An Architecture for Distributed and Flexible Management
of High-Layer Protocols and Network Services

Luciano Gaspary]’z, Luis F. Balbinoz‘], Roberto Storch], Fabricio Wendt] and Liane Taroucol

'Federal University of Rio Grande do Sul
Instituto de Informatica

Av. Bento Gongalves, 9500 - Agronomia - CEP 91.591-970

Porto Alegre, Brazil

(hades, storch, wendt) @inf.ufrgs.br and liane.tarouco @ufrgs.br

Abstract

This paper proposes an architecture for distributed man-
agement of high-layer protocols and network services.
Based on the IETF Script MIB, the Trace architecture
provides mechanisms for the delegation of management
tasks to mid-level managers (MLMs), which interact with
monitoring and action agents to have them executed. The
paper introduces PTSL (Protocol Trace Specification Lan-
guage), a graphical/textual language created to allow net-
work managers to specify protocol traces. The specifica-
tions are used by mid-level managers to program the
monitoring agents. Once programmed, these agents start
to monitor the occurrence of the traces. The information
obtained is analyzed by the mid-level managers, which
may ask action agents for the execution of procedures
(e.g. Perl scripts), making the automation of several man-
agement tasks possible.

Keywords: Internet management, network management,
network monitoring, scripting.

1 Introduction

The use of computer networks to support an increasing
number of businesses and critical applications has stimu-
lated the research for new management solutions that
maintain not only the physical network infrastructure, but
also the protocols and services that flow over it. The popu-
larization of electronic commerce (e-commerce) and the
increasing use of this business modality by companies, for
instance, implies using the network to exchange critical
data from the organization and from its customers. Proto-
cols and services that support these applications are criti-
cal and, therefore, need to be carefully monitored and
managed.

74

Universidade do Vale do Rio dos Sinos
Centro de Ciéncias Exatas e Tecnoldgicas
Av. Unisinos, 950 - CEP 93.022-000
Sdo Leopoldo, Brazil
paschoal @exatas.unisinos.br

Not only critical applications require special attention.
New protocols are frequently released to the market to
support an increasing set of specific functionalities. These
protocols are quickly adopted by network users. As a re-
sult of this fast proliferation, weakly-tested and even
faulty protocols are disseminated to the market. In several
cases these anomalies, as well as the miscalculated use of
resources, are the cause of network performance degrada-
tion and end up unperceived by network managers. These
factors make the management of these protocols and serv-
ices an ever increasing endeavor.

For the network manager to be able to provide assured
network high-availability and efficiency, a flexible man-
agement environment that can be quick and easily
adapted to monitor dynamic scenarios is needed. Besides
being flexible, the size of current networks requires this
management environment to be distributed, so that the
solution can be efficient and scalable.

This paper presents an architecture for distributed and
flexible management of high-layer protocols and network
services based on programmable agents and is organized
as follows. Section 2 describes and compares expressive
initiatives related to both high-layer protocol and distrib-
uted management. Section 3 presents PTSL, a graphi-
cal/textual language created to specify protocol traces.
Section 4 introduces the Trace architecture and its com-
ponents. In Section 5 some cases studies that validate the
proposal are presented. Section 6 closes the paper by pre-
senting an evaluation of the proposed architecture, some
conclusions and future work.

2 Related Work

Many approaches have been proposed to both high-layer
protocol management and distributed management. When

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

it comes to high-layer protocols management, monitoring
is the main topic of research. The ntop [1] is designed
for traffic measurement and monitoring, and includes fea-
tures for per-protocol network traffic characterization and
usage. The Remote Network Monitoring Management In-
formation Base Version 2 (RMON-2) [2], created in 1997,
provides mechanisms to collect information similar to
ntop.

Other recent efforts related to monitoring are the extensi-
ble architecture proposed by Malan and Jahanian [3] and
the Realtime Traffic Flow Measurement (RTFM), devel-
oped by the group with the same name at the IETF [4] and
implemented by the NeTraMet tool [5]. The RTFM ar-
chitecture is based on distributed agents (called meters)
that implement the RTFM Meter MIB [6]. These agents
are capable of making realtime packet flow measurement
and accounting. The MIB allows an SNMP agent to query
statistical data, as well as set agent configuration data.
Flow specifications are made through a set of rules de-
fined by a language called SRL [7] and determine (a)
which flows should be counted, (b) which nodes should be
treated as flow origins and (c) which level of detail is de-
sired for each flow.

A demand instigated by the fast proliferation of protocols
and applications that flow over today’s computer networks
is the flexibility of monitoring tools. Many existing tools
are not completely prepared to allow the monitoring of
new protocols and applications and operate on a fixed set
of them. New protocols can only be monitored through
firmware updates, as with some RMON-2 probes, or by
low-level programming languages, like the architecture
proposed by Malan and Jahanian and the ntop tool.
Many network managers just end up neglecting these pos-
sibilities due to their complexity.

Other solutions, like Tivoli Enterprise [8], are intrusive,
due to the fact that they require applications to be devel-
oped using specific monitoring procedure calls. This ap-
proach is only suitable when monitoring is done within
applications developed in-house, but it can not be used to
manage proprietary protocols and/or applications (e.g.
web browsers and clients). Besides, it is also needed to
spend more money on personnel training on how to use
the monitoring APIs.

