
Using Agents for Generation Bernadette F. Lóscio
and Maintenance of Mediators Ana Carolina Salgado, Vânia M. Ponte Vidal

32

Using Agents for Generation
and Maintenance of Mediators

Bernadette Farias Lóscio
Centro de Informática

Universidade Federal de Pernambuco
bfl@cin.ufpe.br

Ana Carolina Salgado
Centro de Informática

Universidade Federal de Pernambuco
acs@cin.ufpe.br

Vânia Maria Ponte Vidal
Departamento de Computação
Universidade Federal do Ceará

vvidal@lia.ufc.br

Abstract In this paper we present a system for data integration on the web, where an XML-based
mediator plays a key role providing a homogeneous view of different data sources. One novelty
of our approach is that we also propose solutions for the problems of generation and
maintenance of mediators. Observe that, in dynamic environments, such as the Web, individual
data sources may change not only their data but also their schemas. As a result, whenever a
local schema changes, the mediator needs to be updated to reflect the modifications. The
proposed system uses agents to support mediator generation and maintenance. We specify a set
of tasks that must be performed in order to support both generation and maintenance of
mediators. In our approach, we use correspondence assertions for specifying the semantics of
XML-based mediators.

Keywords: Mediation system, mediation queries, data integration, XML, maintenance of mediators.

1 Introduction

Several systems [1, 2, 3, 4, 8, 9] have been built with
the goal of integrating data from multiple web sources.
Many data integration systems use the mediator
architecture [22] to provide integrated access to multiple
data sources that can be autonomous and heterogeneous.
A mediator supports a mediation schema and a set of
mappings between the mediation schema and the local
data sources. These mappings, called mediation queries,
are used to compute the objects in the mediation schema
when queries are posed to the mediator. Queries
submitted to the mediator are decomposed at run time
into queries on the local data sources. The results from
these queries on the local data sources are translated,
filtered and merged, and then the final answer is returned
either to the user or to the application.

Mediation systems can be classified according to the
approach used to define the mediation mappings between
the data sources and the global schema [21, 13, 15]. The
first approach is called global-as-view (GAV) and

requires that each object of the global schema be
expressed as a view (i.e a query) on the data sources.
Several projects, like Tsimmis [8], YAT [9] and Disco
[18] adopt the GAV approach. In the other approach,
called local-as-view (LAV), mediation mappings are
defined in an opposite way; each object in a given source
is defined as a view on the global schema. An example of
system which uses the LAV approach is the Information
Manifold system [14].

In this work, we present an agent-based system for
data integration on the Web. A distinguishing feature of
our system is that besides integrating data it also deals
with the problems concerning generation and
maintenance of mediation queries. The proposed system
adopts the GAV approach to define the mappings
between the data sources and the mediation schema.

As we know, one of the difficulties in integrating
information from multiple data sources is the
heterogeneous structure of them. To overcome this
limitation integration systems use a common data model
for representing the sources’ content and structure. We
use XML [5] as a common data model for data exchange

Bernadette F. Lóscio Using Agents for Generation
Ana Carolina Salgado, Vânia M. Ponte Vidal and Maintenance of Mediators

33

and integration. In XML-based information integration
systems, mediation queries are defined in a declarative
language specifically designed for XML [7, 10].
Specifying mediation queries usually requires a fair
amount of knowledge about the concepts in the
underlying data sources and about the correspondences
between those concepts and the ones in the mediator
schema. As presented in [20], we use correspondence
assertions to formally specify the relationship between
the mediation schema and the data sources schemas. An
advantage of using correspondence assertions is that the
mediation queries generation can be automated.

Most of the approaches used in information
integration systems are based on previously defined static
views which gather information from a fixed set of
heterogeneous data sources and provide the user with an
uniform view of the distributed information. Their main
limitation is related to the capability of evolving
according to dynamic information systems. In this paper,
we address issues related to the evolution and
maintenance of XML-based information integration
systems. Such issues include evolving mediation queries
under schema-level changes of data sources to reflect the
modifications occurring in data source schemas.

The remainder of this paper is organized as follows.
In section 2 we present an architectural overview of our
system and our key design decisions. In section 3 we
describe how agents are used for generation and
maintenance of mediation queries. In section 4 we
present some related works. Finally, in section 5 we
present our conclusions and suggestions for further
research.

