
Quality aware Software Product
Line Engineering

Leire Etxeberria, Goiuria Sagardui and Lorea Belategi

Computer Science Department University of Mondragon
Informatika departamentua, Goi Eskola Politeknikoa, Mondragon Unibertsitatea, Loramendi 4,

Apartado 23, 20500 Mondragón (Gipuzkoa), Spain
letxeberria@eps.mondragon.edu

Abstract

Meeting and managing quality requirements such as
performance, security… in a reuse context (software product
line…) has a problematic that it is not found in single-
systems. In this paper, an overview of aspects to consider is
presented, including a review of existing approaches, as well
as some conclusions, requirements and guidelines to address
quality aspects in software product lines.

Keywords: Software product lines, quality assurance

1. INTRODUCTION
“Software product line (SPL) is a set of software-

intensive systems that share a common, managed set of
features to satisfy the specific needs of a particular
market segment or mission and that are developed from
a common set of core assets in a prescribed way”[13].

In software product line development, two phases are
distinguished: Domain engineering and Application
engineering. Domain engineering is in charge of
developing a common infrastructure and assets while
Application engineering makes use of them to generate
the products of the line.

While working on domain engineering phase, all the
requirements of the products must be taken into account,
including quality attribute requirements such as
performance, reliability, usability, etc. However, “research
in the field of software product lines has primarily focused
on analysis, design, and implementation to date and only
very few results address the quality assurance problems and
challenges that arise in a reuse context” [32]. In a software
product line, quality attribute requirements have also
variability, because not all the products require the same
level of security, performance, etc. This aspect has also
been neglected or ignored by most of the researchers as
attention has been mainly put in the variability to ensure
that it is possible to get all the functionality of the products.

Fortunately, things have started changing and the interest
on quality in reuse contexts has grown considerably in the
last years; several workshops have been organized:
eWorkshop on Quality Assurance for Software Product
Lines: Strategic Issues [33], International Workshop on
Quality Assurance in Reuse Contexts (QUARC’04) [31],
The First IEEE International Workshop on Quality Oriented
Reuse of Software (QUORS'07)… and research paper’s
production has proliferated.

If in single-systems achieving quality attributes is
sometimes a challenge, in software product lines this
challenge is complicated because there is variability on
quality attribute requirements and different quality
constraints are required. For instance, variable quality
constraints are required due to variability on hardware: the
storage space, execution capability, screen’s dimensions…
of the hardware device can impose different constraints.
Tradeoff analysis of quality attributes is also more difficult
than in single-systems due to this variability and the
exponential number of possibilities.

The difficulty grows but the impact of not addressing
quality attributes also does. The consequences of not
considering and managing variability in quality
attributes when designing a product line are not trivial,
especially in embedded systems. If a product line is
developed without considering the quality attribute
requirements’ variability, this product line will not cover
all the products of the scope and will probably not cover
new products in the future. As a consequence, the
investment for developing the software product line will
not be cost-effective.

As conclusion, to develop a product line that
addresses the customers’ needs, quality attributes and
their variability must be gathered and managed during
domain engineering. This paper presents an overview of
the aspects that need to be considered during domain
engineering to address quality as well as reviews of

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 58

methods and approaches for each aspect. The rest of the
paper is organized as explained here. In Section 2, the
tasks to meet quality requirements in a software product
line are presented. In Section 3, an overview of existing
methods and approaches for those tasks are reviewed and
in section 4 conclusions and requirements for quality
driven domain engineering are drawn. Finally, section 5
presents related work and section 6 future work.

2. ACHIEVING QUALITY IN SOFTWARE
 PRODUCT LINES
As we have mentioned, it is vital to take into account

quality requirements when developing software product
lines. First of all, in the next subsection, what means
quality in a software product line is explained and the
specific classification of quality attributes for a software
product line is presented.

2.1. SOFTWARE QUALITY IN SOFTWARE PRODUCT LINES
Software quality is the degree to which software

possesses a desired combination of attributes [25]. There are
two broad categories of quality attributes [4]: Observable
via execution or operational such as performance, security,
availability, usability… and not observable via execution or
development attributes such as modifiability, portability,
reusability, integrability, testability…

In a software product line, quality attribute
requirements can be classified in two different types
[18]: Product-line quality attributes and domain-
relevant attributes. Product-line quality attributes are
considered development attributes or non observable via
execution. Whereas domain-relevant quality attributes
usually are operational or observable via execution.

Product-line quality attributes are those that are
inherent or specific to product-lines to undertake a set of
related products as well as new future products. These
attributes are the ones related to variability or flexibility.
Assessing the variability of a product line ensures that it
is possible to get all the functionality of the products in
the envisioned scope; variability [55] understood as
modifiability (to allow variation or evolution over time)
and configurability (variability in the product space) to
get a set of related products.

Domain-relevant quality attributes (such as safety in
a safety-critical domain, performance in a real-time
domain, etc.) must also be addressed in the product line,
otherwise the implications or consequences can be very
serious and difficult to fix. As different products of the
domain can require different attribute values (not all
products require the same level of security…),
variability in the way the attribute is translated to the
product is relevant for the assessment to assure that the
realization of all the quality attributes for all the
products in the product-line scope is possible.

2.2. QUALITY AWARE DOMAIN ENGINEERING
Software product line practice seeks to achieve a

number of goals including reduced costs, improved time
to market, and improved quality of the products
belonging to the product line. These goals will only be
achieved if quality attributes, such as correctness and
reliability, are continuous objectives from the earliest
phases of development [39].

The importance that quality and quality assurance is
acquiring in reuse contexts is justified because an error in a
reusable asset can be propagated to a lot of products.