The type and granularity of the collected information are
important aspects associated with the monitoring. The
RMON2 MIB and the ntop tool collect only statistics
like the number of packets sent/received by a host or the
number of packets exchanged between two peers, classi-
fied accordingly to the protocol used (e.g. HTTP and
FTP). Advantages and disadvantages of the RMON2 MIB

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

have been shown by Gaspary et al. in [9]. One of the
weaknesses of both approaches is the lack of information
related to performance and faults. These difficulties have
been discussed by the IETF RMON working group
through the Application Performance Measurement MIB
(APM MIB) [10].

When it comes to granularity, accounting on the RMON2
MIB is made per host, pairs of hosts and protocol used. In
the case of the ntop tool, it is possible to recognize and
count packet flows, which are specified by a set of low-
level rules that are processed by the BSD Packet Filter
(BPF). In the RTFM architecture, only predetermined pro-
tocol fields can be read from captured packets (only up to
the transport layer). Information about high-layer proto-
cols can not be considered due to this limitation. Besides,
as it occurs with the ntop tool, the same set of rules is
applied to each captured packet, making it impossible to
correlate messages from a same flow.

That is also very important to note that many management
tools like [1, 3, 5] are limited to monitoring, leaving reac-
tive and/or proactive management to the human manager
when an unexpected network behavior is observed.

As for distributed management, Schoenwaelder et al. pre-
sent in [11] several approaches and existing technologies
for its deployment. Technologies based on the dynamic
delegation of management tasks and, in special, the poten-
tial of delegation of those tasks through the IETF Script
MIB [12] are discussed and commented. By using practi-
cal examples, they show how the monitoring of thresholds
and services can be delegated to mid-level managers.

The next sections present a new approach for high-layer
network protocols and services management. The evalu-
ation of this approach contrasted to other approaches men-
tioned earlier in this section is presented in Section 6.

3 Protocol Trace Representation

This section presents PTSL (Protocol Trace Specification
Language), a language for the representation of protocol
traces based on the concept of finite state machines
(FSM). The language is composed of graphical (Graphical
PTSL) and textual (Textual PTSL) notations. These nota-
tions are not equivalent. The textual notation allows the
complete representation of a trace, including the specifica-
tion of the FSM and the events that trigger transitions. In
turn, the graphical notation covers only a subset of the tex-
tual notation, offering the possibility of graphically repre-
senting the FSM and only labelling the events that trigger
transitions.

75

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

3.1 Graphical PTSL

The network manager can create a specification to moni-
tor the whole protocol or just part of it. Interactions be-
tween more than one protocol can also be represented.
Figure 1 shows two trace examples. On the first case (a),
the trace monitors successful transactions to a web server.
The second trace (b) does not describe a single protocol; it

Trace "Successful WWW access’
Version: 1.0

GET Description” WWW access with 200 response
Key: HTTP, 200, OK

Port: 80

QOwner: Luciano Paschoal Gaspary

Last Update: Fri. 23 Sep 2000 15:15:03 GMT

HTTP/M.1 20

(@)

Trace “DNS service monitaring”

ICMP message Port
Unreachable

Version: 1.0

Description: Check if DNS service is running.
Key: DNS, named

Port:

QOwner: Luciano Paschoal Gaspary

Last Update: Tue, 15 Aug 2000 21:51:02 GMT

L=

DNS request

(b)
is rather made up of a name resolution request (DNS pro-
tocol), followed by an ICMP Port Unreachable
message. This trace occurs when the host where the serv-
ice resides is on, but the named daemon is not running.

Figure 1: Graphical representation of a trace. (a) Successful WWW re-
quest. (b) DNS request not replied because named daemon is not execut-
ing.

3.1.1 Representation of states and transitions

States are represented by circles. From the initial state
(id1le) other n states can be created, but they must always
be reachable through any given transition. The final state
is identified by two concentric circles. On both examples
(figure 1) the initial and final states are the same. The state
transitions are represented by unidirectional arrows. The
continuous arrow indicates that the transition is triggered
by the client host, while the dotted arrow determines that
the transition is triggered by an event coming from the
server host. The text associated with a transition is merely
a label to the event that triggers it; the full specification
can only be made via textual notation.

3.1.2 Representation of timers

Transitions, by default, do not have a time limit to be trig-
gered. To associate a timeout with a transition, an explicit
value (in milliseconds) must be set. In the example shown
in figure la, the value 5000 associated to transition
HTTP/1.1 200 indicates that the transition from state 2
to the initial state has up to five seconds to be triggered.

76

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

3.1.3 Representation of information for cataloguing
and version control

The graphical notation also offers a constructor where in-
formation about the trace, which are relevant to catalogu-
ing and version control of specifications, are included (see
figure 1). The data stored for a trace are:

Version (the version of the specification), Description
(a brief description of the trace), Key (keywords related to
the trace), Owner (individual responsible for the trace
definition) and Last Update (timestamp of the last up-
date). Besides these data, there is also a Port field, used
to indicate the TCP or UDP port of the monitored proto-
col; this should only be defined when the trace is limited
to a single protocol.

3.2 Textual PTSL

Figure 2 presents the textual specification of the trace pre-
viously shown in figure la. All specifications written in
Textual PTSL start with the Trace keyword and end with
the EndTrace keyword (lines 1 and 30). Catalog and
version control information come right after the Trace
keyword (lines 2-7). Forthwith, the specification is split
into three sections: MessagesSection (lines 8-20),
GroupsSection (not used in this example) and
StatesSection (lines 21-29). On MessagesSec-
tion and GroupsSection the events that trigger tran-
sitions are defined. The FSM that specifies the trace is de-
fined in StatesSection.