2 Architectural Overview

We propose a mediation-based data integration
system that offers an integrated view of several
heterogeneous web data sources. This system presents
solutions for the problems concerning mediation queries
generation and maintenance in dynamic environments.
As shown in Figure 1, the system architecture can be
divided into three spaces:

• Common core: this space feeds the mediator
generation and maintenance space with
information about local data source schemas while
receiving local data source queries from the data
integration space and answering them.

• Data integration space: this space is composed by
the mediator responsible for restructuring and

merging data from autonomous sources and for
providing an XML integrated view of the data.

• Mediator generation and maintenance space:
through semi-automated processes this space
executes the mediation queries generation and
maintenance. The mediation queries generation
process consists of three steps:

- Mediation schema modeling: this step
analyzes the user requirements and specifies
the mediation schema using a high-level data
model.

- Mediation schema integration: this step
integrates the mediation schema with the local
schemas in order to identify the
correspondence assertions that formally
specify the relationships between the
mediation schema and the local schemas. To
accomplish this, the mediation schema and
the local schemas should all be expressed in
the same data model, the so-called “common”
data model. Therefore, a translation of the
local schemas to the common data model is
necessary.

- Mediation queries generation: this step
generates the mediation queries based on the
mediation schema and the mediator’s
correspondence assertions. Correspondence
assertions are special types of integrity
constraints which are used to assert the
correspondences among schemas.

Besides the mediation queries generation, this space is
also responsible for the maintenance of the mediation
queries under schema-level changes of data sources.

In what follows, we present an overview of our
system based on these spaces. We also present our key
design decisions, including the common data model used
to represent the local schemas and the mediation schema,
the formalism to capture the correspondences among
schemas and the mediation queries definition language.

Using Agents for Generation Bernadette F. Lóscio
and Maintenance of Mediators Ana Carolina Salgado, Vânia M. Ponte Vidal

34

2.1 Common Core
This space is related to the two other spaces and is

composed by the following components: the data sources,
the wrappers and the middleware. In the following these
components are presented in more detail.

Figure 1: Architectural Overview

• Data sources
The data sources can be heterogeneous, autonomous

and often dynamic. This is due to the fact that the data
sources support local applications and update their data
and schemas independently, possibly without any
concern of how this may affect the data integration
system based upon them. Data sources may also be added
to the system, or become temporally or definitively
unavailable. A data source is included in the integration
system via a wrapper that serves as a bridge between the
data source and the other components of the system.
When a data source joins the system, it publishes its
exported schema describing the information available
through this data source. It is important to note that when

a data source changes its exported schema it is necessary
to publish it again. The exported schema must be updated
to reflect the corresponding local schema changes or
when some information needs to be added or dropped
from it. The data sources ideally publish the most recent
version of their exported schema in order to keep the
consistency between the information available to the user
and the data actually stored in the data source.

• Wrappers
Wrappers are necessary for each data source to

translate application queries into source specific queries
and to translate the data returned by the local data sources
into the common data model. In this work, we use XML
as a common data model for data exchange and
integration. Due to the flexibility of XML to represent
both structured and semi-structured information there is
an increasing interest in using XML as a common data
model for data exchange and integration.

It is important to observe that wrappers are
responsible only for the translation of data and queries,
i.e., wrappers are not responsible for the translation of
schemas to a common data model nor for the extraction
of metadata on local data sources. In order to perform the
translation of exported schemas to a common data model
we use the XML Schema Translator described in section
2.3.1. Some research projects propose solutions to the
problem of building wrappers for translating relational
data to XML data [12, 19].

• Middleware
The middleware interacts with the data integration

space receiving a set of queries from the mediator and
forwarding them to the wrapper of the corresponding data
sources. When a wrapper receives the results for these
queries they send them to the middleware which returns
them to the mediator.

The middleware also interacts with the mediator
generation and maintenance space sending the exported
schemas published by the local data sources to the XML
Schema Translator.

2.2 Data Integration Space
This space is composed by the mediator responsible

for the activities involving integration of data distributed
in several web data sources. In what follows, we describe
the mediator in more details.

