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Analysis of variance (ANOVA)-simultaneous component analysis (ASCA) is a method of 
choice for factorial design studies of environmental impacts on plant metabolomes and can be 
used to quantitatively carry out this comparative analysis. The impacts of seven mixture design 
extractor systems made up of ethanol, dichloromethane, and hexane and their 1:1 binary and 
1:1:1 ternary solvents for several replicate experiments (n = 3, 4, 5) were assessed using ASCA 
models determined from Fourier-transform infrared (FTIR), near-infrared (NIR), and UV-Vis 
spectroscopic measurements on yerba mate leaf extracts. This analysis considered two‑factor 
effects: secondary sexual dimorphism (male and female plants) and cultivation systems 
(monoculture and agroforestry), as well as their interaction effect. The three binary solvents were 
found to be more efficient extractor systems for all four detectors as they found 83 main and 
interaction effects significant at or above the 95% confidence level compared with only 47 for 
the pure solvent extracts. Binary solvent extracts resulted in averages between 44.04 and 86.61% 
for the ASCA total effect variances compared with 40.62 to 71.07% for pure extractors. Of the 
60 significant effects found for experiments with 5 repetitions 53 or 88% were obtained with only 
triplicate determinations. The choice of spectroscopic technique and solvent system have large 
impacts on metabolomic analysis results.

Keywords: cultivation system, FTIR, NIR, mixture design, secondary sexual dimorphism, 
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Introduction

Ilex paraguariensis A. St. Hill. or yerba mate, is a tree 
species native from South America. Its leaves and thin green 
branches are widely used for various beverage preparations. 
Due to its pharmacological properties, yerba mate is 
becoming increasingly important as a health-promoting 
plant species known for its antioxidant, anti-inflammatory, 
antimutagenic, and anti-obesity functions.1 Yerba mate is 
a dioecious tree, showing structural, physiological, and 
chemical sexual dimorphism.2 This means that trees of two 
genders are responding differently to various environmental 
constraints, differently adjusting the plant architecture, 

leaf, and plant photosynthesis, which has implications on 
the primary and secondary leaf metabolites,3 and finally 
on biomass formation.4 It reaches a height of 15 m in 
its natural habitats, the second stratum of subtropical 
rainforest with the Araucaria angustifolia as a dominant 
species. This means that yerba mate grows naturally in 
shaded environments.4 Yerba mate is today rarely grown 
in agroforestry, a system that mimics some characteristics 
of primary forests and generates greater ecological 
sustainability, but more frequently in a monocultural 
system with only one plant species grown in a sunnier 
cultivation environment that also allows easier agricultural 
management.4

Analyzing secondary metabolites requires specific 
analytical techniques to assess the chemical variations 
involved. Spectroscopic techniques are widely used and 
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can provide valuable data in this context. They have been 
successfully applied for monitoring metabolites in plants 
cultivated under varying climatic and environmental 
condi t ions. 5-8 For  example,  Fourier‑ t ransform 
infrared (FTIR) spectroscopy offers a fast, cost-effective, 
and non-destructive way to obtain qualitative and 
quantitative information.9 It relies on the interaction of 
vibrating functional groups in molecules with infrared light, 
resulting in predictable characteristic patterns.10 Another 
valuable technique used in plant metabolic assessment is 
near-infrared (NIR) spectroscopy, which comprises low-
frequency radiation adjacent to the red hues in the visible 
spectrum.11 In the NIR region, characteristic absorbed 
radiation is often attributed to different chemical bonds, 
such as C–H, N–H, S–H, C=O, and O–H, present in the 
sample.12 This radiation region is also used to assess the 
environmental effects on plant metabolic profiles.13-16 
Ultraviolet and visible spectroscopy (UV-Vis) can be 
applied to plant metabolic analysis as this technique is 
based on light absorption promoting electrons in highly 
delocalized molecular orbitals.17 In this way, it is possible 
to investigate metabolic responses of plants in their growth 
environments.18,19 Spectral techniques provide a large 
and complex set of data, due to the large number of plant 
components,20 suggesting that their analyses must use 
diverse strategies, considering that these data contain many 
more variables than samples. 

Chemometric tools can be used to interpret these spectral 
data as a way of analyzing the significance of multi-level 
factors experienced in the field on the plant metabolome.21 
In this context, the analysis of variance  (ANOVA)-
simultaneous component analysis (ASCA) method deals 
with multivariate datasets containing an underlying 
experimental design, such as metabolomic datasets.21,22 
ASCA uses an ANOVA model to decompose the data 
matrix into main effect and interaction matrices that 
contain the level averages for the experimental factors and 
a matrix of residuals that are not explained by the model.23 
Then, principal component analysis (PCA) is applied 
separately on each effect matrix to extract and represent 
the information in a space of reduced dimensions.24 As 
ASCA is a supervised method, before interpretation of the 
PCA scores and loadings, the significance of factor effects 
and their interactions must be determined and the results 
examined to ensure that overfitting has not occurred. A 
commonly used test is the permutation test,25 where the 
data variation induced by such effects is contrasted against 
an empirical permutation distribution obtained through 
resampling.26

Metabolic fingerprinting research shows that the 
chemical composition extracted from plants depends on the 

solvent and analytical method used.27,28 Accurate outcomes 
necessitate meticulous selection of both solvent and 
instrumental technique.29 Metabolic profiles, obtained from 
a statistical mixture design, represent a prominent approach 
for maximizing profile variability, thereby facilitating the 
comprehensive investigation of plant material.30 These 
metabolic sets can be registered by different spectroscopic 
techniques in different spectral regions.16,18,28,29 Employing 
diverse spectroscopic techniques for plant metabolomic 
fingerprinting analyses may yield results conducive to 
metabolomic investigations as they exhibit varied patterns 
for their spectral profiles. It is important to assess whether 
the extracts obtained by solvent mixture designs recorded in 
different spectral regions provide similar, or complementary 
results, in terms of the effects studied. 