Regarding the previous classification of quality
requirements, to date, product-line quality attributes such as
extensibility, modifiability, etc. has received most of the
attention: how to know if the line covers all the envisioned
functionality of the products in the scope. Nevertheless,
domain-relevant quality attributes have being neglected,
especially the variability that those attributes can have in a
software product line. This paper deals with what can be
done to address domain-relevant quality attributes and their
variability when developing a software product line.

To obtain the required quality levels, quality must be
addressed from the beginning, not only at design time,
which is the stage where quality is usually considered, it
must be considered through all the life cycle. During
requirement engineering quality requirements must be
captured and modelled including variability aspects and
during design, these requirements must be taken into
account to get the most adequate design. Design’s
evaluation is also very important because it allows early
problem detection in the life cycle. We have made a list of
tasks or practices to perform during domain engineering to
facilitate quality aware product line engineering (see Figure
1). Some of them are specific tasks and others consist on
including a quality perspective in tasks that are performed
in all software product line developments.

1. Quality variability modelling: To specify quality
variability. Different products are going to have
different quality levels and this information should be
explicit.

2. Quality aware design: To take into account quality
attributes including variability during software
architecture design.

3. Architecture evaluation: To evaluate the design
(taking into account the variability) to see if all the
quality levels are fulfilled.

4. Quality aware implementation: To take into account
quality attributes during software coding.

5. Quality testing: To assure that quality requirements
are achieved once the product line assets have been
developed.

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 59

Domain analysis
and modelling

Domain design Domain testing
Domain

implementation

Quality variability
modelling

Quality aware
design

Architecture
Evaluation

Quality aware
implementation

Quality
testing

Figure 1: Quality aware domain engineering

Quality variability modelling

In a software product line, different members of the line
may require different levels of a quality attribute or a quality
can be optional for some products (if the quality is not
important for all products). Moreover, functionality and
qualities are closely related and the selection of a functional
feature can influence or impact on the quality level. Three
different aspects of quality attribute variability must be
considered, following the classification of quality attribute
variability types of Niemelä [42]:

• Optionality of a quality attribute. For example,
for one product of the line, performance is
important but for others products of the same line
there are not performance requirements.

• Quality attribute levels or groups. In a product
line, quality attributes can have different priority
levels. For example, for one product the
performance requirements are extremely high,
whereas for others those requirements are at the
lowest level.

• Impacts of functional variability on quality (Indirect
variation). Functional variability can indirectly cause
variation in the quality requirements.

To be able to assure quality aspects, the quality
variability must be managed during all the life cycle and
for it, quality variability modelling is essential including
variability aspects of requirements, design and
implementation.

Quality variability model is useful during domain
engineering for addressing quality aspects taking into
account their variability and also during application
engineering when products are derived for facilitating a
quality driven derivation.

There are some approaches for specifying quality
attribute requirements that do not address variability
explicitly. In a similar fashion, there are other approaches to
specify varying requirements that do not address quality
attributes [40]. However, there are also several methods
that address quality attribute variability explicitly.

Quality aware design

During design, the software architecture of the product
line is defined. “The software architecture of a program or
computing system is the structure or structures of the system,
which comprise software components, the externally visible
properties of those components, and the relationships among
them” [4]. The software architecture has a great influence on
the system’s final quality as it can inhibit or enable the
product’s quality attributes. For that reason quality
requirements and their variability must be very present
during architecture design.

Architecture evaluation

The architecture evaluation is “the systematic
examination of the extent to which an architecture fulfils
requirements” [17]. To be able to analyze the potential of an
architecture to reach the required quality levels helps to find
the problems early in the life cycle, when they are easier and

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 60

cheaper to correct than in later stages such as
implementation, testing or deployment. In the case of
product-line architectures (PLAs) the architecture assessment
becomes crucial to ensure that the PLA is flexible enough to
support different products and to allow evolution.

Quality aware implementation

The variability in functional and quality
requirements must be implemented in the code. There
exist lots of variation mechanisms but the overview of
them is out of the scope of this paper.

Quality Testing

“Testing is an approach to validate and verify the
produced artefacts. It refers to any activity that validates
and verifies through the comparison of an actual result,
with the result the artefact is expected to produce, based
on its specifications. Deviations from the expected
results are termed failures”. “A failure is considered to
be the result of a defect in the artefact” [39]. Quality
testing is used to assure that the product has the required
quality requirements. In the case of a product line, those
quality requirements may have variability as well.

3. OVERVIEW OF EXISTING METHODS AND

APPROACHES REGARDING QUALITY IN

SOFTWARE PRODUCT LINES

In this section, an overview of methods and
approaches for the previously identified tasks and
practices is presented.

3.1. QUALITY VARIABILITY SPECIFICATION

In a product line, there are often products with
varying levels of quality attributes. A model where
quality attribute variability is modelled as well as the
impacts of functional variants on quality attributes is
indispensable to take the most adequate decisions during
design and derivation and get the required quality levels.

Seven modelling methods that address varying
quality attributes have been compared:

• Goal-based model [23]: This approach proposes
to use goal-oriented analysis in product lines.
Goal-oriented requirement engineering is an
approach that deals with quality attributes or non-
functional requirements in single systems. Two
sub-models are proposed: A functional goal
model and a softgoal model. Quality attributes are

represented as soft-goals and the operation of
those quality attributes is encoded in the
functional goal sub-model as tasks. Priorities are
given to each softgoal on a percentile scale to
perform the analysis. And correlations are used to
represent the links among functional goals and
softgoals. Correlation links have different
influence labels (--,-,?,+,++). Those qualitative
labels are converted to quantitative values: one
value for satisfiability and another for deniability.