• Mediator
A mediator is a software device that supports a

mediation schema which captures the user requirements,
and a set of mappings, called mediation queries, between

SSIA

DISMA

MKB

DSKB

Mediator

D
at

a
In

te
gr

at
io

n
Sp

ac
e

G
en

er
at

io
n

an
d

M
ai

nt
en

an
ce

 S
pa

ce

MGMA

User/
Application

Middleware

Wrapper Wrapper Wrapper

Object Relational Database
XML Files Relational

Database

DISMA: Data Integration System Maintenance Agent
DSK: Data Sources Knowl edge Base
MKB: Mediator Knowledge Base
MGMA: Mediation Query Generation and Maintenance
 Agent
SSIA: Semantic Schema Integration Agent

C
om

m
on

 C
or

e

XML Schema Translator

Bernadette F. Lóscio Using Agents for Generation
Ana Carolina Salgado, Vânia M. Ponte Vidal and Maintenance of Mediators

35

the mediation schema and the local data sources.
Mediation queries are used to compute the objects in the
mediation schema when queries are posed to the
mediator. As presented in Figure 2, each concept Ci in the
mediation schema is associated to a mediation query Qi
which computes the concept Ci over the set of data
sources.

Figure 2: Mediator Description

2.3 Mediator generation and maintenance
space

The main goals of this space are the generation and
maintenance of the mediation queries. The components of
this space are: i) XML Schema Translator; ii) Semantic
Schema Integration Agent (SSIA); iii) Mediator
Knowledge Base (MKB); iv) Data Sources Knowledge
Base (DSKB); v) Mediation Queries Generation and
Maintenance Agent (MGMA) and vi) Data Integration
System Maintenance Agent (DISMA). In the following we
present these components.

• XML Schema Translator
When the local data sources publish their exported

schemas defined in their own data model (ex: relational
or object-oriented) it is necessary to translate them to a
common data model in order to perform the schema
integration. The component responsible for this
translation is the XML Schema Translator. We use XML
Schema [6] to represent schemas from multiple web data
sources and to represent the mediation schema.

We also use a diagram to illustrate the structural
information of XML schemas. Thus, it is possible to have
a better understanding of the semantics associated with
the local schemas. Consider, for example, the XML
Schema presented in Figure 3, which contains
information about students and courses from a Computer

Science Department of a university. Figure 4 illustrates
the tree-structured representation for the Computer
Science Department schema. A tree model consists of a
set of trees, one tree for each type specified in the XML
schema. Note that (i) bold fonts denote a type identifier
and (ii) the * symbol denotes multiple occurrences of an
element. In addition, leaves may also be labeled with
types (e.g. Course).

• Semantic Schema Integration Agent (SSIA)
This agent has two main tasks: i) the integration of the

exported schemas in order to identify the global
correspondence assertions (GCA) which formally specify
the relationship among the exported schemas and ii) the
integration of the exported schemas with the mediation
schema in order to identify the mediator correspondence
assertions (MCA) which formally specify the relationship
between the exported schemas and the mediation schema.
It is important to note that the SSIA must interact with
the mediator builder in order to solve conflicts that may
appear during the schema integration process [11].

GCAs facilitate the incremental integration of the
mediation schema with the exported schemas and are
very important in finding appropriate replacements for
mediation queries components when the mediation query
becomes undefined. As mentioned earlier, MCAs help
the generation of the mediation queries and are also used
to automate the process of mediation queries
maintenance.

In [20] we demonstrated how the correspondence
assertions formally specify the relationships between
XML schemas. To illustrate this, take the Computer
Science Research schema presented in Figure 5,
containing data about projects and members from the
Computer Science Department: integrating the Computer
Science Department schema (Figure 4) with the
Computer Science Research schema we obtain the
following global correspondence assertions:

GCA1: cs_department/students/student* ∩
cs_research/member*

GCA2: student/name ≡ member/name

GCA3: student/phone ≡ member/phone

The GCA1 specifies that there is an intersection
between the set of students and the set of members. In our
example, the name element (GCA2) is used for matching
students elements in cs_department/students/student*
with members elements in cs_research/member*. A
student s1 in cs_department/students/student* matches a
member m1 in cs_research/member* iff s1/name/data() =
m1/name/data().

Local Data
Source 1

User View 1 User View 2 User View n…

Mediation
Schema

Local Data
Source 2 Local Data

Source m…

C1

Q1 Q2 Qk

Ck C2

Mediation
Queries

Using Agents for Generation Bernadette F. Lóscio
and Maintenance of Mediators Ana Carolina Salgado, Vânia M. Ponte Vidal
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2000/10/XMLSchema">
 <xsd:element name=" cs_department" type= " CS_Department "/>
 <xsd:complexType name= " CS_Department ">
 <xsd:element name="courses" type="Courses"/>
 <xsd:element name="students" type=" Students "/>
 </xsd:complexType>
 <xsd:complexType name="Courses">
 <xsd:element name="course" type="Course" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="Students">
 <xsd:element name="student" type="Student" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="Course">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="courseNo" type="xsd:string"/>
 </xsd:complexType>
 <xsd:complexType name="Student">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="phone" type="xsd:string"/>
 <xsd:element name="Courses" type="Courses"/>
</xsd:complexType>
<xsd:schema />
Figure 3: XML Schema for the Computer Science Department