1| Trace "Successful WWW access”

Version: 1.0

Description: WWW access with 200 response
Key: HTTP, 200, OK

Port: 80

Owner: Luciano Paschoal Gaspary

Last Update: Fri, 23 Sep 2000 15:15:03 GMT

© N O AW

MessagesSection

9 | Message ‘GET"

10 | MessageType: client

11| /1 OffsetType Encapsulation FieldNumber Verb Description

12 | FieldCounter Ethemnet/IP/TCP 0 GET “Request for a HTTP abject”
13 | EndMessage

14 | Message ‘HTTP/1.1 200"

15 | MessageType: server

16 | MessageTimeout: 5000

17 | FieldCounter Ethemet/IP/TCP 0 HTTP/1.1 “Protocol version”
18 | FieldCounter Ethernet/IP/TCP 1 200 ‘Reply code”

19 | EndMessage

20 | EndMessagesSection

21 | StatesSection
22 | FinalState: idle

23 | State idle

24 | "GET" GotoState 2

25 | EndState

26 | State 2

27 | "HTTPM.1 200" GotoState idle
28 | EndState

29 | EndStatesSection
30 | EndTrace

Figure 2: Protocol trace representation using Textual PTSL

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

3.2.1 Representation of messages

Whenever the fields of a captured packet match the ones
specified at a Message for the current state, a transition
is triggered in the FSM. The way those fields are specified
depends on the type of protocol to be monitored. In the
case of variable-length character-based protocols where
fields are split by white space characters (HTTP and
SMTP, for instance), the identification of a field is made
by its position within the message (this is called the
FieldCounter strategy). In HTTP/1.1 200, for in-
stance, HTTP/1.1 is at position O and 200 is at position
1. On the other hand, the identification of binary proto-
cols, known by their fixed length fields (e.g. TCP), is de-
termined by a bit offset starting from the beginning of the
protocol header; it is also needed to specify the size of the
field, in bits (this is the BitCounter strategy).

The trace shown in figure 1a is for a character-based pro-
tocol. The GET message specification is shown in figure 2
(lines 9-13). In line 10 the message is defined as being of
type client, meaning that the state transition associated
with the message will be triggered by the client host. In
line 12 the only field to be analyzed is specified. The in-
formation necessary to identify it are: fetch strategy
(FieldCounter), protocol encapsulation (Eth-
ernet/IP/TCP), field position (0), expected value
(GET) and, optionally, a field description. Character-based
protocol fields are always identified by this quintuple. The
trace reply message HTTP/1.1 200 is shown in lines
14-19. The message type is defined in line 15 as server,
i.e., the state transition will be triggered by the server host.
In line 16 the MessageTimeout is set to 5000. Finally,
the two fields to be analyzed are defined (lines 17 and 18).

As opposed to the example mentioned above, the trace
specified by the messages in figure 1b is based on binary
protocols, DNS and ICMP. A DNS request will trigger a
state change on the FSM from idle to 2. To recognize a
DNS request from the packets flowing over the network
two fields must be observed: QR (when set to 1 indicates a
request to the server) and OPCODE (when set to 0 repre-
sents a standard query). Field QR is 16 bits away from the
beginning of the header and its size is 1 bit. Field OP-
CODE starts in the seventeenth bit and occupies 4 bits.

Figure 3 presents the textual specification of a DNS re-
quest (lines 1-6). In line 4 the QR field is defined. The in-
formation needed to identify a binary protocol field are:
fetch strategy (BitCounter), protocol encapsulation
(Ethernet/IP/UDP), field position (16), field length
(1), expected value (1) and, optionally, a field description.
The information used to identify the OPCODE field are
BitCounter, Ethernet/IP/UDP, 17, 4 and 0. The

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

same strategy is used in the definition of ICMP mes-
sage Port Unreachable inlines 7-11.

3.2.2 Representation of message groups

The PTSL language allows the binding of a single transi-
tion to multiple distinct events. To do that, the Group
constructor must be used within the GroupsSection
section. The trace presented in figure 1a monitors the oc-
currence of successful HTTP accesses. However, only ac-
cesses with reply code 200 are counted. Accesses with re-
ply codes 201, 202, 203, 204, 205 and 206, that also repre-
sent successful operations, could be included into this ac-
counting. For that to be possible, the messages that iden-
tify these accesses must be defined (similarly to lines 14-
19 in figure 2) and grouped (see figure 4). In lines 2-3 all
messages that make part of the group are listed. In the
graphical representation (figure la), the label associated
with the transition from state 2 to idle changes from
HTTP/1.1 200 to HTTP/1.1 20X, which is the name
of the new message group (line 1 below).

Message ‘DNS request”

MessageType: client

/f OffsetType Encapsulation FirstBit NumberOfBits Verb Description
BitCounter Ethernet/IP/UDP 16 1 1

BitCounter Ethernet/IP/UDP 17 4 0000

EndMessage

Message 'ICMP message Port Unreachable”
MessageType: server

BitCounter Ethernet/IP 0 8 00000011
BitCounter Ethernet/IP 8 8 00000011
EndMessage

SO WL~ OO A WN =

Figure 3: Field identification in binary protocols

1| Group “HTTP/1.1 200 || 201 || 202 || 203 || 204 || 205 || 206"

2 | Messages"HTTP/1.1 200", "HTTP/1.1 201", "HTTP/1.1 202",

3 "HTTP/1.1 203", "HTTPM.1 204", "HTTP/1.1 205", "HTTP/1.1 206"
4 | EndGroup

Figure 4: Representation of message groups

3.2.3 Representation of the FSM

Lines 21-29 in figure 2 define the textual specification of
the state machine shown in figure la. The final state is
identified just after StatesSection (line 22). The
states 1dle and 2 are defined in lines 23-25 and 26-28.
The state specification only lists the events (messages and
groupings) that may trigger transitions, indicating, for
each one, which is the next state (lines 24 and 27).