• F-SIG (Feature-softgoal interdependency graph)
[29]: The main goal of this approach is to provide
a framework to record design rationale in the
form of interdependencies of variable features
and quality attributes. To do that a new graph is
proposed: F-SIG, a union of a feature model and a
SIG (Softgoal interdependency graph) [11]. In F-
SIG explicit and implicit contributions from
features to quality attributes are modeled. To
express the degree of influence, correlations may
have also a label (break:--, hurt:-, unkown: ?,
Help: +, Make: ++).

• COVAMOF [50]: COVAMOF is a framework for
variability modelling in software product families.
With this framework it is possible to model the
variability on all layers of abstraction of the product
family. This framework uses the CVV (COVAMOF
Variability View) which has two views: Variation
Point View and Dependency View. The CVV
captures variability in the product family in terms of
variation points and dependencies. Quality attributes
can be modelled with dependencies, a dependency
can specify a property that specifies the value of a
quality attribute such as performance or memory
usage. Association is used to associate variation
points and dependencies.

• Extended feature model [7]: It is a feature model’s
extension to deal with extra-functional features. A
notation that extends feature models with attributes,
characteristics of a feature that can be measured
such as availability, cost, latency, bandwidth and
relations among attributes is being proposed. Every
feature may have one or more attribute relations
taking a range of values in either discrete or
continuous domains. It also provides automatic
reasoning on those extended feature models using
CSP (Constraint Satisfaction Problems).

• Definition hierarchy [35]: The hierarchy method
is a logical AND tree where topmost nodes are
design objectives: architectural drivers and other

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 61

quality attributes that the system is supposed to
fulfil. The other nodes are design decisions and
when an edge is between a design objective and a
design decision it shows that this requirement is
(partially) satisfied by design decisions. Each
node in the definition hierarchy gets a priority
that reflects the importance of that node to
support the intention of its parent. Priorities are
product specific; they are used as the mechanism
to describe products in the definition hierarchy.

• Bayesian Belief Network: Zhang et al. [59]
proposed a Bayesian Belief Network (BBN) based
approach to quality prediction and assessment for a
software product line. The BBN is used to explicitly
model the impact of variants (especially design
decisions) on system quality attributes. The feature
model is used to capture functional requirements
and the BBN model to capture the impact of
functional variants on quality attributes.

• Quality Requirements of a Software Family (QRF)
method [43] of VTT captures and maps the
requirements of a product family in the family
architecture by analyzing the needs of business and
technology development stakeholders and the impact
of these needs on the family architecture. The QRF
consists of five steps: Impact analysis, which is defined
through a framework that enables to define and
negotiate requirements. In this step, it uses the i*
framework [10], a graph called the Strategic
Dependency model to define different stakeholders’
functionality requirements and quality requirements;
Quality analysis, where quality requirements are
expressed in a way in which they can later be traced
and measured. In this step the quality requirements are
prioritized (low, medium, high); Variability analysis,
where quality requirements that vary on the business
domain are defined. This variation is specified in the
Strategic Dependency model; Hierarchical domain
analysis is used to map common and variable Quality
Aspects to functionality (hierarchical service
categories) and Quality Representation to describe
architecture in a way that quality requirements can be
evaluated from the architectural models. For this last
step, two main means are used: Architectural styles and
patterns and a NFR (Non-Functional Requirements)
framework to carry out a trade-off analysis and select
the style that meets the quality requirements best; and
profiles to extend the architectural models to support
certain quality aspects.

These modelling approaches have been analyzed to
see if they cover several requirements that we consider
important for modelling quality attribute variability:

• Automatic reasoning: Different reasoning tasks
should be interesting: get an approximate value
or level for several quality attributes starting
from a set of functional requirements, detect
impossible configurations starting from a set of
functional and quality requirements, detect
conflicts among quality attributes and provide
help to perform a trade off analysis...Due to the
complexity of this analysis and reasoning, it is
advisable to make it automatic. To achieve
automatic reasoning artificial intelligence
techniques are need such as Constraint
Satisfaction Problems (CSP), Boolean
Satisfiability Problems (SAT) and Binary
Decision Diagrams (BDD) [6].

• Quality attribute characterization: Quality
attributes have vague definitions. In different
domains, one quality attribute may not mean
exactly the same or different names are used for
the same concept. So it is necessary to specify
and make quality attributes more concrete. A
mechanism for describing and explaining a
quality attribute adequately must be provided: A
structure where a quality attribute may be
explained through refinement of different levels.

• Optionality: In one product one attribute may be
important and in another one this attribute may
not be required. So this attribute is optional in
the product line. This variability must be
represented and not only at product level. It is
not enough to specify this optionality when
deriving products.

• Levels: Different priority levels in quality
attributes are need. For example, for one family
member the extensibility requirements are
extremely high, whereas for others those
requirements are at the lowest level. However,
quality attributes are not easy to quantify due to
their nature, only more concrete concepts
(refinement results) may be quantified. It is
necessary to provide a way to define different
levels (high, medium, low) at quality attribute
high level and map those levels to more concrete
concerns’ values.

• Quantitative and qualitative: Indirect variation
must be represented with qualitative and
quantitative impacts and means must be provided
to quantify qualitative influences to be able to do
an automatic analysis.

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 62

• Group impacts: There are some types of
influential relationships that must be addressed,
for instance, the influence of a group of variants.
The impact of two variants together is not always
the sum of the individual impacts of those two
variants alone. For instance, in some applications
the price of some packages that have several

features or options together may be cheaper that
buying all the features separately.

None of the evaluated approaches meets all the identified
requirements (see Table 1). In the paper [19] can be found a
more completed analysis of some of the methods.