Figure 4: Schema for the Computer Science Department

Figure 5: Schema for the Computer Science Research

Computer Science Research Schema

emailphonename

member

StringString String

Project

 Member:

*
desc

 project

String String

 Project:

name

cs_research CS_Research:

Project Member
* *

students

Student
*

Students:cs_department

Courses Students

 CS_Department:

Computer Science Department Schema

name

 course

String String

 Course:

courseNo phonename

student

String String

Courses

 Student:

courses

Course
*

Courses:

Using Agents for Generation Bernadette F. Lóscio
and Maintenance of Mediators Ana Carolina Salgado, Vânia M. Ponte Vidal

• Data Sources Knowledge Base (DSKB)
The Data Sources Knowledge Base stores data

source descriptions, including the exported schemas
defined in XML Schema and the global correspondence
assertions. The data source descriptions collected in the
DSKB are very important in finding appropriate
replacements for mediation queries components when
the mediation query becomes undefined. The data
sources descriptions are also important for the
mediation queries generation and for translating
application queries into precise query plans.

• Mediator Knowledge Base (MKB)
The Mediator Knowledge Base stores mediator

descriptions, including the mediation schema defined in
XML Schema and the mediator correspondence
assertions. As discussed in section 3, the mediator
description is very important for the process of
mediation queries maintenance.

• Mediation queries Generation and Maintenance
Agent (MGMA)

This agent provides a Graphical User Interface
(GUI) for defining mediation schemas in a
diagrammatic way. This interface displays a menu of
registered data sources where each entry shows one of
the data source descriptions stored in the DSKB. The
mediator builder is responsible for the mediation
schema definition.

This agent also interacts with the SSIA sending it
the mediation schema while receiving the mediator
correspondence assertions that formally specify the
relationships between the mediation schema and the
exported schemas stored in the DSKB. Using the
mediation schema and the mediator correspondence
assertions this agent generates the mediation queries.
We use XQuery [7] for the definition of the mediation
queries. XQuery, as proposed by the W3C, is a query
language specifically designed for XML and allows
XML data to be queried, translated and integrated.

Other important tasks of this agent are related to the
mediation queries maintenance. When the MGMA
receives an update notification it determines the
appropriate actions required to update the mediation
queries which consists in finding valid replacements for
the mediation queries components that become invalid
after a source schema change.

• Data Integration System Maintenance Agent
(DISMA)

This agent is responsible for the maintenance of the
following components: i) Data Sources Knowledge

Base: it consists of keeping the data sources descriptions
consistent with the schemas of the local data sources, ii)
Mediator Knowledge Base: it consists of keeping mediator
correspondence assertions and the mediation schema
consistent with the schemas of the local data sources.

3 Using Agents for Generation and
Maintenance of Mediators

In this section, we discuss more precisely how we use
agents for generation and maintenance of mediation
queries. First, we describe the process of mediation queries
and subsequently we present the steps involved in the
process of mediation queries maintenance.

• Mediation Queries Generation
Step 1: Mediation schema modeling

The local data sources publish their exported schemas
and the XML Schema Translator translates them to XML
Schema. The Semantic Schema Integration Agent (SSIA)
integrates the exported schemas and identifies the set of
global correspondence assertions (GCA) that formally
specify the relationship among them. Based on the exported
schemas and the GCAs the mediator builder defines the
mediation schema (SM).

Step 2: Mediation schema integration

The SSIA integrates the mediation schema with the
exported schemas and identifies the set of mediator
correspondence assertions ({MCA}) that formally specify
the relationship between the exported schemas and the
mediation schema.

Step 3: Mediation queries generation

Using the mediation schema (SM) and the set of
mediator correspondence assertions ({MCA}) the
Mediation Queries Generation and Maintenance Agent
(MGMA) generates the mediation queries.

• Mediation Queries maintenance
We propose a solution for the mediation queries

maintenance problem which can be stated as follows: given
a change event occurring at the source level, how to
propagate this change into the mediation queries. Our
solution can be decomposed in the steps presented below.