The main aim of this study then is to assess whether 
the effects of secondary sexual dimorphism (SSD, male 
and female) and plant growth in distinct cultivation 
systems (CS, monoculture and agroforestry) determined 
from FTIR, NIR and UV-Vis spectral profiles are significant 
for different solvent systems using ASCA models. 
Additionally, a comparison of the two factor (SSD and CS) 
effects obtained from these diverse spectroscopies can be 
made, evaluating their stabilities for varying number of 
repetitions (n) in the experimental factorial design, ranging 
from n = 3 to 5 for each level of the design.

Experimental

Leaf collection

A comprehensive description of the yerba mate 
experimental field, sample collection, and sample 
preparation can be found in other publications.4,29 For 
ease of data analysis, the collected material was coded 
based on a two-level factorial design. The factors under 
investigation included secondary sexual dimorphism (coded 
as female (0) and male (1)) and cultivation system (coded 
as monoculture (0) and agroforestry (1)).

Metabolic extraction

A thorough description of the ultrasound-assisted 
extraction procedure is available in a previous work.29 The 
solvent volumes in milliliters utilized for extraction, as 
per the statistical mixture design, are outlined in Table 1.

UV measurements

Measurements in the UV-Vis region were previously 
detailed in our study.31
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NIR measurements

The NIR absorption measurements were conducted 
using a DLP NIRscan Nano software (Texas Instruments 
Inc., Dallas, TX, USA). The spectrophotometer operated 
in transmittance mode and was equipped with a quartz 
cuvette with dimensions of 1 cm × 0.2 cm × 2.8 cm, 
providing an optical path of 2 mm. The NIR spectra were 
recorded within the wavelength range of 1700 to 900 nm, 
with a 3.9 nm resolution, and the measurements were 
performed at a temperature of 22 ± 1 °C. Each mixture 
design fingerprint spectrum was obtained by averaging 
99 scans. For sample preparation, 1 mL of extract was used 
directly after extraction without any dilution. The resulting 
NIR spectra were saved in absorbance units and stored in 
‘.txt’ file format, with each sample containing 228 data 
points. Before performing ASCA modeling, the spectral 
set was normalized with multiplicative signal correction 
(MSC) and a 2nd derivative transformation calculated by 
the Savitzky‑Golay method, using 11-point windows and 
a second-degree polynomial (Figure S1, Supplementary 
Information section). Finally, the spectra were mean-
centered.

FTIR measurements

The FTIR spectral analysis of the extracts was 
conducted using an Agilent Cary 630 FTIR spectrometer 
(Santa Clara, CA, USA) equipped with an attenuated total 
reflectance (ATR) sampling module. The measurements 
were performed in transmittance mode, covering the 
4000‑400 cm–1 range with an approximate 1 cm–1 resolution. 
The analyses were carried out at 22 ºC temperature. For 
the spectroscopic analysis, solid extracts were used after 
drying. The FTIR spectra were saved in ‘.txt’ file format, 
with each sample containing 3,864 data points (Figure S1). 

To prepare the dataset for chemometric analysis, the 
spectral data were converted to absorbance units and MSC 
normalization was performed to correct for multiplicative 
effects, such as scattering and path length variations. The 
first derivative was calculated from the spectra to enhance 
spectral features, and reduce baseline shifts. Additionally, 
Savitzky-Golay smoothing was applied with a 7-point 
window to reduce noise and improve the signal-to-noise 
ratio. Finally, the normalized spectra were mean-centered.

ASCA modeling and analyses

In the individual ASCA modeling of yerba mate leaf 
metabolomic fingerprints, the data matrices had different 
sizes based on the number of repetitions for each mixture 
design. Each row in the matrix represented a different coded 
extract according to the factorial design, and each of the 
N columns corresponded to the detector systems described 
in UV, NIR, and FTIR sections. The matrix sizes were as 
following: 12 × N for 3 repetitions, 16 × N for 4 repetitions, 
and 20 × N for 5 repetitions. 

For the simultaneous ASCA modeling with all the 
mixture design solvents, the yerba mate data matrix was 
reorganized to accommodate the augmented fingerprints. 
The columns (N) still corresponded to the different detector 
systems described in “UV, NIR, and FTIR measurements” 
sub-sections. Each row in this matrix represented a spectrum 
of a different extract coded according to the factorial design, 
with augmented columns by mixture design fingerprints. 
The matrix sizes were: 84 × N for 3 repetitions, 112 × N 
for 4 repetitions, and 140 × N for 5 repetitions. 

Statistical 95% confidence intervals were determined 
by resampling tests performing 10,000 permutations, 
thus considering effects with p-values less than 0.05 as 
significant. More information about ASCA modeling can 
be found in various articles that detail the mathematical 
method.21,22

All computations for the ASCA modeling were 
performed using Matlab 2016 software32 (R2016b, Natick, 
MA, USA) with tools from PLS_Toolbox 8.7.133 by 
Eigenvector Research (Manson, WA, USA).

Results and Discussion

The ASCA models were built, separately, from 
spectral fingerprinting of yerba mate extracts, obtained 
from different solvents, to investigate the effects of two 
cultivation systems (CS) on leaves from male and female 
plants (SSD), as well as the number of repetitions necessary 
for the metabolic system. The FTIR fingerprints were 
assessed initially, focusing on the significance of SSD that 

Table 1. A simplex-centroid design for three components, ethanol (E), 
dichloromethane (D), and hexane (H), was employed. Seven experimental 
points were chosen to represent three pure components (E, D, and H), 
three binary mixtures (ED, EH, and DH), and a ternary mixture (EDH)

Design 
point

Volume of solvent / mL

Ethanol (E) Dichloromethane (D) Hexane (H)

E 60 0 0

D 0 60 0

H 0 0 60

ED 30 30 0

EH 30 0 30

DH 0 30 30

EDH 20 20 20



A Comparative Study Using UV-Vis, NIR, and FTIR Spectral Fingerprinting in Yerba Mate LeavesMarcheafave et al.