Table 1: Evaluated methods

Requirement

Approach

Automatic

reasoning

QA

characterization

Optionality at

PL level

Priority levels Quantitative and

Qualitative

Group impacts

Goal-based model Yes Yes No No Yes No

F-SIG No Yes No No No No

COVAMOF Yes No No No Yes Yes

Extended FM Yes No No No No No

Definition Hierarchy No Yes More or less No Yes No

BBN Yes No No More or less Yes Yes

QRF No More or less Yes Yes No No

3.2. QUALITY AWARE DESIGN METHODS

There are quite a lot specific methods to design
product-line software architectures but not all take into
account quality requirements explicitly. Some of the
methods that are quality aware are: QADA [38],
QUASAR [54], QASAR [9], PuLSE-DSSA [5] and
SEI’s PL initiative [13].

• PuLSE-DSSA: The input data for this method is a
scope definition and a domain model, where the former
defines the business case for the development of the product
line and the latter describes common aspects and variations
of applications within the product line. The output of PuLSE-
DSSA is a product line architecture. The resulting
architecture is evaluated according to the architecture
evaluation plan. If at least some test failed, the underlying
problems are examined in order to determine how the
architecture development process can be continued.

• QUASAR: QUASAR is a framework that supports
Quality – Driven System Architecting of product families.
It is organized on three major workflows. The Preparation
Workflow provides activities that support early
architectural considerations. The activities of the
Modelling Workflow are responsible of modelling
architectural views and the variability within each view.
The Evaluation Workflow includes activities to analyze
the architecture consistency, variability coverage, and the
achievement of qualities.

• QASAR: The Quality Attribute-oriented Software
Architecture design method (QASAR) is an architecture

design method that uses explicit assessment, and design for
the quality requirements of a software system. It consists of
two iterative processes of which the inner iteration contains
three parts: functionality-based architecture design,
assessment and transformation to quality requirements.
Whereas the outer iteration refers to a requirement selection
process. In this process a subset of requirements is selected
and this subset is used for the inner iteration. QASAR does
not focus on a single quality attribute but rather provides a
generic method and steps for the assessment and reasoning
of tradeoffs for different quality attributes.

• QADA: The QADA (Quality-driven Architecture
Design and quality Analysis) method provides a systematic
way to transform functional and quality requirements into
software architecture. The method also uses styles and
patterns as guides to carry out quality requirements in
architectural descriptions with a documented design
rationale.

• SEI’s Product Line initiative: This approach uses the
Architecture Based Design (ABD) method. This method of
design addresses functional, quality and business
requirements.

Only one of these methods (QADA) takes into
consideration explicitly the variability in quality attributes.

3.3. ARCHITECTURE EVALUATION

In this section, software architecture evaluation
methods that are related to software product lines are
compared. The methods are classified in groups
depending on the evaluation time and goal:

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 63

• Methods to evaluate architectures at design
phase: Methods that are used during product line
architecture design.

• Methods to evaluate existing product-line
architectures: Methods to evaluate the software
architecture of (already developed) product-
lines.

• Methods to assess variability: The variability is a
key aspect in software product lines and there are
several methods that focus on this quality
attribute.

• Methods oriented to evaluate existing product
architectures to use them as basis for the
product-line: Methods that are used when there
exist legacy systems whose architectures can be
used as a starting point for the product line.

• Methods to evaluate both product line
architecture and instantiated product
architectures: In a software product line, there
are two moments where evaluation can be
performed: during domain engineering and
during application engineering and there are also
methods that allow performing evaluations on
both levels in a coordinated way.

• Metrics: Software product line architecture
metrics to assess quality aspects.

• Single-system architecture evaluation methods:
Methods that are not specific for product lines
but can be used to evaluate product line
architectures.

There are different methods to evaluate product-line
architectures in the design phase: FAAM (Family
Architecture Assessment Method) [17] to evaluate the
information-system family’s architectures, the QADA
(Quality-driven Architecture Design and quality
Analysis) approach [38] has two methods to analyse
product-line architectures: The RAP (Reliability and
Availability Prediction) method [26] to evaluate
software reliability and availability of the architectural
model and the IEE (Integrability and Extensibility
Evaluation) method [44] for integrability and

extensibility evaluation, REDA1 (Reliability Evaluation
of Domain Architectures) [2] to analyse the reliability of
a PLA and D-SAAM (Distributed SAAM) [24], a
variant of SAAM to evaluate reference architectures.

For existing product-line architectures evaluation:
Gannod and Lutz [22] propose an approach that

1 This abbreviated name is not original, it is used for

convenience

evaluates quality and functional requirements, Maccari
[36] proposes a method to assess evolution and Riva and
Rosso [49] adapt Maccari’s approach.

There are some methods that assess variability, one
of the key aspects in product-lines, at architectural-level:
SBA (Scenario-Based Architecting) [1] is a method to
identify and quantify the potential benefits of the
different architectural variability options. There are also
others that work at all layers of abstraction and not only
at the software architecture: Wijnstra’s approach [58]
and COSVAM (The COVAMOF Software Variability
Assessment Method) [15].

There are also methods oriented to evaluate existing
product architectures to use them as basis for the
product-line: SACAM (Software Architecture
Comparison Analysis Method) [51] which is a method
to compare architectures and Korhonen’s approach [34]
which analyses whether an architecture can be used as a
basis for a product-line or not.

There is a method to evaluate both product line
architectures and instantiated product architectures:
HoPLAA [45] (Holistic Product Line Architecture
Assessment), an adaptation of ATAM (Architecture Trade-
off Analysis Method) for product lines. This method
introduces variability in the quality attribute utility tree used
for evaluation. HoPLAA addresses the requirements for the
evaluation of software product line architectures in an
integrated, holistic approach. It is executed in two stages;
the first stage focuses on the core architecture evaluation,
while the second stage targets the evaluation of individual
product architectures.

