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Abstract

Workflow management systems usually interpret a
workflow definition rigidly. However, there are real life
Situations where users should be allowed to deviate from
the prescribed static workflow definition for various
reasons, including lack of information and unavailability
of therequired resources. To flexibilize wor kfl ow execution,
this paper first proposes mechanisms that allow execution
to proceed in the presence of incomplete information, by
adopting presuppositions, and in the presence of negative
information, by suggesting execution alternatives. Then,
the paper presents an architecture for a workflow system,
driven by ontologies that capture semantic relationships
between workflows and resources. The architecture
includes a component which uses matching techniques to
find alternatives for workflows and resources.

Keywords: workflow, flexibilization, ontology,
matching

1. INTRODUCTION

Workflow management systems have received
considerable attention lately, motivated by their wide
spectrum of applications. Standardization efforts are under
way in the context of consortia, such asWfMC, OASISand
W3C. In particular, WfMC was created in 1993 by severa
companies with the purpose of standardizing workflow

concepts and technol ogies [15]. Among other contributions,
these efforts resulted in new workflow definition languages
and coordination protocols.

Requirements for workflow management systems
comprise a long list. Among the requirements, we may
highlight distributed execution, cooperation and coordination,
and synchronization, that model the way user communities
work cooperatively to performagiventask [1] [2] [12].

This paper addresseswhat wecallectively call flexible
execution. Briefly, workflow management systems usually
interpret aworkflow definitionrigidly. However, thereareresdl
life dtuationswhere users should be alowed to deviate from
the prescribed static workflow definition for variousreasons,
including lack of information and unavailability of therequired
resources.

Toachieveflexibleexecution, weproposeinthispaper:
(i) amechanismto handle presuppositions, that uses default
values which allow execution to proceed in the presence of
incomplete information; (ii) a mechanism for choosing
alternativesto subworkflowsand resources, thereby alowing
workflow execution to proceed when the predefined resource
isunavailable. In some sense, these mechanisms implement
a component substitution strategy, applied to workflow
execution, where subworkflows and resources play the role
of components[3].

The proposed mechanisms use workflow ontologies to:
choosegppropriatedefault va ues, whentherequiredinformetion



Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrao

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

isunavailable; (ii) find an dternative subworkflow or resource,
when the predefined resource is unavailable, or even when the
workflow definitionisabgtract; (iii) assessthe choiceof defaults
and dternatives, when work-flow execution terminates.

It must be noted that our flexibilization mechanisms
are not intended to alow users to directly interfere with
workflow execution. They rather use previous semantic
information about workflows and their resources, and the
current state of workflow execution, to suggest better
alternatives to the user, or to make educated guesses about
missing data, that allow execution to proceed when otherwise
it would have been stopped. In addition, the mechanisms
also support abstract definitions, a construct that introduces
flexibility at theworkflow designlevel.

Thepaper isorganized asfollows. Section 2 summarizes
related work. Section 3 introduces a motivating example.
Section 4 presents the workflow and application ontologies,
based on the example in Section 3. Section 5 describes the
flexibilization mechanisms proposed in the paper. Section 6
outlines an architecture for a workflow management system
that includesthe flexibilization mechanisms. Section 7 briefly
smulateshow theflexibilization mechanismsbehave. Findly,
Section 8 contains the conclusions.

2. RELATED WORK

The evolution of workflow systems towards less
restrictive coordination spproachesisdiscussedin[21]. Most
of theearlier proposalsfor flexibilization mechanismssuggest
to dynamically changetheworkflow structureat runtime[8].

Rule-driven frameworks that support structural
changesin aworkflow, by dictating how tasks can beinserted
or removed from the workflow at runtime, are presented in
[18]. Theflexibilization mechanismsdescribedin [24] [4] dso
offer the user the possibility to include, remove or even stop
activities during workflow execution. The mechanisms
proposed in our paper follow adifferent strategy by allowing
execution to proceed in the presence of incomplete or
negativeinformation, with minimal user intervention.