4 of 14 J. Braz. Chem. Soc. 2025, 36, 1, e-20240073

was determined from the dichloromethane extract only 
with 5 repetitions (Table 2). The variance of the SSD effect 
was 11.52% under the spectral profile. In the case of the 
ED extract, sexual dimorphism was found to be significant 
with an explained variance of 20.95, 22.02, and 13.13% 
for 3, 4, and 5 repetitions, respectively (Table 2). For the 
dichloromethane-hexane (DH), sexual dimorphism was 
determined to be significant only with 5 repetitions. The 
requirement for a higher number of repetitions suggested 
that the significance of sexual dimorphism in these extracts 
was dependent on the increased degrees of freedom of 
the ASCA model.34 In other words, as the sample size (n) 
increases, the number of residual degrees of freedom also 
increases, tending towards greater statistical significance.35 
With more samples, the variability in the data is often 
more precisely assessed, and the sample means or other 
statistical estimates tend to converge more closely to the 
population parameters.36 This increased precision can lead 
to smaller confidence intervals, narrower distributions, 
and higher statistical significance.36 No significant sexual 
dimorphism was observed in the FTIR fingerprints of the 
ethanol (E), hexane (H), ethanol-hexane (EH) and ethanol-
dichloromethane-hexane (EDH) extracts (Table 2). It was 
expected that the binary and ternary combinations of the 
extractor solvents (pure ethanol, dichloromethane, and 
hexane) would not detect substantial metabolic changes 
associated with sexual dimorphism, since only pure 
dichloromethane managed to reach significance with 
5  repetitions. However, the presence of its significance 
in the ED fingerprint suggested synergic effects on the 
extraction process of the marker compounds.

The presence of different extractor solvent systems can 
indeed alter the chemical profile of the FTIR fingerprints 
obtained.19 This is due to the varying solubility and affinity 
of different compounds for different solvents.37 Mixtures 
of solvents can modify the dissolving power, polarity, 
viscosity, cavitation as in our case using ultrasound bath, 
in relation to properties of pure solvents.37-40 Consequently, 
this solvation of the metabolite will undergo changes in the 
extraction and thus the chemical constituents extracted can 
differ in terms of both type and quantity.28 This complexity 
in the interaction between components of the solvent and 
the samples can lead to non-linear changes in the spectral 
data.28 As a result, the spectra from mixtures could display 
unique patterns that are not directly predictable from 
the spectra of individual components or pure solvents.19 
Understanding these intricate interactions is crucial for 
accurate and meaningful data analysis. It is also a reminder 
that the behavior of a mixture cannot always be extrapolated 
from the behavior of its individual components, especially 
in complex systems like chemical extraction.

The effect of the cultivation system was found to 
be significant only in the FTIR fingerprints of pure 
dichloromethane and DH extracts (n ≥ 4 repetitions) 
(Table  2). The explained variances within the range of 
replicates that determined the significance of the CS effect 
were 20.94 to 12.94% and 15.44 to 14.96%, respectively 
for D and DH extractors (Table 2). The E, H, ED, EH, and 
EDH extracts did not exhibit significance in determining the 
effect of cultivation system. Since the ED binary mixture was 
not able to determine the CS effect, probably the chemical 
markers of this effect, previously detected in the fingerprint of 
pure dichloromethane, when combined with ethanol, suffered 
an antagonistic effect limiting its detection.

The ASCA models of the FTIR fingerprint of the E, 
H, EH and EDH extractors were unable to determine 
any significant main effect but only found a significant 
interaction effect between the cultivation system and 
sexual dimorphism in the metabolic fingerprints of yerba 
mate. The interaction effect was determined for almost all 
fingerprints in the mid-infrared range of these different 
extractor systems. 

FTIR fingerprinting in the dichloromethane and DH 
extracts of yerba mate leaves, had the ability to detect 
all main and interaction effects with 5 repetitions. 
Dichloromethane preferentially extracts compounds with 
moderate to low polarity, such as alkaloids, terpenes, 
and certain lipids.41,42 In general, when it comes to FTIR 
fingerprinting, solvent blends did not lead to changes in 
ASCA modeling, compared to the models for individual 
solvents (Table 2). Pure ethanol and hexane did not reach 
the 95% confidence level of significance for the main 
effects. This is also true for the EH binary mixture. It is 
worth noting that ethanol is polar, dichloromethane is 
moderately polar, and hexane is non-polar.42-44 Compounds 
with varying degrees of polarity will have different 
affinities for these solvents.44 Thus, the spectral profiles 
characterize different metabolic sets. A noteworthy finding 
was the individual predictive ability of the ED extract in 
determining the SSD effect. Ethanol and dichloromethane 
have different polarities, so there can be interactions 
between their molecules in the mixture.45 These interactions 
can affect the overall solvation properties of the mixture 
and might influence the solubility of certain compounds, 
benefiting the metabolites that characterize SSD in the 
FTIR fingerprint. Conversely, the ternary mixture EDH 
failed to determine the significance of any factor within 
the ASCA modeling. Mixing solvents will not always be 
advantageous. Once a mixture solvent offers a polarity 
variation,38 for instance, the inclusion of hexane, a non-
polar solvent, might decrease the overall polarity of the 
mixture and affect the solubility of polar compounds.38 
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Depending on the interactions, certain compounds can 
be more efficiently or less efficiently extracted from the 
mixture. It is important to emphasize that in this case, we 

are referring to a spectral profile that characterizes the 
metabolic set extracted and consequently determines the 
main effects and interactions by ASCA modeling.