There are also specific metrics defined for PLAs:
service usage metrics [56] and Rahman’s metrics [47].

There are some very popular architecture evaluation
methods that can be also used to evaluate product-line
architectures like SAAM (Software Architecture Analysis
Method) [12] and its variants. And the successor of SAAM:
ATAM (Architecture Trade-off Analysis Method) [12].
These methods are not product-line specific, they are used
to evaluate single-product architectures but they are
adequate to address qualities that are product-line quality
attributes such as maintainability and extensibility among
others. ATAM has been used in product-line contexts [20]
[21], even though there is no special treatment in ATAM
for product-line architectures; in these case studies the
product-line particular aspects are addressed implicitly as
quality requirements.

In the next table, a summary of the performed
comparison is presented. In [18] a more completed
survey of most of the methods can be found.

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 64

Table 2: Comparison of evaluation methods

Evaluation Method Goal Attribute Types Evaluation

Techniques

Process Description Method’s validation Relation with

other methods

FAAM (Family

Architecture

Assessment Method)

Stakeholder oriented
assessment of
information-system
family’s architectures

PL qualities:
Interoperability,
extensibility…

Scenarios, other
techniques

Very detailed: Steps,
guidelines, roles…

2 case studies in
different domains

Extends
SAAM

REDA (Reliability

Evaluation of Domain

Architectures)

Evaluate PLAs to
predict reliability

Domain qualities:
Reliability

Failure cases,
qualitative reliability
model (QlRM),
metrics…

Reasonable: Steps,
techniques…

Case study in
automotive control
systems

-

D-SAAM (Distributed

SAAM)

Evaluate reference
architectures reducing
the organisational
impact

PL qualities:
Maintainability

Scenarios Well explained:
Steps, guidelines,
roles…

Applied on a copier
systems PLA

Variant of
SAAM

RAP Method for
evaluating software
reliability and
availability from the
architectural mode

Domain qualities:
Reliability and availability

Markov chain model,
simulations,
estimations

Well explained:
Steps, guidelines…

One case example -

IEE Method for
integrability and
extensibility
evaluation.

PL qualities: Integrability
and extensibility

Scenarios Reasonable: Steps,
guidelines…

One case example -

Gannod and Lutz’s

approach

Analyse an existing
PLA

PL qualities:
Modifiability
Common behaviour

Scenarios and model
checking

Reasonable: Steps,
guidelines…

Applied on a
telescopes PL

Includes a step
similar to
SAAM

Maccari’s approach Assess the capability
of a PLA to adapt to
evolution

PL qualities: Evolution
related ones: Scalability,
modifiability…

Scenarios Briefly explained but
illustrated through
case studies

2 case studies in
different domains

-

Riva and Rosso’s

approach

Assess PLAs for
evolution

PL qualities: Flexibility,
modifiability

Scenarios,
experience-based
analysis

Explained with a
case study

Case study in a
mobile terminals
PLA

Adapts
Maccari’s
approach

SBA (Scenario-Based

Architecting)

Identify and quantify
the benefits of
different variability
options

PL qualities: Variability Scenario-based
quantitative analysis

Well explained:
Steps, guidelines…

2 case studies of the
medical domain

Uses
SQUASH [52]

COSVAM (The

COVAMOF Software

Variability Assessment

Method)

Evaluate the
variability of a PL in
a evolution context

PL qualities: Variability Product scenarios,
expert-based
analysis…

Well explained:
Steps, guidelines…

Applied on an
intelligent traffic
systems PL

-

Wijnstra’s approach Assess a PL for the
way it deals with
variation

PL qualities: Variability Study the gathered
information

An overview Case study in the
medical domain

-

SACAM (Software

Architecture

Comparison Analysis

Method)

Compare candidate
architectures
(existing product
architectures)

PL qualities
Domain qualities

Scenarios, tactics
and metrics

Detailed explanation:
Steps, guidelines,
participants…

An example to
illustrate the method

-

Korhonen’s approach Assess system
adaptability to a
product family

PL qualities:
Adaptability,
configurability…
Domain qualities:
Reliability, performance…

Scenarios Explained with a
case study

Applied on a case
study of mobile
machines

Loosely based
on SAAM and
ATAM

HoPLAA Evaluation of
software product line
architectures in an
integrated, holistic
approach

PL qualities
Domain qualities

Scenarios Comprehensively
explained

A example Adaptation of
ATAM

Service Utilization

metrics

Assess and improve
PLAs

PL qualities:
Structural soundness

Metrics Comprehensively
explained

Case study in a
digital library PLA

-

Rahman’s metrics Measure the quality
attributes of a PLA

PL qualities: Reusability,
modularity

Metrics Reasonable Case study in a
library system

Include
Service
Utilization
metrics

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 65

3.4. TESTING

There are several approaches for software product lines
testing: Nebut at al. [41] defines an approach to make the test
generation automatic, ScenTED (Scenario-based Test case
Derivation) [46] approach also facilitates the derivation of
test cases from use cases, McGregor [39] also presents some
testing practices for product lines, PLUTO [8] testing
methodology, testing tools for product lines such as RITA
[30], etc. However, most of the approaches focus on
functional requirement’s testing and non-functional
requirements are not addressed explicitly. To the best of our
knowledge, there is only one product line testing technique
that addresses a quality attribute (performance) [48].