Step 1: DSKB Updating

When a new data source is included in the system and
its exported schema is published and translated to XML
Schema the SSIA executes the semantic integration of the
new exported schema with those already stored in the Data

Using Agents for Generation Bernadette F. Lóscio
and Maintenance of Mediators Ana Carolina Salgado, Vânia M. Ponte Vidal

38

Sources Knowledge Base (DSKB). After the
integration process, the new exported schema and the
new GCAs resulting from the integration process are
stored in the DSKB.

It is important to note that the DISMA can also
receive an exported schema corresponding to a new
version of a schema already stored in the DSKB. In this
case, the DISMA compares the schema currently stored
in the DSKB with its new version, in order to identify
what kind of updates were applied to the original
schema. To maintain the consistency of the DSKB, the
DISMA determines the appropriate actions required to
reflect the schema updates. For example, if the update
schema drops one type of an exported schema then all
global correspondence assertions referring to the
dropped type must be removed from the DSKB.

Step 2: Update Notification

After updating the DSKB, the DISMA sends an
update notification to the Mediation Queries
Generation and Maintenance Agent (MGMA) about the
exported schema update. The update notification
specifies the update type and all the information
required for the definition of the appropriate actions
needed for updating the Mediator Knowledge Base
(MKB) and the correct updating of the mediation
queries. The information to be passed to the MGMA
depends on the update type.

Step 3: MKB Updating

When the MGMA receives the update notification it
determines the appropriate actions required to update
the Mediator Knowledge Base (MKB). The updating of
the MKB includes the updating of the mediator schema
and the updating of the mediator correspondence
assertions. Again, these actions depend on the update
type. For example, when the schema update consists of
the addition of a new type to an existing schema, there
must be an interaction with the mediator builder in
order to discover whether this new type should be
added to the mediator schema. If positive, the mediator
schema stored in the MKB is updated and is sent to the
SSIA to identify the mediator correspondence
assertions that define how the elements of this type will
be synthesized from source elements.

Step 4: Mediation queries Synchronization

After the MKB updating, the MGMA executes the
mediation queries synchronization, i.e., the rewriting of the
mediation queries, so as to reflect the exported schema
update. To guarantee this, the MGMA finds valid
replacements for affected components of the existing
mediation queries. The MGMA finds an acceptable view
redefinition for the mediation queries based on the type of
schema update and the MCAs and GCAs affected by the
schema update.

3.1 An Example
In this section we present an example describing the

mediator generation and mediator maintenance based on
the steps described in the previous section.

• Mediation Queries Generation
Using the Computer Science Department schema

(Figure 4), the Computer Science Research schema (Figure
5) and the global correspondence assertions specifying the
relationships between the two schemas, the mediator
builder defines the mediation schema StudentMember
presented in Figure 6. This mediation schema integrates
data about students and data about members of research
groups from the Computer Science Department.

courseNoM

 courseM

String String

 CourseM:

nameMdescM

 project

String String

 ProjectM:

nameM

StudentMember Schema

ProjectMemailMnameM

studentM

String String

CourseM

 StudentM:

phoneM

String

*

student member

StudentM
*

Student_Member:

Figure 6: Schema for the Mediator StudentMember

*

Using Agents for Generation Bernadette F. Lóscio
and Maintenance of Mediators Ana Carolina Salgado, Vânia M. Ponte Vidal

MCA1: student_member/studentM* ≡

 cs_department/students/student* ∩

 cs_research/member*

MCA2: studentM/nameM ≡ student/name

MCA3: studentM/phoneM ≡ student/phone

MCA4: studentM/courseM* ≡ student/courses/course*

MCA5: studentM/nameM ≡ member/name

MCA6: studentM/phoneM ≡ member/phone

MCA7: studentM/emailM ≡ member/email

MCA8: studentM/projectM* ≡ member/project*

MCA9:courseM/nameM ≡ course/name

MCA10:courseM/courseNoM ≡ course/courseNo

MCA11:projectM/nameM ≡ project/name

MCA12:projectM/descM ≡ project/desc

Figure 7 : Mediator Correspondence assertions for the mediator StudentMember

Figure 8 : The mediation query StudentMemberv

When the SSIA integrates the mediation schema
with the exported schemas we obtain the mediator
correspondence assertions presented in Figure 7. Using
the mediation schema StudentMember and the mediator
correspondence assertions the MGMA generates the
mediation query StudentMemberV (Figure 8).