Table 2. Variability of the secondary sexual dimorphism (SSD, male and female), cultivation system (CS, monoculture and agroforestry), and interaction 
(SSD × CS) effects, along with their respective p-values, in the ASCA model based on FTIR fingerprints of yerba mate leaves evaluated as a function of 
the number of experimental extractive repetitions (n = 3, 4, and 5) and the extractor system composed of ethanol (E), dichloromethane (D), and hexane (H) 
according to a statistical mixture design

Experimental design 
factors (22)

Number of experimental repetitions (n)

3 4 5

Ethanol extractor (E)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

3.66 
0.6993 
6.40 

0.4657 
54.22 
0.0020 
35.72

3.97 
0.5428
6.71 

0.3480
47.61 
0.0001
41.71

4.37 
0.4024
5.52 

0.3155
46.92 
0.0001
43.18

Dichloromethane extractor (D)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

9.81 
0.2593 
22.84 
0.0527 
42.15 
0.0001 
25.20

10.68 
0.1124
20.94 
0.0247
36.36 
0.0001
32.02

11.52 
0.0467
12.94 
0.0376
30.23 
0.0001
45.30

Hexane extractor (H)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

1.79 
0.7692 
6.89 

0.4657 
26.72 
0.0560 
64.60

3.24 
0.5338
8.63 

0.3341
18.31 
0.0552
69.82

2.74 
0.5412
8.22 

0.2467
20.08 
0.0049
68.96

Ethanol/dichloromethane extractor (ED)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

20.95 
0.0507 
12.75 
0.1474 
16.06 
0.0439 
50.24

22.02 
0.0102
8.88 

0.1237
14.00 
0.0158
55.10

13.13 
0.0410
6.52 

0.2070
12.68 
0.0262
67.67

Ethanol/hexane extractor (EH)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

9.11 
0.3519 
6.65 

0.4757 
18.05 
0.1507 
66.19

5.23 
0.4419
7.28 

0.3135
26.02 
0.0164
61.47

6.99 
0.2257
6.78 

0.2370
26.06 
0.0025
60.17

Dichloromethane/hexane extractor (DH)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

13.50 
0.1368 
16.79 
0.0966 
29.65 
0.0015 
40.06

11.66 
0.1075
15.44 
0.0477
34.31 
0.0002
38.59

14.54 
0.0214
14.96 
0.0158
30.47 
0.0001
40.03
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The results obtained from the ASCA models for the 
NIR metabolomic fingerprinting of yerba mate leaves 
using different extractor solvents (Table 3) demonstrated 
variations that can be compared to the results obtained 
from FTIR (Table 2). In the case of NIR, pure solvents 
were capable of extracting individual information 
for different effects, while binary or ternary mixtures 
capture the simultaneous influence of two or more effects 
(Table 3). NIR fingerprints obtained with ethanol showed 
significant determination of the cultivation system effect 
with explained variances ranging from 53.71 to 42.55% 
for 3-5 repetitions. Similarly, fingerprints obtained with 
dichloromethane from three replicates determine the effect 
of CS with a 99% confidence interval. The variances for 
CS observed were 70.11% for three and 51.24% for five 
replicates. Both ethanol and dichloromethane can interact 
with various types of compounds through different types 
of interactions, such as dipole-dipole interactions,46 
hydrogen bonding,47 and van der Waals forces.43 Ethanol 
is polar protic and can extract polar and moderately polar 
compounds, while dichloromethane is a polar aprotic 
solvent and can extract compounds with moderate to lower 
polarity. Thus, the NIR fingerprints of yerba mate leaves 
extracted with ethanol and dichloromethane can present 
similar profiles, characterizing the same experimental factor 
in ASCA modeling.

 In contrast to FTIR, NIR fingerprinting with hexane 
demonstrated the determination of the effect of sexual 
dimorphism for all replicates at a 99% confidence interval 
(Table 3). The minimum explained variance for sexual 

dimorphism was 25.12% for five replicates. Hexane is a 
non-polar solvent, and its interactions with compounds 
are primarily governed by van der Waals forces,48 dipole-
induced dipole interactions,49 and dispersion forces.49 This 
is particularly important when extracting lipids, oils, and 
other hydrophobic natural compounds. Anti-symmetric and 
symmetric stretching vibrations of methylene groups (CH2) 
of metabolites with long chains of CH are characterized 
as FTIR markers of sexual dimorphism in yerba mate,5 
which may be characteristic of non-polar metabolites. But 
extraction of this marker is highly dependent on the solvent 
and detection method as only the ethanol-dichloromethane 
binary of the mixture design solvents in Table 2 results 
in significant SSD models. Thus, the NIR fingerprint for 
hexane presented a chemical profile that characterizes a 
different effect from that found for the extracts in ethanol 
and dichloromethane due to the compounds present and 
detected in this spectral range.

The ASCA-NIR models for the binary mixtures ED 
(ethanol-dichloromethane) and EH (ethanol-hexane) 
exhibited similar behavior in the ASCA models (Table 3). 
Both models successfully determined the main effects 
of sexual dimorphism and cultivation system from three 
replicates. However, they did not establish a statistically 
significant interaction between the two factors. As 
anticipated for the ASCA-NIR model for hexane, due to the 
inclusion of hexane in the EH mixture, it showed a higher 
explained variance (ranging from 75.39 to 63.15% for n = 3 
to 5) for the effect of sexual dimorphism compared to ED, 
which had an explained variance of 31.05% for three and 

Experimental design 
factors (22)

Number of experimental repetitions (n)

3 4 5

Ethanol/dichloromethane/hexane extractor (EDH)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