4. CONCLUSIONS AND REQUIREMENTS FOR

QUALITY DRIVEN DOMAIN ENGINEERING

Modelling
No modelling approach meets all the identified

requirements. As a conclusion a new approach or an
extension of an existing approach could be interesting to
address all the identified requirements to model variable
quality attributes.

Quality aware design
Only one of the methods considers explicitly the

variability in quality requirements.

Evaluation
Among the surveyed evaluation methods, most of

them focus on evaluating product-line quality attributes
(flexibility) at product-line architecture level and there
are few methods to evaluate execution or domain-
relevant quality attributes (performance, reliability…).
And there is only one method to evaluate both
architectures in a holistic way.

However, there are (no product-line specific) single-
system architecture evaluation methods that can be used
for derived product architectures and also for PLAs.
Single-product architecture evaluation is quite a mature
field where a lot of research has been done and
techniques and methods developed.

Regarding product line architecture evaluation, there
is an issue that no method answers and that is worth
mentioning. To assess all the instances of the product-
line may not be worthwhile due to the high cost.
However, it is possible to shorten product-architecture
evaluations because the product architecture evaluation
is a variation of the product-line architecture evaluation.
But, as far as we know, no way has been provided to

reduce the number of evaluations in a cost-effective way
while evaluating the whole line.

Testing
There is only one software product line testing

technique that addresses a quality attribute.

In general, quality in software product lines is an
area in which more research would be welcome. About
the studied approaches, QADA is one of the most
complete approaches, it covers most of the identified
tasks: it includes a modelling approach; QRF, a design
method and evaluation methods RAP and IEE.
However, QADA has also its inconveniences as it does
not cover all the requirements for modelling quality
variability and it is quite complicated to apply.

5. RELATED WORK

In this paper, several method comparisons that can
help to assess quality aspects in software product lines
are presented.

There are many surveys related to software product
lines, for instance, [14] presents a survey of software
reuse processes, where several product line processes
are compared and [37] presents an overview of software
product line architecture design methods.

There are also some survey papers of single-system
software architecture evaluation methods: [16], a
comparison of scenario based methods [28][3], survey
of methods for reliability and availability evaluation
[27]. And also one of our previous works, a survey of
specific software architecture methods for software
product lines [18]. There also are surveys on software
product line testing such as [53].

However, none of the works provide a global view of
approaches and methods to address and assess quality
attributes during all the development phase.

6. FUTURE WORK

We are working on developing a method and tool
support for facilitating quality aware software product
line engineering. The method is based on a variability
model where functional and quality variability are
modelled. This method is used to facilitate quality
assessment and management during software product
line engineering and also to allow quality aware
derivation of products.

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 66

Quality assessment in software product line, has a
high cost if all the instances of the product-line are
assessed and there are few methods to validate
operational qualities in software product lines that take
into account variability. However, quality variability
(the variability model) may provide useful information
about which products should be validated. This way it is
possible to focus on representative products and reduce
the number of validations in a cost-effective way instead
of validating all the products. Quality validation can be
performed at different stages: during design (software
architecture evaluation) or after implementation
(testing). Using our method, it is possible to use
validation methods for single systems, which is a quite a
mature field, where a lot of research techniques and
methods have been developed.

ACKNOWLEDGEMENTS

This work was partially supported by The Basque
Government’s Department of Education, universities
and research. Leire Etxeberria enjoys a doctoral grant of
the researchers’ formation program.

REFERENCES

[1] P. America, D. K. Hammer, M. T. Ionita, J. H.
Obbink, and E. Rommes. Scenario-based decision
making for architectural variability in product
families. Software Process: Improvement and
Practice, 10(2):171–187, 2005.

[2] M. Auerswald, M. Herrmann, S. Kowalewski,
and V. Schulte-Coerne. Reliability-oriented
product line engineering of embedded systems. In
PFE '01: Revised Papers from the 4th
International Workshop on Software Product-
Family Engineering, pages 83–100, London, UK,
2002. Springer-Verlag.

[3] M. A. Babar and I. Gorton. Comparison of
scenario-based software architecture evaluation
methods. In APSEC '04: Proceedings of the 11th
Asia-Pacific Software Engineering Conference
(APSEC'04), pages 600–607, Washington, DC,
USA, 2004. IEEE Computer Society.

[4] L. Bass, P. Clements, and R. Kazman. Software
architecture in practice. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA,
USA, 1998.

[5] J. Bayer, O. Flege, and C. Gacek. Creating
product line architectures. In F. van der Linden,

editor, Software Architectures for Product
Families, International Workshop IW-SAPF-3,
volume 1951 of Lecture Notes in Computer
Science, pages 210–216. Springer, 2000.

[6] D. Benavides, S. Segura, P. Trinidad, and
A. Ruiz-Cortés. A first step towards a framework
for the automated analysis of feature models. In
SPLC, Software Product Line Conference, 2006.

[7] D. Benavides, P. Trinidad, and A. Ruiz-Cortés.
Automated reasoning on feature models. In
O. Pastor and J. F. e Cunha, editors, Advanced
Information Systems Engineering, 17th
International Conference, CAiSE, Proceedings,
volume 3520 of Lecture Notes in Computer
Science, pages 491–503. Springer, 2005.

[8] A. Bertolino and S. Gnesi. Pluto: A test
methodology for product families. In van der
Linden PFE2003, pages 181–197.

[9] J. Bosch. Design and use of software
architectures: adopting and evolving a product-
line approach. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000.

[10] L. Chung, D. Gross, and E. S. K. Yu.
Architectural design to meet stakeholder
requirements. In WICSA1: Proceedings of the
TC2 First Working IFIP Conference on Software
Architecture (WICSA1), pages 545–564,
Deventer, The Netherlands, The Netherlands,
1999. Kluwer, B.V.