The mediation query StudentMemberV has a FLWR1 [7]
expression that extracts information about student elements
from the local source “csdepto.xml” and information about
member elements from the local source “csresearch.xml”.
When an element in the local source “csdepto.xml”
represents a student who is also a member of some research
group then the student data and the member data are
combined. As we can observe, this expression correctly

1 A FLWR (pronounced “flower”) expression is a form of XQuery
expression construct from FOR, LET, WHERE, and RETURN
clauses. A FLWR expression binds values to one or more
variables and then uses these variables to construct a result.

1. <student_member>
2. for $t in document (“csdepto.xml”) //students/student <!-- from MCA1 -->
3. where some $m in document (“csresearch.xml”) //member/[name = $t/name] <!--from MCA1 -->
4. return
5. <studentM>
6. <nameM> $t/name </nameM> <!-- from MCA2 -->
7. <phoneM> $t/phone </phoneM> <!-- from MCA3 -->
8. <emailM> $m/email </emailM> <!-- from MCA7 -->
9. for $c in document (“csdepto.xml”) //courses/course <!-- from MCA4 -->
10. return
11. <courseM>
12. <nameM> $c/name </nameM> <!-- from MCA9 -->
13. <courseNoM> $c/courseNo </courseNoM> <!-- from MCA10 -->
14. </courseM>
15. for $p in document (“csresearch.xml”) //project <!-- from MCA8 -->
16. return
17. <projectM>
18. <nameM> $p/name </nameM> <!-- from MCA11 -->
19. <descM> $p/desc </descM> <!-- from MCA12 -->
20. </projectM>
21. </studentM>
22. </student_member>

Using Agents for Generation Bernadette F. Lóscio
and Maintenance of Mediators Ana Carolina Salgado, Vânia M. Ponte Vidal

40

implements the intersection as specified by the
correspondence assertion MCA1.

The information that must be returned in the
RETURN-clause of the mediation query
StudentMemberV is based on the correspondence
assertions that specify the correspondences of the
nested elements in student_member/studentM*, in
cs_department/ students/student* and in
cs_research/member*. For example, lines 6, 7 and 8 of
the StudentMemberV query are based on the
correspondence assertions MCA2, MCA3 and MCA7
respectively. The correspondences of the nested
elements in student_member/studentM/courseM* with
those in cs_department/students/student/courses/
course* are used to generate the lines 12 and 13 (from
MCA9 and MCA10). Analogously, the correspondences
of the nested elements in
student_member/studentM/projectM* with those in
cs_research/member/project* are used to generate the
lines 18 and 19 (from MCA11 and MCA12).

• Mediator Maintenance
Step 1: DSKB Updating

After the mediation queries generation, suppose the
Computer Science Department publishes a new version
of its exported schema. As presented in Figure 9, the
corresponding Student type was modified by the
removal of the element phone. The SSIA compares this
new version with the schema already stored in the
DSKB and detects the following update:

su1 = removeElement(Student,{phone}), which
specifies that the phone element was dropped from the
type Student.

Subsequently, the SSIA identifies the following
action to be executed in the DSKB to reflect the
schema update su1:

a1 = remove all GCAs which reference the “phone”
element from the type Student.

The SSIA identifies that the GCA3 (student/phone ≡
member/phone) was affected by the schema update and
removes it from the DSKB.

Step 2: Update Notification

After updating the DSKB, the SSIA sends the
following update notification to the MGMA: un =
(removeElement(Student, {phone}), {student/phone ≡
member/phone}), specifying the schema update (su1)
and the set of global correspondence assertions
({GCA3}) affected by this update.

Figure 9 : New version of the student type of the Computer Science
Department schema

Step 3: MKB Updating

When the MGMA receives the update notification un it
determines the appropriate actions required to update the
Mediator Knowledge Base (MKB). The updating of the
MKB includes the updating of the mediator correspondence
assertions and the updating of the mediator schema. In this
case, the MGMA detects that the mediator correspondence
assertion MCA3 (studentM/phoneM ≡ student/phone) was
affected by the schema update su1 and must be dropped
from the MKB. In accordance with the update notification
un and the correspondence assertion MCA3 the MGMA
detects that the mediator schema StudentMember was not
affected by the update su1 and therefore does not need to be
modified.