4 The Trace Architecture

The Trace architecture is an extension of the SNMP cen-
tralized management infrastructure. Through a three-tier

77

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

model, it supports the distributed management of high-
layer protocols and network services. Figure 5 illustrates
the architecture’s scheme. Based on the IETF Script MIB
[12], it provides mechanisms to allow a management sta-
tion to delegate management tasks to mid-level managers
(MLMs) that, in turn, interact with monitoring and action
agents to execute these tasks. PTSL specifications are
used by MLMs to program monitoring agents that start
sniffing packets flowing on the network and wait for
traces to happen. With the information gathered from the
monitoring process, the MLMs may launch procedures on
action agents (Tcl or Perl scripts), enabling the automation
of several management tasks (including reactive and
proactive tasks). The architecture also has notification
mechanisms (traps) so that agents are able to report asyn-
chronous events to scripts running on MLMs. These
MLMs are then able to filter and/or correlate these traps
and signal the occurrence of major events to the network
management station (NMS). The components of the archi-
tecture are presented below.

4.1 Management Station

The architecture is made of one or more management sta-
tions (managers). If the interfaces between all components
are respected, nothing hinders management applications
from being developed with different technologies. How-
ever, figure 5 suggests a web-based management inter-
face. Through a web browser, the human manager has ac-
cess to the management environment located in a web
server. For convenience, our research group chose the
PHP language and the MySQL database to develop this
environment. The highlighted modules on the manage-
ment station may be hosted in the same host where the
manager resides. If there is more than one management
station, they may share the same environment core.

The most important tasks accomplished by the network
manager from a management station are:

e Registration of MLMs and agents: to ease the coordina-
tion between the management station, MLMs and
agents, the network manager must define who are the
MLMs on the network, as well as the agents located
(hierarchically) bellow these managers. This binding is
important to define management boundaries. When
programming a management task, the MLM will only
manipulate those agents it is a parent of. The necessary
interactions to this registration are presented in figure 5
(numbers 1, 2 and 3). This numbering will be used
henceforth in this section to illustrate the architecture’s
data flow.

78

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

e Specification of a protocol trace (PTSL script): using
the language introduced in Section 3, it is possible to
specify a protocol trace. The network manager may
specify the trace from scratch or reuse existing traces
stored in a repository, derivating a new specification
based on previously defined traces (flows 1, 2 and 3 in
figure 5). For further use of this trace specification, it
must be mapped from the database to a text file and put
within the repository (4).

e Specification of an action (Java, Perl or Tcl script): the
action scripts do not necessarily have to be specified
using the web-based environment facilities. It is possi-
ble to upload a script developed in Java, Perl or Tcl to
the repository (1, 2 and 4). It is recommended to ex-
haustively test these scripts before sending them to a re-
pository. Most Script MIB runtime environments offer
debugging capabilities, but some do not.

e Specification of a management task (Java, Perl or Tcl
script): by using a wizard the management environment
provides, the network manager specifies a management
task (flows 1, 2 and 3 in figure 5). When defining the
task, the network manager informs the trace to be ob-
served, the identification of the object belonging to the
extended RMON2 MIB (explained later), where the ob-
servation of the chosen protocol trace will be counted,
the polling interval and the actions to be triggered when
certain thresholds are reached. These specifications, as
usually happens with PTSL specifications, are kept
within the database.

e Delegation of a management task: to delegate a task to
an MLM, the task must be retrieved from the database
(1, 2 and 3). Besides, the network manager must choose
the mid-level manager, the monitoring agent and the
action agent (the latter is not mandatory) that will be re-
sponsible for the execution of the task. A corresponding
Tcl script is automatically generated and made avail-
able at the repository (4). After going through these
steps, the execution of the script is delegated to the
MLM (5, 6) via SNMP (Script MIB).

e Monitoring of a management task: during the execution
of a management task, the manager may query the
MLM to get intermediate results of the running task (1,
2,5 and 6).

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

Management Station

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

Monitoring Agent

repository
(PTSL, Java,
Perl, Tcl)

trap
notifier

(i)

\

scripts
(PTSL)

bLlel woulio

scripts

(PHP)
A
(5)

‘long, bed, Lol
Inlelpstel

scripts
(Java, Perl, Tcl)

>

Action Agent

scripts
(Java, Perl, Tel)

‘lsag, bell, Lcl
lulsipisisl

N

Mid-level Manager

Figure 5: Components of the Trace architecture

e [nterruption of a management task: the interruption of a
management task requires the removal of all program-
ming made on the monitoring and action agents in-
volved. Only after that it will be possible to terminate
the execution of the script (i.e. the management task) at
the MLM (1, 2, 5 and 6). It is important to mention that
the latest release of the Script MIB provides mecha-
nisms to automatically expire and remove old (possibly
forgotten) entries.

® Receiving and viewing traps: the manager may receive
traps through a module called Trap Notifier (21). When
received, all traps are stored in the database (22). Traps
are permanently retrieved by a script (3) that updates
the manager’s web browser (2 and 1) using the HTTP
push technology.

4.2 Mid-level Manager

The MLM runs and monitors management tasks delegated
by NMSs and reports major events back to these stations.
There may be one or more MLMs inside each network.
The number of MLMs is determined by the network man-
ager and depends on several factors (e.g. the size and
complexity of the network infrastructure or human admin-
istrative boundaries).