6.91 
0.5409 
6.72 

0.5450 
22.63 
0.0657 
63.74

6.42 
0.3878
7.03 

0.3384
16.60 
0.0496
69.95

5.28 
0.3540
4.21 

0.4600
21.05 
0.0102
69.47

Mixture design

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

0.52 
0.5888 
1.27 

0.3104 
8.28 

0.0040 
89.94

0.58 
0.4534
1.37 

0.2037
6.81 

0.0024
91.24

0.53 
0.4168
1.22 

0.1741
6.36 

0.0011
91.90

Table 2. Variability of the secondary sexual dimorphism (SSD, male and female), cultivation system (CS, monoculture and agroforestry), and interaction 
(SSD × CS) effects, along with their respective p-values, in the ASCA model based on FTIR fingerprints of yerba mate leaves evaluated as a function of 
the number of experimental extractive repetitions (n = 3, 4, and 5) and the extractor system composed of ethanol (E), dichloromethane (D), and hexane (H) 
according to a statistical mixture design (cont.)
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30.06% for five replicates. Similarly, when examining 
the effect of cultivation system, the ED fingerprints 
exhibited more significant variances compared to EH. 
Specifically, ED showed significant explained variances 
of 24.86-27.25% (n = 3-5), while EH had values of 6.58 
to 11.09% for 3 and 5 replicates, respectively (Table 3). 
The emergence of significance for the effect of sexual 
dimorphism on the NIR profile for the ED extract suggested 
a synergistic effect on the metabolic extraction with the 
binary mixture. Individually, ethanol and dichloromethane 
did not significantly produce this effect. The combination 
of these solvents in the ED binary mixture likely led to 
qualitative or quantitative changes in the metabolic set, 
resulting in the detection of sexual dimorphism. Interactions 
between ethanol and dichloromethane in the binary mixture 
can influence its solvation properties and influence the 
solubility of various compounds, affecting the overall 
chemical spectral profile,45,47 varying the significant effects 
on the models.

The ASCA-NIR models for the DH (dichloromethane-
hexane) and EDH (ethanol-dichloromethane-hexane) 
extracts of yerba mate demonstrated statistical capability 
in determining the main effects of secondary sexual 
dimorphism and cultivation system, as well as the 
interaction effect between these factors (Table 3). In the 
DH extractor system, the effect of sexual dimorphism 
in yerba mate was determined from three replicates, 
with maximum spectral variances of 32.26, 32.52, and 
32.54% for 3, 4, and 5 replicates, respectively. Similarly, 
the effect of cultivation system was determined from 
three repetitions, with variances ranging from 32.37 to 
32.64% for 3 to 5 repetitions. Also, the interaction effect 
was significant from 3 repetitions in the 99% confidence 
interval, with variances between 34.68 and 33.96% for 
3 and 5 repetitions. Interestingly, the total spectral variance 
in the DH ASCA-NIR model was evenly distributed among 
the main effects and interaction effect, and the explained 
variance values showed slight variations with increasing 
repetitions. Furthermore, the ternary EDH mixture was 
capable of determining the effect of sexual dimorphism 
from three repetitions, with variances ranging from 25.16 
to 23.66% for 3 to 5 repetitions. The effect of cultivation 
system was determined starting from 3 repetitions, with 
variances between 26.79 and 32.06% for 3 to 5 repetitions. 
Furthermore, the interaction effect was determined from 3 
repetitions, with variances ranging from 15.81 to 20.75% 
for 3 to 5 repetitions. It is worth highlighting that in the 
case of the NIR fingerprints with the DH binary mixture, 
the results demonstrated a particularly favorable outcome. 
The DH binary mixture model displayed a low residual 
variance of less than 1%, indicating that it effectively 

explained almost all of the variance in the data and revealed 
the significance of all three effects for n ≥ 3.

The ASCA-FTIR five-replicate models demonstrated 
that both main effects could be detected simultaneously 
in only the dichloromethane and dichloromethane-hexane 
binary mixture extracts (Table 2). The ASCA-NIR 
models revealed that the individual extractors contained 
relevant information related to some of the individual 
effects (Table 3). Each pure extractor provided specific 
information about individual effects under investigation. 
However, the binary and ternary mixtures in the ASCA-NIR 
models exhibited spectral information that was capable of 
simultaneously determining the main effects as well as the 
interaction between CS × SSD. These results reinforced 
the understanding that NIR and FTIR techniques are not 
direct substitutes for each other, but rather complement 
each other in the analysis of samples.50 NIR spectroscopy 
is particularly suitable for analyzing the overtone and 
combination bands of molecular vibrations.11 It is often 
used for rapid, non-destructive analysis of samples, 
providing information about functional groups, chemical 
composition, and physical properties.11,12 On the other hand, 
FTIR spectroscopy focuses on the fundamental vibrational 
bands of molecules, providing detailed information about 
molecular structures, bond types, and functional groups.9,10 
The different behaviors and results observed in the ASCA 
models for NIR and FTIR fingerprints of yerba mate leaf 
metabolites demonstrated that these techniques capture 
different aspects of the sample’s chemistry and can 
reveal unique patterns and effects. This recognition of the 
different capabilities and complementary nature of FTIR 
and NIR further emphasizes the importance of selecting the 
appropriate spectroscopic technique based on the specific 
research objectives and the desired information about the 
sample under investigation.

In the models determined for the ultraviolet and visible 
regions (UV-Vis), Table 4, the ASCA responses differed 
in parts from those of FTIR (Table 2) and NIR (Table 3). 
The ethanol-based ASCA-UV-Vis model revealed that 
the interaction effect was particularly significant, starting 
from 3 replicates, with variances ranging from 66.57% 
for models with 3 replicates to 54.06% for models with 
5 replicates (Table 4). ASCA-UV-Vis with E permitted 
the detection of significant cultivation system effect, with 
a variance of 22.17% for 5 replicates, while the effect of 
sexual dimorphism was not significant. Similarly, in the 
ASCA-UV-Vis model for dichloromethane, only the effect 
of cultivation system was determined to be statistically 
significant with three or more replicates. The variances 
for this effect were 65.54, 68.58, and 71.68% for 3, 4 
and 5 replicates, respectively. In the case of hexane, the 
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ASCA-UV-Vis model determined both main effects to be 
statistically significant at the 99% confidence level from 
3 replicates. The effect of sexual dimorphism varied from 

34.24 to 16.34% for 3-5 replicates, and that of the cultivation 
system ranged from 44.04 to 38.68% for 3 and 5 replicates, 
respectively. It is indeed interesting that a nonpolar solvent 