Step 4: Mediation queries Synchronization

Using the mediator correspondence assertion MCA3
and the global correspondence assertion GCA3 the MGMA
executes the synchronization of the mediation query
StudentMemberV. Initially, the MGMA verifies if the
mediation query was affected and if necessary it performs
the mediation query rewriting. In our example, line 7 of the
StudentMemberV generated from the MCA3 must be
redefined.

To rewrite the mediation query, the MGMA finds valid
replacements for affected components of the existing
mediation query. When a type is deleted, the MGMA
attempts to find an appropriate substitute for the removed
type. The MGMA searches in the set of global
correspondence assertions specified in the update
notification un for an appropriate substitute for the removed
type. In our example, the GCA3 specifies that there is an
appropriate substitute for the type phone. The GCA3
specifies that the set of phone elements from the type
Student and the set of phone elements from the type
Member are semantically equivalent. Therefore, line 7 of
the StudentMemberV can be redefined as follows:
<phoneM> $m/phone </phoneM>, where the variable $m is
bound to a member element.

Student Type

name

student

String

Courses

 Student:

Bernadette F. Lóscio Using Agents for Generation
Ana Carolina Salgado, Vânia M. Ponte Vidal and Maintenance of Mediators

41

4 Related Work

Several data integration systems are described in the
literature, including: TSIMMIS [8], SIMS [2],
ARIADNE [1], MOMIS [4] and MIX [3]. Besides
supplying data integration mechanisms some of these
systems, such as the TSIMMIS, also offer tools to
facilitate the data integration process. In TSIMMIS a
common model, called OEM, and a specific query
language, called LOREL, are used for data integration.

Other systems, such as the SIMS, were considered
for integration of data stored in different databases, and
later were customized for the web context. The
adaptation of the ideas of the SIMS to the web gave
origin to ARIADNE, a system for data extraction and
integration from semi-structured web data sources.

MOMIS (Mediator envirOnment for Multiple
Information Sources) is a framework for extraction and
integration of structured and semi-structured data. An
object-oriented language called ODL-I3, derived from
the standard ODMG, is introduced for information
extraction. Information integration is executed in a
semi-automatic form, by exploiting the knowledge in a
Common Thesaurus (defined by the framework) and
ODL-I3 descriptions of source schemas with a
combination of clustering techniques and Description
Logics.

MIX is a wrapper-mediator system which employs
XML as a means for information modeling and
interchange between heterogeneous data sources.
Mediator views are expressed in XMAS (XML
Matching and Structuring Language), a declarative
XML query language. To facilitate query formulation
and for optimization purposes, MIX employs XML
DTDs as a structural description of the exchanged data.

As mentioned earlier, one limitation of the majority
of the data integration systems is related to the
capability of evolving according to dynamic
information systems. The work presented in [17] is one
of a few to study the view adaptation problem in
dynamic information integration systems proposing the
Evolvable View Environment (EVE) framework as a
generic approach to solve issues related to view
evolution under schema changes for both view
definition adaptation and view extent maintenance after
synchronization. In contrast to our approach, EVE uses
materialized views for data integration.

5 Conclusions and Future Work

In this work, we present an agent-based mediator
system for data integration on the web. One important
novelty of our system is that besides integrating data it uses
agents to deal with the problems concerning generation and
maintenance of mediation queries. We describe a set of
tasks that must be performed by the agents in order to
support mediator generation and maintenance.

We demonstrate how correspondence assertions
specifying the semantics of XML-based mediators can be
used to automate the maintenance of the mediation queries.
We show through an example how to use the global
correspondence assertions and the mediator correspondence
assertions to help in rewriting a mediation query to reflect
schema-level changes of data sources. One advantage of
our approach is that we need to rewrite only the portions of
the mediation queries affected by the schema update
instead of having to generate the whole definition again.

As future work we intend to study the problem of
having more than one possible mediation query definition
from the same set of correspondence assertions. This
problem is relevant for both the generation and for the
maintenance of the mediated view. Moreover, as presented
in [16] we also intend to analyze how to keep a history of
the exported schema updates in order to minimize the
impact of new updates in the integration system. Another
important point that needs to be evaluated is the quality of
the exported schemas which depends on the level of data
source cooperation. The quality of the exported schemas is
an important factor to determine the level of quality of the
answers returned from the integration system.

References

[1] J. Ambite, N. Ashish, G. Barish, A. C. Knoblock, S.
Minton, P. Modi, I. Muslea, A. Philpot and S. Tejada,
Ariadne: a system for constructing mediators for
internet sources. In Proceedings of ACM SIGMOD
Conf. on Management of Data, pages 561-563, 1998.