The delegation of a task to a MLM, as mentioned, is per-
formed by NMSs through SNMP primitives, which are
supported by the PHP language (flows 5 and 6 in figure
5). When a new entry is created on the Script MIB launch
table, the agent automatically downloads the script from
the configured URL (7). After this table entry is enabled,
the agent is then ready to start running the script (8).

As stated before, the management tasks specified by the
network manager are automatically converted to Tcl

scripts in order to be run by MLMs. Although Jasmin [14]
(the Script MIB implementation used in our prototype)
also supports Java and Perl, we have chosen Tcl because it
has inherent network management characteristics and sev-
eral libraries to support network management operations,
besides being flexible and portable. The complexity of
scripts run by MLM:s is not a critical factor since all speci-
fication and delegation of management tasks is made by
wizards, even though Tcl scripts can be easily written and
understood by those not familiar with the language.

Figure 6 presents a sample script used to monitor the oc-
currence of a trace. In lines 8-11 and 12-16 the monitoring
and action agents are programmed, respectively. The
monitoring agent is, in line 17, asked to start observing the
network for the occurrence of the trace just programmed.
Then, the MLM polls it every 120 second (line 28) to get
information (lines 3 and 20) and checks whether the trace
has been counted or not (line 22). If the trace has been ob-
served three times within an interval, another script is
launched at the action agent (line 23), to run a manage-
ment procedure. Intermediate and final results are gener-
ated by the script (lines 28 and 29) and made available in
the Script MIB.

The script running at the MLM can configure which traps
it wishes to receive by using the Target and Notification
MIBs installed on monitoring and action agents. On the
Target MIB, the MLM sets its IP address and UDP port
number to where traps are sent (9, 10) (this port number
must be unique among all scripts running at the MLM).
The Notification MIB allows the script to set which traps
it wishes to receive (these are filtered at the notifier) (9,
11) [15]. If the script implements a trap handler, it can run
a procedure whenever a trap arrives. Traps can be corre-
lated and a more valuable notification may be sent to the

79

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

NMS (21). This configuration of trap sinks eases the im-
plementation of monitoring and action scripts, since they
do not have to care about which are their trap sinks and
which credentials should be used to send them.

package require Tnm 3.0
package require Trace 1.0

set oid "protocolDist. protocolDistStatsEntry protocolDistStatsPkts. 1.10"
setprev 0

if { [catch {:: Tnm::snmp generator -address $agent} s] } {
Tnm:smx exit -code runtimeError "Errar creating SNMP session: $s"
}

if {[catch {Trace :InstallScript Sma $m_owner $m_name $m_lang $m_src
Sm_descr $m_args $m_ltime $m_etime Sm_mrun $m_mcomp} e]} {
Tnm::smx exit -code runtimeError "Error installing script: $e"

SO WOWm N AW N —

!

12 | if {[catch {Trace::InstallScript $aa $a_owner $a_name $a_lang Sa_src |
13 $a_descr $a_args $a_ltime $a_etime $a_mrun $a_mcomp} e]} {

14| :Trace: UninstallScript $ma $m_owner $m_name

15 Tnm::smx exit -code runtimeError "Error installing script: $e"

16}

17 | ::Trace::RunScript $ma $m_owner $m_name 0

18 | proc monitor {} {
19| global s oid prev
20| setval [$s get $oid]

21| setval [lindex [lindex $val 0] 2],

22| if{[expr $val - $prev] > 3} {

23 ::Trace::RunScript $aa $a_owner $a_name 1

24

25| setprev $val

26|}

27 | :Tnm::job create \

28 -interval 120000 -error {::Tnm::smx exit -code runtimeError $errorlnfo} \
29 -exit {::Tnm::smx exit} -command {monitor}

30 | vwait forever

Figure 6: Sample script run by MLMs

It can be noted that the communication between MLMs
and monitoring or legacy SNMP agents (handled by the
Tcl scripts) is made through SNMP primitives provided by
Tcl through the Scotty package. The same happens be-
tween MLMs and the management station when traps are
sent. The programming of the Script MIB on the monitor-
ing (9, 12) and action agents (17, 18) is made with the aid
of a specially developed Tcl package (line 2 in 6), called
Trace.

4.3 Monitoring Agent

The monitoring agents count the occurrence of traces on
the network segment where they are located. They are said
extensible because the monitoring traces can be dynami-
cally configured. This flexibility is possible through the
PTSL language. These agents read PTSL files, organize
some data structures in memory and start the monitoring
process.

The configuration of which traces should be monitored at
a given moment is made by the MLM through the Script
MIB (9 and 12). On the script run by the MLM (figure 6)

80

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

it is possible to see how the monitoring agent is pro-
grammed (lines 8-11). One of the parameters passed is the
URL of the script (PTSL specification) that will be run.
When the MLM requests the installation and execution of
a script, it is retrieved from the repository via HTTP (13)
and executed (14).

Actually, the PTSL is not executable. The semantics asso-
ciated to line 17 in figure 6 makes the monitoring agent
start monitoring a new trace. In an analogous way, the in-
terruption of a script on the Script MIB means program-
ming the monitoring agent so that it ceases monitoring the
trace defined by the script.

Every time a trace is observed between any pair of peers,
data are stored in a MIB similar to RMON2 [2, 9] (15).
One of the differences between this MIB and the RMON2
MIB is that the protocolDir group, which indicates
which protocol encapsulations the agent is capable to
monitor, now allows protocol traces to be indexed.