Table 3. Variability of the secondary sexual dimorphism (SSD, male and female), cultivation system (CS, monoculture and agroforestry), and interaction 
(SSD × CS) effects, along with their respective p-values, in the ASCA model based on near-infrared (NIR) fingerprints of yerba mate leaves evaluated as 
a function of the number of experimental extractive repetitions (n = 3, 4, and 5) and the extractor system composed of ethanol (E), dichloromethane (D), 
and hexane (H) according to a statistical mixture design

Experimental design factors (22)
Number of experimental repetitions (n)

3 4 5

Ethanol extractor (E)

SSD effect / % 
p-value
CS effect / % 
p-value
SSD × CS effect / %  
p-value
Residuals / %

8.53  
0.1371 
53.71  
0.0001 
4.12  

0.3775 
33.64

7.44  
0.1139
47.54 
0.0001
4.37  

0.2587
40.65

6.83  
0.0739
42.55 
0.0001
5.73  

0.1110
44.89

Dichloromethane extractor (D)

SSD effect / % 
p-value
CS effect / % 
p-value
SSD × CS effect / % 
p-value
Residuals / %

1.59  
0.6813 
70.11 
0.0042 
1.51  

0.6492 
26.79

4.83  
0.2127
58.96 
0.0004
2.12  

0.4175
34.09

6.96  
0.0992
51.24 
0.0001
4.14  

0.1837
37.66

Hexane extractor (H)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

30.00 
0.0111 
2.37  

0.8858 
5.14  

0.5576 
62.49

32.80 
0.0005
2.71  

0.7218
4.46  

0.4275
60.03

25.12 
0.0039
2.18  

0.6871
5.42  

0.2612
67.28

Ethanol/dichloromethane extractor (ED)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

31.05 
0.0164 
24.86 
0.0242 
0.86  

0.8929 
43.23

31.01 
0.0014
25.78 
0.0036
1.58  

0.6786
41.63

30.06 
0.0005
27.25 
0.0002
4.21  

0.1664
38.48

Ethanol/hexane extractor (EH)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

75.39 
0.0001 
6.58  

0.0175 
2.23  

0.3198 
15.80

67.57 
0.0001
10.88 
0.0016
0.80  

0.7971
20.75

63.15 
0.0001
11.09 
0.0004
0.92  

0.6853
24.84

Dichloromethane/hexane extractor (DH)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

32.26 
0.0414 
32.37 
0.0335 
34.68 
0.0019 
0.69

32.52 
0.0091
32.57 
0.0082
34.28 
0.0001
0.63

32.54 
0.0021
32.64 
0.0014
33.96 
0.0001
0.86
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like hexane extracts compounds indicating both SSD and 
CS effects are significant whereas the relatively polar ones, 
ethanol and dichloromethane, only indicate different solitary 
significant effects. Some of the metabolites present in yerba 
mate leaves that can be detected using UV-Vis spectroscopy 
include caffeine, chlorogenic acid, theobromine, flavonoids 
and polyphenols, carotenoids, xanthophylls and tannins.51 
It is important to note that the UV-Vis fingerprint can vary 
based on factors such as pH, solvent, and concentration of 
metabolites.52 Dichloromethane is often used to selectively 
extract caffeine and UV-Vis fingerprints tend to have a 
characteristic profile for this metabolite.52 Normally, ethanol 
is used to extract chlorogenic acid from plant materials and 
consequently, the UV-Vis profile of this extractor tends to 
have characteristic absorption bands for this metabolic class 
associated with bands of other classes,19 since ethanol has 
the capacity to extract most of the chemical classes present 
in yerba mate leaves.

In the ASCA-UV-Vis models, the response of binary 
mixtures was similar across different extractors (Table 4). 
All main effects and the interaction effect between these 
factors were statistically significant, with different variance 
within each model for each effect. For the ED (ethanol-
dichloromethane) fingerprints, the effect of SSD was 
significant from four replicates, with a variance of 19.06%. 
The effect of cultivation system became significant from 
3 repetitions, with a variance of 35.11% as well as the 
interaction effect with a variance of 36.01%. The effect 
of cultivation system and the interaction effect had the 
highest variances in this ASCA-UV-Vis model. Similarly, 

in the ASCA-UV-Vis model based on the EH (ethanol-
hexane) extractor system, the SSD effect was determined 
to be significant from 4 repetitions. The CS effect and the 
interaction effect were both significant from 3 repetitions. 
The effect of cultivation system had the highest variances, 
exceeding 70% at the 99% confidence level. In the case 
of the DH model based on the UV-Vis molecular profile, 
all effects were statistically significant starting from three 
repetitions. The effect of cultivation system consistently 
had the highest variances among the other factor effects, 
always exceeding 40%. However, the ASCA-UV-Vis 
modeling using the ternary system (EDH) only determined 
the statistical significance for the interaction effect starting 
from 3 repetitions. The variances for the interaction effect 
ranged from 78.14 to 68.60% for 3-5 repetitions. 

Our findings demonstrate that the ASCA-UV-Vis 
models exhibit consistent responses for binary mixtures 
across different extractors in yerba mate fingerprints 
(Table 4). The significance and explained variances of the 
main effects and interaction effect may vary depending 
on the specific extractor system used. The interactions 
in solvent mixture extraction processes are complex 
and dynamic, influenced by a combination of chemical 
factors and most of the time the chemical properties of 
these extracting solutions need extensive mathematical 
formulations to be established.43,45-47

In ASCA modeling of a proton nuclear magnetic 
resonance (1H NMR) dataset of yerba mate leaf 
fingerprints, the statistical significance of effects increases, 
while the explained variance decreases when the number 

Experimental design factors (22)
Number of experimental repetitions (n)

3 4 5

Ethanol/dichloromethane/hexane extractor (EDH)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