[11] L. Chung, B. A. Nixon, E. Yu, and
J. Mylopoulos. Non-Functional Requirements in
Software Engineering (The Kluwer International
Series in Software Engineering Volume 5).
Springer, October 1999.

[12] P. Clements, R. Kazman, and M. Klein.
Evaluating Software Architectures: Methods and
Case Studies. Addison-Wesley Professional,
January 2002.

[13] P. Clements, L. Northrop, and L. M. Northrop.
Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, August 2001.

[14] E. S. de Almeida, A. Alvaro, D. Lucrédio, V. C.
Garcia, and S. R. de Lemos Meira. A survey on
software reuse processes. In D. Zhang, T. M.
Khoshgoftaar, and M.-L. Shyu, editors, IRI, pages

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 67

66–71. IEEE Systems, Man, and Cybernetics
Society, 2005.

[15] S. Deelstra, M. Sinnema, J. Nijhuis, and J. Bosch.
Cosvam: A technique for assessing software
variability in software product families. In ICSM
'04: Proceedings of the 20th IEEE International
Conference on Software Maintenance, pages
458–462, Washington, DC, USA, 2004. IEEE
Computer Society.

[16] L. Dobrica and E. Niemela;. A survey on
software architecture analysis methods. IEEE
Trans. Softw. Eng., 28(7):638–653, 2002.

[17] T. J. Dolan. Architecture Assessment of
Information-System Families: a practical
perspective. PhD thesis, Tech. Univ. Eindhoven,
Netherlands, 2001.

[18] L. Etxeberria and G. Sagardui. Product-line
architecture: New issues for evaluation. In J. H.
Obbink and K. Pohl, editors, 9th International
Conference on Software Product Lines, SPLC,
Proceedings, volume 3714 of Lectures Notes in
Computer Science, pages 174–185. Springer,
2005.

[19] L. Etxeberria, G. Sagardui, and L. Belategi.
Modelling variation in quality attributes. In
K. Pohl, P. Heymans, K.-C. Kang, and
A. Metzger, editors, First International Workshop
on Variability of Software-Intensive Systems
(VaMos 2007), volume Lero Technical report
2007-1. Lero, 2007.

[20] S. Ferber, P. Heidl, and P. Lutz. Reviewing
product line architectures: Experience report of
atam in an automotive context. In PFE '01:
Revised Papers from the 4th International
Workshop on Software Product-Family
Engineering, pages 364–382, London, UK, 2002.
Springer-Verlag.

[21] B. P. Gallagher. Using the architecture tradeoff
analysis method to evaluate a reference
architecture: A case study. Technical Report
CMU/SEI-2000-TN-007, SEI, 2000.

[22] G. C. Gannod and R. R. Lutz. An approach to
architectural analysis of product lines. In ICSE
'00: Proceedings of the 22nd international
conference on Software engineering, pages 548–
557, New York, NY, USA, 2000. ACM Press.

[23] B. González-Baixauli, J. C. S. do Prado Leite, and
J. Mylopoulos. Visual variability analysis for goal
models. In 12th IEEE International Conference
on Requirements Engineering (RE), pages 198–
207. IEEE Computer Society, 2004.

[24] B. Graaf, H. van Dijk, and A. van Deursen.
Evaluating an embedded software reference
architecture " industrial experience report ". In
CSMR '05: Proceedings of the Ninth European
Conference on Software Maintenance and
Reengineering, pages 354–363, Washington, DC,
USA, 2005. IEEE Computer Society.

[25] IEEE. Ieee standard 1061-1992. ieee standard for
a software quality metrics methodology, 1993.

[26] A. Immonen. Software Product Lines, Research
Issues in Engineering and Management, chapter
A Method for Predicting Reliability and
Availability at the Architecture Level, pages 373–
422. Springer, 2006.

[27] A. Immonen and E. Niemelä. Survey of reliability
and availability prediction methods from the
viewpoint of software architecture. Softw Syst
Model (2008), 7:49–65, 2008.

[28] M. T. Ionita, D. K. Hammer, and H. Obbink.
Scenario-based software architecture evaluation.
In Methods: An Overview, Workshop on Methods
and Techniques for Software Architecture Review
and Assessment at the International Conference
on Software Engineering, Orlando, Florida, USA,
May 2002.

[29] S. Jarzabek, B. Yang, and S. Yoeun. Addressing
quality attributes in domain analysis for product
lines. IEE Proceedings - Software, 153(2):61–73,
2006.

[30] R. Kauppinen and J. Taina. Rita environment for
testing framework-based software product lines.
In P. Kilpeläinen and N. Päivinen, editors,
Proceedings of the Eighth Symposium on
Programming Languages and Software Tools
(SPLST), pages 58–69. University of Kuopio,
Department of Computer Science, 2003.

[31] R. Kolb, J. D. McGregor, and D. Muthig, editors.
First International Workshop on Quality
Assurance in Reuse Contexts (QUARC), IESE-
Report No. 096.04/E. Fraunhofer IESE, August
2004.

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 68

[32] R. Kolb, J. D. McGregor, and D. Muthig.
Introduction to quality assurance in reuse
contexts. In First International Workshop on
Quality Assurance in Reuse Contexts (QUARC),
2004.

[33] R. Kolb and D. Muthig, editors. First eWorkshop
on Quality Assurance for Software Product Lines:
Strategic Issues, IESE-Report No. 013.05/E.
Fraunhofer IESE, January 2005.

[34] M. Korhonen and T. Mikkonen. Assessing
systems adaptability to a product family. J. Syst.
Archit., 50(7):383–392, 2004.