The alMatrix group from the RMON2 MIB stores sta-
tistical data about the trace when it is observed between
each pair of peers. Table 1 illustrates the contents of the
alMatrixsSD table. It accounts the number os pack-
ets/octets between each pair of peers (client/server).

Source Destination Protocol Packets | Octets
172.16.108.1 172.16.108.2 DNS service monitoring 4 4.350
1721610832 | 172.16.108.2 DNS service monitoring 8 7.300
172.16.108.1 | 172.16.108.254 Successful WWW access 254 | 1.202.126

125.120.10.100 | 172.16.108.254 | Unsuccessful TCP connection attempt | 20 3.204

Table 1: Information from the alMatrixSD table

One disadvantage of the RMON2 MIB is that it does not
have the capability to generate information about perform-
ance. For this reason, our group is currently evaluating the
possibility of using an extension to the RMON2 MIB, the
Application Performance Measurement MIB [10]. Table 2
presents the type of information stored by this MIB. The
first line indicates that the Successful WWW access
trace was observed 127 times between hosts
172.16.108.1 and 172.16.108.254. The number
of traces that did not complete with success was 232 and
the mean response time for successful observations was 6

Client Server Protocol Success. | Unsuccess. | Responsiv.
172.16.108.1 | 172.16.108.254 | Successful WWW access 127 232 6 sec
172.16.108.1 | 200.248.252.1 | Successful WWW access 232 12 17 sec.
10.10.135.125 | 200.248.252.1 SYN Flood 10234 56 3sec

seconds.

Table 2: MIB with performance information

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

4.4 Action Agent

Through monitoring agents, MLMs are able to evaluate
whether a trace has occurred or not. Traces may represent
network service failures, intrusion attempts, service per-
formance degradation, and other problems. In this context,
the action agents are responsible for the execution of reac-
tive (and potentially proactive) management procedures
created to autonomously handle these problems. Let’s
take, for instance, the DNS service monitoring. When a
mid-level manager detects that the service is not running
(through the monitoring loop), it can ask an action agent
(located on the same host of the service) to run a script to
restart the service such as the one shown in figure 7.

#/usribin/perl
my $pid;

Verify if the process named is executing
if (-e "ivarlrun/named.pid") {

$pid = */binfcat ivar/run/named.pid';
}

If named is running, restart it using a HUP signal, otherwise instantiate the process
again.
if (defined $pid) {

print "Restarting named (sending HUP signal)...\n";

*foin/kill -HUP Spid
else {

print "Starting named (was not running)...\n";

*ust/shin/named &'
1
s

Test if the process is executing
if (-e "varlrun/named pid") {
$pid = “/bin/cat fvar/run/named pid ;
print "The named daemon is up and running as PID Spidin";
}else {
print "The named daemon could not be started/\n";
}

Figure 7: Perl script to restart the daemon named

The communication between MLMs and action agents is
made through the Script MIB (see flows 17 and 18 in fig-
ure 5). Once the Script MIB is programmed to run an ac-
tion script, it is retrieved via HTTP from the repository
(19) and then executed (20). The script illustrated in figure
7 was written using Perl language. Although most network
managers are more familiar with Perl, this language is not
mandatory; Java and Tcl can also be used.

5 Case Studies

The Trace architecture was designed to allow the man-
agement of all functional areas (FCAPS). Our group ex-
plored, through a case study, the characteristics of the ar-
chitecture to validate its applicability on the management
of high-layer protocols and network services. Figure 8
shows a real management scenario, composed of three do-
mains. The organization of these domains is a task that the
network manager must handle to efficiently use the archi-

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

tecture. This task is accomplished at the management en-
vironment when the MLMs and the agents are configured.

Domain 1 is composed of equipment and services related
to the organization’s Internet access (dark gray in the fig-
ure). The router acts as a gateway for three distinct net-
works: the Internet, the internal network demilitarized
zone (where the web and DNS servers are) and the pro-
tected intranet (with an Intranet server). There are two
monitoring agents (M1 and Mp) installed on dedicated
monitoring stations and one action agent installed on the
same host where the DNS server resides. Based on this
scenario, our work group defined some management tasks.

5.1 Monitoring of the DNS Service
Availability

This management task consists in observing the availabil-
ity of the name resolution service. Through the Tcl script
presented in Figure 6, the mid-level manager responsible
for domain 1 programs the monitoring agent M1, which is
located on the same segment as the DNS server, in order
to watch for the occurrence of the trace DNS service
monitoring (figure 1b). If this trace is observed at least
three times during a polling interval, the mid-level man-
ager will request the action agent A to launch the script
that restarts the service (figure 7).

5.2 Accounting Accesses to the Web Server

This task consists in measuring the amount of accesses to
the web server, not only successful accesses, but also ac-
cess failures and unauthorized access attempts. These in-
formation allow the manager to, for instance, (a) know the
most critical access times and upgrade or configure the
server to support more simultaneous connections, (b)
count the occurrence of problems with HTTP clients and
minimize the problem by revising the pages and (c) recon-
figure the web server and/or the firewall to no longer ac-
cept connections from hosts where unauthorized access at-
tempts came from.

Figures 1a and 2 present the trace used to count successful
accesses to the web server. Figure 4 shows how to group
several messages into a single transition. The traces used
to count other reply codes are similar. To count unauthor-
ized access attempts, for instance, one must define a trace
to monitor the occurrence of the GET primitive followed
by an HTTP/1.1 401 response. By monitoring several re-
ply codes during regular polling times, the MLMs can
generate detailed reports.