25.16 
0.0128 
26.79 
0.0195 
15.81 
0.0190 
32.24

23.23 
0.0044
32.28 
0.0024
18.27 
0.0012
26.22

23.66 
0.0012
32.06 
0.0004
20.75 
0.0002
23.53

Mixture design

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

2.79  
0.0635 
1.24  

0.4272 
2.57  

0.0788 
93.40

2.43  
0.0265
1.26  

0.2790
2.42  

0.0320
93.89

1.93  
0.0215
1.12  

0.2291
1.93  

0.0237
95.02

Table 3. Variability of the secondary sexual dimorphism (SSD, male and female), cultivation system (CS, monoculture and agroforestry), and interaction 
(SSD × CS) effects, along with their respective p-values, in the ASCA model based on near-infrared (NIR) fingerprints of yerba mate leaves evaluated as 
a function of the number of experimental extractive repetitions (n = 3, 4, and 5) and the extractor system composed of ethanol (E), dichloromethane (D), 
and hexane (H) according to a statistical mixture design (cont.)
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of experimental repetitions increase.29 The NMR spectral 
profiles are effective in determining individual effects 
using pure extractors, as well as simultaneous effects using 
binary and ternary solvent combinations.29 The variation 

in significance and explained variance across effects 
was consistent with the results obtained in ASCA-NIR 
and ASCA-UV-Vis models, while ASCA-FTIR showed 
a different pattern. The ASCA-NMR model, with 3 

Table 4. Variability of the secondary sexual dimorphism (SSD, male and female), cultivation system (CS, monoculture and agroforestry), and interaction 
(SSD × CS) effects, along with their respective p-values, in the ASCA model based on ultraviolet-visible (UV-Vis) fingerprints of yerba mate leaves evaluated 
as a function of the number of experimental extractive repetitions (n = 3, 4, and 5) and the extractor system composed of ethanol (E), dichloromethane (D), 
and hexane (H) according to a statistical mixture design

Experimental design factors (22)
Number of experimental repetitions (n)

3 4 5

Ethanol extractor (E)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

2.81  
0.5816 
18.12 
0.1821 
66.57 
0.0003 
12.50

4.91  
0.3705
16.55 
0.1223
64.70 
0.0001
13.84

1.81  
0.5392
22.17 
0.0353
54.06 
0.0001
21.96

Dichloromethane extractor (D)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

3.44  
0.3469 
65.54 
0.0023 
9.00  

0.0774 
22.02

2.95  
0.2572
68.58 
0.0001
6.85  

0.0523
21.62

2.83  
0.1600
71.68 
0.0001
3.63  

0.0879
21.86

Hexane extractor (H)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

34.24 
0.0010 
44.04 
0.0001 
3.32  

0.2542 
18.40

21.41 
0.0109
40.33 
0.0001
2.32  

0.4403
35.94

16.34 
0.0119
38.68 
0.0001
2.10  

0.4173
42.88

Ethanol/dichloromethane extractor (ED)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

22.44 
0.0614 
35.11 
0.0222 
36.01 
0.0014 
6.44

19.06 
0.0379
34.46 
0.0090
40.14 
0.0001
6.34

13.23 
0.0444
36.43 
0.0023
39.89 
0.0001
10.45

Ethanol/hexane extractor (EH)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

7.66  
0.0741 
74.06 
0.0013 
12.77 
0.0004 
5.51

10.17 
0.0298
60.98 
0.0001
13.51 
0.0020
15.34

9.52  
0.0138
64.33 
0.0001
13.47 
0.0001
12.68

Dichloromethane/hexane extractor (DH)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

23.17 
0.0136 
48.31 
0.0011 
21.97 
0.0007 
6.55

17.63 
0.0047
52.07 
0.0001
15.53 
0.0014
14.77

16.67 
0.0026
51.32 
0.0001
14.97 
0.0001
17.04
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repetitions, is identified as the beginning of a statistically 
stable range for metabolomic data analysis,29 while here 
different extractor systems were able to determine the 
ASCA effects simultaneously for each spectroscopic 
technique when 3 repetitions were used (Table 5). 
Simultaneously, ASCA-NIR determined the all effects 
and interaction in H, DH, and EDH, ASCA-UV in DH, 
and ASCA-NMR in ED. Regarding detection of only 
one significant effect, ASCA-NIR determined the effect 
of cultivation system on E, ASCA-UV determined the 
cultivation system effect on D and the interaction effect 
on E and EDH, and ASCA‑NMR determined only the 
effect of sexual dimorphism on H and the interaction effect 
on D and EDH fingerprints. ASCA‑FTIR individually 
determined the interaction effect on E, D, and DH 
fingerprints.

The row-wise augmentation approach, where the matrix 
is augmented by simultaneously analyzing all fingerprints 
from different extractor systems, is an alternative for the 
chemometric analysis of fingerprints in various solvent 
systems.29 This method aims to maximize the variability of 
the chemical profile extracted from the plant by analyzing 
the different extractors collectively.27 While this approach 
offers advantages in increasing the robustness of the 
method, there are also some potential disadvantages 
depending on the multivariate method employed.29

In the case of ASCA-FTIR modeling using row-wise 
augmentation, the results showed low percentage explained 
variance for the main factors and interactions, with a high 
percentage residual value for all replications (Table 2). 
Only the interaction effect was statistically significant with 
3-5 spectral repetitions, while the main effects were not 

Experimental design factors (22)
Number of experimental repetitions (n)

3 4 5

Ethanol/dichloromethane/hexane extractor (EDH)

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

9.45  
0.3291 
4.50  

0.5119 
78.14 
0.0011 
7.91

7.78  
0.2871
6.15  

0.3513
77.39 
0.0001
8.68

13.40 
0.1064
6.37  

0.2511
68.60 
0.0001
11.63

Mixture design

SSD effect / % 
p-value
CS effect / %  
p-value
SSD × CS effect / %  
p-value
Residuals / %

0.22  
0.8964 
2.24  

0.1409 
1.85  

0.2027 
95.69

0.18  
0.8803
2.42  

0.0599
2.03  

0.0943
95.37

0.11  
0.9142
2.53  

0.0237
1.94  

0.0585
95.42

Table 4. Variability of the secondary sexual dimorphism (SSD, male and female), cultivation system (CS, monoculture and agroforestry), and interaction 
(SSD × CS) effects, along with their respective p-values, in the ASCA model based on ultraviolet-visible (UV-Vis) fingerprints of yerba mate leaves evaluated 
as a function of the number of experimental extractive repetitions (n = 3, 4, and 5) and the extractor system composed of ethanol (E), dichloromethane (D), 
and hexane (H) according to a statistical mixture design (cont.)