[2] V. Arens, C. Y. Chee, C-N. Hsu and C. A. Knoblock,
Retrieving and integrating data from multiple
information sources. International Journal on
Intelligent and Cooperative Information Systems,
2(2):127-158, 1993.

Using Agents for Generation Bernadette F. Lóscio
and Maintenance of Mediators Ana Carolina Salgado, Vânia M. Ponte Vidal

42

[3] C. Baru, A. Gupta, B. Ludascher, R. Marciano, Y.
Papakostatinou, P. Velikhov and V. Chu, Xml-based
information mediation with mix. In Proceedings of
ACM SIGMOD Conf. on Management of Data, pages
597-599, 1999.

[4] S. Bergamaschi, S. Castano, S. De Capitani Di
Vimercati, S. Montanari and M. Vincini, A semantic
approach to information integration: the momis
project. In Proceedings of Sesto Convegno della
Associazione Italiana per l'Intelligenza Artificiale,
1998.

[5] T. Bray, J. Paoli and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0.
http://www.w3.org/TR/REC-xml, Feb. 1998.

[6] A. Brown, M. Fuchs, J. Robie, and P. Wadler. XML
Schema: Formal Description.,
http://www.w3.org/TR/xmlschema-formal/, Mar.
2001.

[7] D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. XQuery: A query language for xml.
http://www.w3.org/TR/xquery/. Feb. 2001.

[8] S. Chawathe, H. Garcia Molina and J. Hammer, The
tsimmis project: integration of heterogeneous
information sources. In Proceedings of 10th Meeting
of the Information Processing Society of Japan (IPSJ),
pages 7-18, 1994.

[9] S. Cluet, C. Delobel, J. Siméon, K. Smaga, Your
mediators need data conversion!, In Proceedings. of
ACM SIGMOD Conference on Management of Data,
pages 177-188, 1998.

[10] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D.
Suciu, A Query Language for XML. In Proceedings
of Eighth International World Wide Web Conference,
1999.

[11] A. Elmagarmid, M. Rusinkeiwicz, and A. Sheth.
Management of Heterogeneous and Autonomous
Database Systems. 1a Ed. Morgan Kaufmann
Publishers, 1999.

[12] M. Fernandez, W. Tan, D. Suciu, SilkRoute: trading
between relations and xml. In Proceedings of 9th
International WWW Conference, pages 723-745,
2000.

[13] Y. Halevy, Theory of answering queries using views,
SIGMOD Record, vol. 29, no.4, pp.40-47, 2000.

[14] T. Kirk, A.Y. Levy, Y.Sagiv, and D. Srivastava, The
Information Manifold, in Proc. of the AAAI 1995
Spring Symp. on Information Gathering from
Heterogeneous, Distributed Environments, pp. 85-91,
1995.

[15] A. Y. Levy, Logic-based techniques in data
integration, in J. Minker, editor Logic Based Artificial
Intelligence. Kluwer Publishers, 2000.

[16] A. Koeller and E. A. Rundensteiner. A history-driven
approach at evolving views under meta data changes.
Technical Report WPI-CS-TR-00-01, Worcester
Polytechnic Institute - Dept. of Computer Science,
2000.

[17] A. Nica and E. A. Rundensteiner, View maintenance
after view synchronization. In Proceedings of
International Database Engineering and Application
Symposium, pages 215-213, 1999.

[18] A. Tomasic, L. Raschid, and P. Valduriez, Scaling
access to distributed heterogeneous data sources with
Disco, IEEE Transactions on Knowledge and Data
Engineering, 1998.

[19] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J.
Carey, B. G. Lindsay, H. Pirahesh, B. Reinwald,
Efficiently Publishing Relational Data as XML
Documents. In Proceedings of 26th International
Conference on Very Large Data Bases (VLDB), pages.
65-76, 2000.

[20] V. M. P. Vidal, B. F. Lóscio and A. C. Salgado, Using
correspondence assertions for specifying the
semantics of XML-based mediators. In Proceedings of
WIIW 2001 - International Workshop on Information
Integration on the Web - Technologies and
Applications, pages 3-11, 2001.

[21] J. D. Ullman, Information integration using logical
views, in Proc. of ICDT’97, vol.1186 of LNCS,
pp.19-40, Springer-Verlag, 1997.

[22] G. Wiederhold, Mediators in the architecture of future
information systems. IEEE Computer, 25(3): 38-49,
1992.