81

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

Domain 1

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

Legend:

Router

== Hub

IE‘ Firewall

Switch

@ Mid-level
manager

Figure 8: A network and some services

The monitoring of accesses to the web server located on
the external network is done by programming the monitor-
ing agent M|, while the web server responsible for the In-
tranet is monitored through the monitoring agent M>. Each
monitoring process makes part of distinct management
tasks, even though they run similar procedures.

5.3 Security Management of DNS and Web
Servers

The DNS and web servers located on the external network
may be vulnerable to malicious exploits coming from the
Internet. The security monitoring of these services consists
in monitoring the hosts where they are located and check
whether they are victims of port scans, denial of service
attacks, among other exploits that can be detected pas-
sively.

A port scan consists of sending packets to a range of ports
of a host to know which TCP and UDP services are avail-
able. When using TCP, if the host does not have a service
listening in a determined port, it will send back a TCP
packet with the RST bit on in response to the connection
attempt. Figure 9a and b presents this trace.

The mid-level manager programs the monitoring agent M|
to start monitoring the trace. Furthermore, it will peri-
odically poll the extended RMON2 MIB where the moni-
toring results are stored (see table 1). If during a polling
interval the number of occurrences of the trace is higher
than a determined value, defined by the manager, the
script will generate a notification to the central manage-
ment station.

A similar procedure is done when one of the stations suf-
fers from an attack known as SYN Flood. This attack con-
sists of sending a huge number of connection setup pack-
ets (TCP packet with the SYN flag on) with a fake source

82

Management
station

address to a target host. This fake address must be un-
reachable or non-existent (usually a reserved value).
When the target host receives these SYN packets, it creates
a new entry on its connection table and sends back a
SYN/ACK packet to the possible client. After sending the
reply packet, the target host waits for an acknowledge
from the client to establish the connection. As the source
address is fake, the server will wait a long time for this re-
ply. In a given time, the connection queue of the server
will be full and all new connection requests will be dis-
carded, creating a denial of service. This state will last un-
til the entries on the connection table start to timeout.

Trace “Unsuccessful TCP connection attempt”
TCP SYN

TOPRST

Versicn: 1.0
Description: Connection attempt to a nan-

available TCP service
Key: TCP, port scanning
Part

Owner: Luciano Paschoal Gaspary
Last Update: Tue, 16 Aug 2000 19:36:53 GMT

(@)

Trace “Unsuccessful TCP connection aftempt”

Version: 1.0

Description: Connection attempt to a non-available service.
Key: TCP, port scanning

Port

Owner: Luciano Paschoal Gaspary

Last Update: Tue, 16 Aug 2000 15:30:58 GMT

MessagesSection

Message TCP SYN"

MessageType: client

BitCounter Ethernet/IP 110 1 1 “Field SYN — 1 means TCP Connect”
Endiiessage

Message TCP RST"

MessageType: server

BitCounter Ethernet/IP 109 1 1 “Field RST"

EndMessage

EndMessagesSection
StatesSection
FinalState idle

State idle

‘TCP SYN' GotoState 2
EndState

State 2

TCP RST" GotoState idle
EndState

EndStatesSection
EndTrace

(b)

Figure 9: Trace to detect port scanning

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

The identification of this attack is done by the trace shown
in figure 10. Unlike other examples presented, this attack
is identified by observing unsuccessful occurrences of the
trace. This information is stored at the APM MIB, as
shown in table 2.

Trace "SYN Flood”
Version: 1.0

Description: Syn flood attack

Key: TCP, Syn Flood

Port

Owner: Luciano Paschoal Gaspary

Last Update: Tue, 16 Aug 2000 15:30:58 GMT

TCP SYN/ACK

TCP ACK

Figure 10: The SYN Flood attack

6 Conclusions and Future Work

This paper presented an architecture for distributed man-
agement of high-layer protocols and network services
based on the use of programmable agents. Motivated by
the increasing demand by organizations that need to man-
age high-layer protocols and their critical applications,
this work proposed a flexible architecture that is able to
keep up with the fast proliferation of protocols and net-
work applications (that must be managed). Based on the
IETF SNMP standard, this architecture does not require
major changes in existing management systems (which
took years to consolidate).

The proposal of the PTSL language is one of the most im-
portant contributions of this work. All approaches dis-
cussed and listed in Section 2 are limited to the accounting
of sent/received packets between pairs of peers, class-
ifying them based on protocols [2] or flows [1, 5]. In these
approaches, the manager has access to information limited
to the style “host A sent n octets/packets to host B”, with
filters to some well-known protocols (e.g. HTTP and
SMTP) or packets with specific header fields. The innova-
tions aggregated with PTSL increase the granularity in
which protocols are monitored, enabling the analysis of
the behavior of a protocol or just part of a protocol by in-
troducing the representation of desired traces. This pro-
vides the network manager with more accurate informa-
tion, which will help him to deploy fault, configuration,
accounting, performance and security management to
high-layer network protocols and services. Using the pre-
vious example, the language allows the accounting of suc-
cessful, unsuccessful and unauthorized HTTP accesses, as
well as many other possible HTTP behaviors. The PTSL
power of expression is another strong point. While many
approaches allow the selection of packets based on a few
predetermined header fields only up to the transport layer

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

[5], PTSL goes further, allowing the use of filters based on
any protocol, all the way up to the application layer.

