hierarchy. In this
regard, the two hierarchies can be extrapolated with {(2,3,4),
(3,4,5)}collections. Halkier et al.15 noted that inclusion of
cc-pVDZ result in the extrapolations lowers the accuracy
consistently, and they recommended omitting this calculation
from the extrapolations. Thus, we consider in this work only
the (3,4,5) collection.

Results and Discussion

The HF calculations reported in this section were
carried out with the GAUSSIAN 03 program.20 For each

molecule, the calculation was carried out with the same
bond distance used in the NHF calculation and spherical
harmonic Gaussian-type functions were employed.

The XZP, cc-pVXZ, and CBS HF energy errors (in
mhartree) for C2, FH, N2, CO, F2, PN, SC, and ClB are
listed in Table 1. The NHF energies15-18 are also shown.

A brief look at Table 1 offers some general trends. In
all cases enlargement of the basis set causes improvement
of EHF. For the hierarchical sequences of basis sets, the
largest total HF energy decrease occurs from DZP to TZP.
For the HF calculations, the convergence towards the basis
set limit is monotonic, smooth, and fast. The error in the
energy is reduced approximately by a factor of three each
time X is incremented (i.e., linear convergence).

The cc-pVXZ basis sets give in general better energies
than the corresponding ones evaluated with the XZP sets.
It is not surprising, since the atomic SCF energy loss in a
general contraction is, in general, smaller than that
observed in a segmented contraction, and this result is
reflected in the total HF energy of a molecule, whose wave
function is formed from atomic basis sets. On the other
hand, we verified that when comparing the second order
correlation energies computed with the cc-pVXZ and XZP
(X = 2, 3, 4, and 5) sets, the opposite occurred, i.e., the
correlation energies calculated with the sets of Jorge and
co-workers7-9 were in general better. The largest errors
obtained with the 5ZP and cc-pV5Z basis sets are
respectively 5.2 and 4.3 mhartree for ClB.

As demonstrated above, it is possible to reach
millihartree and even near microhartree precision easily
with direct computation for the molecular collection under
study. Although the rate of convergence of basis set derived
total energies relative to the CBS limit are remarkable, it
is evident that for larger systems with more electrons the
same accuracy could not be reached with direct
computation. A reliable estimation of HF energies is even
more important for large systems. This is particularly vital
in the case of isodesmic reactions,21 which could be used
for a reliable estimation of thermodynamic quantities of
large polyatomic molecules without considering the
correlation energy contribution directly.

For all molecules displayed in Table 1, the errors of
the extrapolated values of the XZP/(3,4,5) model are
smaller than those obtained with the 5ZP basis set. For
C2, the 5ZP error is about 50 times larger than that observed
with the extrapolated value. The interesting trend is that
the CBS limits are in general overestimates with this
model. Except for PN and ClB, the exact total energy is
somewhere between the 5ZP and extrapolated value of
the XZP/(3,4,5) model. Similar specifications also hold
for the extrapolated total energies from the correlation
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consistent hierarchy, although in this case the extrapolated
values are not always better than those evaluated with the
cc-pV5Z.

From Table 1, one can also verify that except for F2,
the smallest errors are obtained with the extrapolations
based on XZP (X=T, Q, 5) energies. Overall, the mean
absolute deviations among the results obtained with the
5ZP, cc-pV5ZP, XZP/(3,4,5) and cc-pVXZ/(3,4,5) models
from the corresponding NHF energies are 1.724, 0.979,
0.566, and 0.837 mhartree, respectively. From these
results, it is clear that the best mean deviation is obtained
with XZP/(3,4,5).

We believe that all the errors in the XZP (X=T, Q, 5)
extrapolated energies are smaller than the corresponding
ones obtained from the cc-pVXZ (X=T, Q, 5) extrapolated
energies because in general the total HF energies
calculated with the Jorge´s sets are larger (see Table 1).
We recall that the basis sets of Jorge and co-workers7-9

were implemented by employing the segmented
contraction scheme, whereas the sets of Dunning and
co-workers4,5 use the general contraction scheme of
Raffenetti.6 As a consequence to use the segmented
contraction scheme, the extrapolated energies obtained
from the basis sets constructed by Jorge and co-workers

are closer to the corresponding HF limits than the
extrapolations derived from the correlation consistent
basis sets. An extensive discussion about the main
differences between segmented and general contraction
schemes was done in references 1 and 10.

It is also interesting to consider the A and B values of
equation (1) in the fitting procedure. A vast difference has
been found among A and B values corresponding to
different molecules. This variance is more pronounced for
A than B. So no general predictable pattern seems to exist
for these quantities in fitting the collection studied.

Table 2 displays the highest occupied molecular orbital
energies of PN, SC, and ClB computed with the 5ZP, cc-
pV5Z basis sets, and with a NHF method.17 For any
molecule, the agreement among corresponding results
obtained with the three different approaches is very good.