Table 5. Comparison between FTIR, UV, NIR, and 1H NMR29 spectroscopic techniques in determining the significance of the ASCA effects for yerba 
mate fingerprints according to a statistical mixture design, ethanol (E), dichloromethane (D) and hexane (H) and their mixtures with 3 extracts/spectral 
repetitions. ASCA results according to yerba mate codification to secondary sexual dimorphism effect (SSD, male and female), cultivation system 
effect (CS, monoculture and agroforestry), and interaction effects (IE, SSD × CS)

Spectroscopic 

techniques

Extractor solvents

E D H ED EH DH EDH

ASCA effects

SSD CS IE SSD CS IE SSD CS IE SSD CS IE SSD CS IE SSD CS IE SSD CS IE

FTIR × × × × ×

NIR × × × × × × × × × × × × × × × ×

UV × × × × × × × × × × × ×

1H NMR × × × × × × × × × × × ×

FTIR: Fourier-transform infrared spectroscopy; NIR: near-infrared spectroscopy; UV: ultraviolet; NMR: nuclear magnetic resonance. 
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significant. Similarly, the results for ASCA-NIR (Table 3) 
and ASCA-UV-vis (Table 4) models did not demonstrate 
significant advantages on increasing the matrix by rows. 
The simultaneous ASCA-NIR model determined the 
significance of sexual dimorphism and the interaction 
effect with only a small percentage of variance, and 
the simultaneous ASCA-UV-Vis model only found the 
cultivation system effect significant. Overall, the row-wise 
augmentation strategy for simultaneous modeling would be 
more advantageous if it could determine the significance 
of more main factors and interactions than the individual 
extractors. However, in the cases of FTIR, NIR, and UV‑Vis 
spectroscopy, there was no clear advantage associated with 
simultaneous spectral analysis of all extractor systems 
compared to the results obtained from individual extractor 
solvents. On the other hand, this row-wise augmentation 
strategy did prove effective for data obtained from 1H NMR, 
where all factors are determined simultaneously with 5 
repetitions, ensuring the significance of chemical changes 
across a set with wide chemical variability.29 The chemical 
shift range in NMR can be quite extensive, often spanning 
hundreds of parts per million (ppm).53

The choice of chemometric approach and modeling 
strategy should be carefully considered based on the 
specific experimental setup and objectives of the analysis. 
It appears that for certain spectroscopic techniques, 
like 1H NMR, the row-wise augmentation approach can 
be beneficial in capturing significant effects, while for 
techniques like FTIR, NIR, and UV-Vis, the advantages 
may be limited, and individual extractor system may be 
more suitable.

Conclusions

The choice of spectroscopic method for fingerprint 
acquisition in metabolomic analysis significantly impacted 
the speed, sensitivity, and accuracy of detecting substances 
within a plant extract. Different spectroscopic techniques, 
such as FTIR, NIR, UV-Vis, and NMR, exhibited variations 
in the fingerprint due to their unique detections of chemical 
systems. The use of different solvent systems for metabolic 
extraction also introduced substantial changes in the 
spectral profiles of the plant material, in addition to the 
diverse behaviors in ASCA modeling for the same plant 
extract with spectra acquired by different instrumental 
techniques. In this study, ASCA models were built 
separately from spectral fingerprints of yerba mate extracts 
obtained using different solvents, as well as the impact of 
the number of repetitions on the metabolic system. FTIR 
fingerprinting results showed that the interaction effect 
is highly pronounced in all fingerprints regardless of the 

extractor system. The effect of SSD was pronounced in the 
ED fingerprint, while the CS effect was significant in the D 
and DH fingerprints. In contrast, the ASCA models for NIR 
fingerprints demonstrated that pure solvent systems were 
capable of extracting individual information for different 
effects, while binary and ternary mixtures could capture 
simultaneous influences of multiple effects. For NIR 
fingerprints obtained with ethanol and dichloromethane, 
the effect of cultivation system was significant. In the 
UV-Vis spectral profiles of pure systems, individual main 
effects were predominantly explained, except for hexane, 
where both main effects were determined to be significant. 
In the ASCA-UV-Vis models for binary mixtures, all main 
effects and interaction effects were statistically significant, 
with variations in the magnitude of variance within each 
model for each effect. The row-wise augmentation approach 
(the matrix augmented by simultaneously analyzing all 
fingerprints from different extractor systems), did not 
demonstrate significant benefits for FTIR, NIR, and UV‑Vis 
spectroscopy. The study highlighted the importance of 
selecting the appropriate spectroscopic technique and 
solvent system based on the specific research objectives 
in metabolomic analysis. Different spectroscopic methods 
captured distinct aspects of the sample’s chemistry, and 
their capabilities may complement each other in providing 
comprehensive information about the plant extracts. The 
findings can help on making informed choices and designing 
robust metabolomic future studies. The experimental 
metabolic extraction step outlined by the mixture design 
is the one that consumes the most experimental time in 
developing a comprehensive fingerprint. Acquiring UV-Vis, 
FTIR, and NIR fingerprints is a rapid, cost-effective process 
that does not necessitate sophisticated technical training to 
execute. As demonstrated, a multivariate investigation of 
extractive systems, as well as chemical sensing systems, 
can attain a global understanding of a metabolic system. 

Supplementary Information

Supplementary information (graphical plotting of 
NIR and FTIR fingerprints) is available free of charge at  
http://jbcs.sbq.org.br. as PDF file.
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