Integrated management is an inherent characteristic of the
architecture. Instead of using specific tools to monitor in-
dividual protocols and services (e.g. web, video-on-de-
mand and email), one can use the Trace architecture to
monitor such protocols and services through a unified
framework. By delegating the functionality of these tools
to distributed management stations, our approach burdens
off the workload on the hosts where these services are in-
stalled.

One positive aspect of the Trace architecture is the possi-
bility of making effective management of high-layer net-
work protocols and services by integrating the PTSL lan-
guage with programmable monitoring agents and by asso-
ciating the occurrence of specific traces to dynamically
programmable actions, enabling the automation of a set of
management procedures. The proposed architecture is not
limited to monitoring, to the contrary, it provides a more
complete and broader solution that includes the execution
of actions, enabling both reactive and proactive manage-
ment.

Another positive aspect of the architecture is a significant
increase of scalability in relation to the traditional SNMP
management paradigm, since it can delegate management
tasks, previously processed only at the centralized man-
agement station, to MLMs. The robustness aggregated to
the management tasks also represents an important contri-
bution. The architecture allows the delegation of manage-
ment functions to MLMs that are closer to the monitored
agents; if the connection is lost between the centralized
management station and the MLM, these management
tasks will still be able to run. The delegation is not only
about tasks, but it will also delegate CPU cycles and will
keep polling as close as possible to the management tar-
gets.

However, this distributed architecture demands more work
to be controlled. The component management becomes a
quite complex task. Included in the component manage-
ment are the distribution and update of scripts, the re-
trieval and correlation of results. One of the proposed fu-
ture works is the creation of mechanisms that provide an
even more transparent use of the architecture.

Regarding the implementation of the architecture it is im-
portant to say that the developed prototype is being im-
proved to offer the transparency just mentioned. The net-
work management environment interface, which was not a
priority until now, is being redesigned. The procedures
executed by the MLMs are being encapsulated into a Tcl
package, so that the manager will not need wizards any-

83

An Architeture for Distributed and Flexible Management of
High-Layer Protocols and Network Services

more, giving more power to specifications. Performance
tests were not carried out yet, but Schoenwaelder presents
good results in [11], where the Jasmin implementation
was evaluated.

References

(1]

[2]

[3]

(4]

[5]

[6]

(71

[8]

9]

[10]

[11]

[12]

84

L. Deri and S. Suin, “Ntop: Beyond Ping and Tracer-
oute” Proc. 10th IFIP/IEEE Workshop on Distributed
Systems: Operations and Management, Zurich, Oct.
1999, pp. 271-283, Springer Verlag.

S. Waldbusser, “Remote Network Monitoring Manage-
ment Information Base Version 2 using SMIv2”, RFC
2021, INS, Jan. 1997.

G. Malan and F. Jahanian, “An Extensible Probe Archi-
tecture for Network Protocol Performance Measure-
ment”, in Proc. of SIGCOMM, Vancouver, Sep. 1998.

N. Brownlee, C. Mills, and G. Ruth, “Traffic Flow
Measurement: Architecture”, RFC 2722, The University
of Auckland, GTE Laboratories Inc., GTE Internetwork-
ing, Oct. 1999.

N. Brownlee, NeTraMet,
land.ac.nz/net/Internet/rtfm/.

http://www .auck-

N. Brownlee, “Traffic Flow Measurement: Meter MIB”,
RFC 2720, The University of Auckland, Oct. 1999.

N. Brownlee, “SRL: A Language for Describing Traffic
Flows and Specifying Actions for Flow Groups”, RFC
2723, The University of Auckland, Oct. 1999.

C. Cook et al., An Introduction to Tivoli Enterprise, First
edition, International Technical Support Organization,
1999, http://www.redbooks.ibm.com.

L. P. Gaspary and L. R. Tarouco, “Characterization and
Measurements of Enterprise Network Traffic with
RMON?2”, Proc. 10th IFIP/IEEE Workshop on Distrib-
uted Systems: Operations and Management, Zurich, Oct.
1999, pp. 229-242, Springer Verlag.

S. Waldbusser, “Application Performance Measurement
MIB”, Internet Draft, Jul. 2001.

J. Schoenwaelder, J. Quittek, and C. Kappler, “Building
Distributed Management Applications with the IETF
Script MIB”, IEEE Journal on Selected Areas in Com-
munications, vol. 18, no. 5, pp. 702-714, 2000.

D. Levi and J. Schoenwaelder, “Definitions of Managed
Objects for the Delegation of Management Scripts”, In-
ternet Draft, Nortel Networks, TU Braunschweig, June
2001.

[13]

[14]

[15]

[16]

Luciano Gaspary, Luis F. Balbinot, Roberto Storch,
Fabricio Wendt e Liane Tarouco

L. P. Gaspary, L. F. Balbinot, R. Storch, F. Wendt, and
L. R. Tarouco, “Towards a Programmable Agent-based
Architecture for Enterprise Application and Service
Management”, in Proc. First IEEE/IEC Enterprise Net-
working Applications and Services Conference, Atlanta,
June 2001, Piscataway, USA: IEEE Operations Center,
2001. p. 39-46.

TU Braunschweig, NEC C\&C Research Laboratories,
Jasmin - A Script MIB Implementation, 1999,
http://www.ibr.cu.tu-bs. de/projects/jasmin.

D. Levi, P. Meyer, and B. Stewart, “SNMP Applica-
tions”, RFC 2573, SNMP Research Inc., Secure Comput-
ing Corporation, Cisco Systems, Apr. 1999.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-
Lee, “Hypertext Transfer Protocol - HTTP/1.1”, RFC
2068, UC Irvine, DEC, MIT/LCS, Jan. 1997.