Conclusions

It is shown that the XPZ basis sets provide a systematic
series of basis sets increasing accuracy and completeness.
The HF energy showed a trend to converge to well-defined
limits as the basis set is systematically enlarged, from
double to 5 zeta valence quality.

Table 1. Total HF energy errors (in mhartree) for the ground states of some diatomic molecules. NHF energies are in hartree

C2 FH N2 CO F2 PN SC ClB

DZPa 16.508 26.86 33.715 31.652 49.268 42.32 34.741 26.0
TZPb 6.567 10.04 11.464 10.641 17.096 19.61 14.954 15.3
QZPb 1.536 2.57 2.769 2.612 5.184 7.34 6.060 8.2
5ZPc 0.355 0.62 0.611 0.607 1.160 2.82 2.419 5.2
CBSd –0.007 –0.07 –0.101 –0.060 –0.893 0.19 –0.107 3.1
cc-pVDZe 19.544 51.40 39.234 41.595 87.659 45.49 32.717 29.6
cc-pVTZe 5.188 12.80 9.673 10.526 21.276 13.32 9.692 10.5
cc-pVQZe 0.900 3.13 2.029 2.022 5.046 4.09 2.854 5.5
cc-pV5Ze 0.144 0.38 0.344 0.296 0.580 1.11 0.674 4.3
CBSf –0.017 –0.71 –0.133 –0.166 –1.115 –0.31 –0.347 3.9
NHFg –75.406565h –100.07082i –108.993826j –112.790906j –198.773323h –395.18864i –435.362420k –484.1665i

 In all calculations the nuclear distances used were: C2 (1.248 Å), FH (0.917 Å), N2 (1.094 Å), CO(1.128 Å), F2 (1.412 Å), PN (1.491 Å), SC (1.534 Å), and ClB
(1.716 Å). aHF energies calculated in this work with the set of reference 7. bHF energies calculated in this work with the sets of reference 8. cHF energies
calculated in this work with the set of reference 9. dThese values were obtained from 3-point fits (TZP, QZP, and 5ZP) to equation (1). eHF energies calculated
in this work with the sets of Dunning and co-workers.4,5 fThese values were obtained from 3-point fits (cc-pVTZ, cc-pVQZ, and cc-pV5Z) to equation (1). gThe
nuclear distances used in the calculations were 1.248, 0.917, 1.094, 1.128, 1.412, 1.491, 1.534, and 1.716 Å, respectively. hNumerical HF energy from
reference 15. iNumerical HF energy from reference 17. jNumerical HF energy from reference 16. kNumerical HF energy from reference 18.

Table 2. Highest Occupied Molecular Orbital HF energies (in hartree) for the ground states of some diatomic molecules

Moleculea Basis sets

5ZP cc-pV5Z NHFb

ε(σ) ε(π) ε(σ) ε(π) ε(σ) ε(π)

PN –0.48560 –0.44318 –0.48567 –0.44314 –0.48590 –0.44333
SC –0.47034 –0.46301 –0.47029 –0.46295 –0.47056 –0.46299
ClB –0.38030 –0.52446 –0.38027 –0.52446 –0.38040 –0.52470
aIn all calculations the nuclear distances used were 1.491, 1.534, 1.716 Å, respectively. bNumerical HF energies from reference 17.
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For all molecules studied, solid improvements in the
total HF energy are obtained with each increment in the
cardinal number X, and the largest difference among the
5ZP and NHF energies is equal to 5.2 mhartree for ClB.
The XZP energies are in general worse than those
evaluated with the cc-pVXZ basis sets. We recall that our
sets were mainly designed to generate accurate correlated
molecular wave functions; see references 7-9.

For current hardware technology and high performance
computer code, in the case of small molecules, it is possible
to use direct computation as the best method to reach the
CBS limit, but in the case of larger systems an extrapolation
scheme seems mandatory. The simple exponential type
functions like equation (1) work relatively well, but it seems
that in the case of the increase size basis set hierarchies
studied here a general slight overestimation exist. So
modification of equation (1) opens the door for a better
estimation of the CBS limit. Among the ten schemes used
in this work (see Table 1) to estimate the basis set limit of
a set of diatomic molecules, the extrapolated total energies
of the XZP (X = 3, 4, and 5) hierarchy gave the best values.
We attribute this result to the segmented contraction scheme
used to construct these basis sets.

For PN, SC, and ClB, the agreement among the 5ZP,
cc-pV5Z, and NHF highest occupied molecular orbital
HF energies is very good.

Finally, it is important to say that the development of
the XZP basis sets has been partly motivated by the
expectation that it is more efficient for programs not
designed for general contractions employed in cc-pVXZ.

The complete set of the s, p, d, f, g, and h parameters
of the XZP basis sets for hydrogen, helium, and first- and
second-row atoms are available through the internet at
http://www.cce.ufes.br/qcgv/pub/.
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