[35] J. Kuusela and J. Savolainen. Requirements
engineering for product families. In ICSE '00:
Proceedings of the 22nd international conference
on Software engineering, pages 61–69, New
York, NY, USA, 2000. ACM Press.

[36] A. Maccari. Experiences in assessing product
family software architecture for evolution. In
ICSE '02: Proceedings of the 24th International
Conference on Software Engineering, pages 585–
592, New York, NY, USA, 2002. ACM Press.

[37] M. Matinlassi. Comparison of software product
line architecture design methods: Copa, fast,
form, kobra and qada. In 26th International
Conference on Software Engineering (ICSE),
pages 127–136. IEEE Computer Society, 2004.

[38] M. Matinlassi, E. Niemelä, and L. Dobrica.
Quality-driven architecture design and quality
analysis method: A revolutionary initiation
approach to a product line architecture. Technical
Report VTT-PUBS-456, VTT Electronics, jan
2002.

[39] J. D. McGregor. Testing a software product line.
Technical Report CMU/SEI-2001-TR-022, SEI,
dec 2001.

[40] V. Myllärniemi, T. Männistö, and
M. Raatikainen. Quality attribute variability
within a software product family architecture. In
Second International conference on Quality of
Software Architecture QoSA, 2006.

[41] C. Nebut, Y. L. Traon, and J.-M. Jézéquel.
Software Product Lines, Research Issues in
Engineering and Management, chapter System
Testing of Product Lines: From Requirements to
Test Cases, pages 447–477. Springer, 2006.

[42] E. Niemelä. Architecture centric software family
engineering, product family engineering seminar.
Tutorial in 5th Working IEEE/IFIP Conference
on Software Architecture (WICSA), 2005.

[43] E. Niemelä. Quality driven family architecture
development. Tutorial in SPLC (Software Product
Line Conference), 2005.

[44] E. Niemelä and M. Matinlassi. Quality evaluation
by qada. Tutorial in 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA),
2005.

[45] F. G. Olumofin and V. B. Misic. Extending the
atam architecture evaluation to product line
architectures. In WICSA '05: Proceedings of the
5th Working IEEE/IFIP Conference on Software
Architecture (WICSA'05), pages 45–56,
Washington, DC, USA, 2005. IEEE Computer
Society.

[46] K. Pohl and A. Metzger. Software product line
testing. Commun. ACM, 49(12):78–81, 2006.

[47] A. Rahman. Metrics for the structural assessment
of product line architecture. Master's thesis,
School of Engineering, Blekinge Institute of
Technology, 2004.

[48] S. Reis, A. Metzger, and klaus Pohl. A reuse
technique for performance testing of software
product lines. In P. Knauber, C. Krueger, and
T. Trew, editors, SPLIT 2006 - Third
International Workshop on Software Product
Line Testing, volume Computer Science Reports.
Mannheim University of Applied Sciences -
Computer Science Department, 2006.

[49] C. Riva and C. D. Rosso. Experiences with
software product family evolution. In IWPSE '03:
Proceedings of the 6th International Workshop on
Principles of Software Evolution, page 161,
Washington, DC, USA, 2003. IEEE Computer
Society.

[50] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch.
Covamof: A framework for modeling variability
in software product families. In R. L. Nord,
editor, 3rd International Conference on Software
Product Lines, SPLC, Proceedings, volume 3154
of Lecture Notes in Computer Science, pages
197–213. Springer, sep 2004.

Leire Etxeberria, Goiuria Sagardui Quality aware Software
and Lorea Belategi Product Line Engineering

 69

[51] C. Stoermer, F. Bachmann, and C. Verhoef.
Sacam: The software architecture comparison
analysis method. Technical Report CMU/SEI-
2003-TR-006, SEI, 2003.

[52] M. Svahnberg, C. Wohlin, L. Lundberg, and
M. Mattsson. A quality-driven decision-support
method for identifying software architecture
candidates. International Journal of Software
Engineering and Knowledge Engineering,
13(5):547–573, 2003.

[53] A. Tevanlinna, J. Taina, and R. Kauppinen.
Product family testing: a survey. SIGSOFT Softw.
Eng. Notes, 29(2):12–12, 2004.

[54] S. Thiel. On the definition of a framework for an
architecting process supporting product family
development. In PFE '01: Revised Papers from
the 4th International Workshop on Software
Product-Family Engineering, pages 125–142,
London, UK, 2002. Springer-Verlag.

[55] S. Thiel and A. Hein. Systematic integration of
variability into product line architecture design.
In SPLC 2: Proceedings of the Second
International Conference on Software Product
Lines, pages 130–153, London, UK, 2002.
Springer-Verlag.

[56] A. van der Hoek, E. Dincel, and N. Medvidovic.
Using service utilization metrics to assess the
structure of product line architectures. In
METRICS '03: Proceedings of the 9th
International Symposium on Software Metrics,
page 298, Washington, DC, USA, 2003. IEEE
Computer Society.

[57] F. van der Linden, editor. Software Product-
Family Engineering, 5th International Workshop,
PFE 2003, Siena, Italy, November 4-6, 2003,
Revised Papers, volume 3014 of Lecture Notes in
Computer Science. Springer, 2004.

[58] J. G. Wijnstra. Evolving a product family in a
changing context. In van der Linden PFE2003,
pages 111–128.

[59] H. Zhang, S. Jarzabek, and B. Yang. Quality
prediction and assessment for product lines. In
J. Eder and M. Missikoff, editors, 15th International
Conference on Advanced Information Systems
Engineering, CAiSE, Proceedings, volume 2681 of
Lecture Notes in Computer Science, pages 681–695.
Springer, 2003.