The OPENflow system [14] offers two distinct
flexibilization gpproaches: flexibility by sdectionandflexibility
by adaptation. Flexibility by selection allowsseveral pathsto
beincluded intheworkflow description, but only onepathis
chosenat runtime. Flexibility by adaptation leadsto workflow
adaptation, at the instance level, when changes occur in the
workflow structure at runtime (inclusion of one or more
execution paths). Our approach does not cover flexibility by
selection, but it achieves flexibility by adaptation by using
semantic information about workflow description to partly
guide instance execution.

Theflexibilization mechanismsin[13] account for the
cooperation between users and the anticipation of task
execution. Themechanism offersaspecial transaction model
for cooperative systems that deviates from the conventional

start-end synchronization model [5].

The construction of workflow schemas from a
standard set of modelling constructs is proposed in [19].
Thisispartialy doneat designtime, and completed at runtime,
according to selection, termination and workflow definition
constraints, which dictate how each fragment of work can be
included intheworkflow, under what conditionstheworkflow
instance can be terminated and what conditions must hold
during workflow definition. Flexibilizationisachieved, inthis
case, by leaving workflow definition to be completed at
runtime, according to the specified constraints. To some
extent, our mechanism for choosing alternatives achieves a
similar effect, asdiscussed in Section 5.

Lastly, theflexibilization mechanismswe propose bear
some similarity to the query relaxation strategy adopted in
the CoBase system [9] and in the CoSent system [10].

CoBase is a database system that uses the idea of
cooperative queries. When queries are submitted to the
system, CoBaseanayzesahierarchy of additiona information
to enhance the query with relevant information. The
information added to the query is bounded by a maximum
semantic distance from theinformation present intheoriginal
query. This query modification mechanism is similar to the
strategy we propose to deal with negative or incomplete
information. In our proposal, the workflow description is
enhanced with additional information available in the
workflow ontology, as discussed in Section 4.

3. AMOTIVATING EXAMPLE

Thissection introduces amotivating example, based on
ared-lifeemergency plan, definedinalengthy (paper) document.
Albeit schemdtic, theexampleretainstheessentid characteridtics
of theorigind emergency plan. Theorigind emergency planhas
been trandated into a workflow that runs under the InfoPAE
system [7] [6]. We note, however, that the ideas presented here
were not yet implemented as part of the InfoPAE project.

Consder the problem of cleaning coastd areasaffected
by an ail spill. To addressthistype of accident, the emergency
plan definesaset of cleaning proceduresthat takeinto account
the oil type and the characterigtics of the coadtal area. Table 1
provides an schematic example of cleaning procedures, when
the type of coastal area is Sand Beach and the ail types are
schematically named Type | through Type V. Table cdls are
filledwithaweight indicating theenvironmenta impact of each
of the procedures: 0.00 indicates the smallest environmental
impact, 0.25 someimpact, 0.50 asignificant impact, 0.75 the
greatest impact, and 1.00ingpplicable. Theorigina emergency
plan identifies a number of other types of coastal areas and
describes the best cleaning procedures for each of them.

Now, suppose that an emergency team isassigned to
the accident. The team will be referred to asthe user of the
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emergency planinwhat follows.

Suppose that the user comesto a point in the overall
emergency plan execution wherehe needsto select acleaning
procedure for a sand beach affected by an oil spill. The user
(or the workflow management system) can then look up in
Table 1 to select the best procedure to clean the beach. For
example, if theoil isof Typell, the best proceduresare“VC:
Vacuum Cleaning” and“CL: Cold, Low PressureCleaning”.

However, if thereis no information about the ail type,
Table 1 becomes usdless. In this case, the user may teke an
educated guess and assume, say, that the oil is of Typell. He
will then proceed with the emergency plan based on this
assumption. Moreover, if hecannot executethebest procedures
for ail Typell (those with weight 0.00), because a predefined
resource is unavailable, then he may resort to “UA: Use of
Absorbents’ and “CH: Cold, High Pressure Cleaning”, which
are the second best choices (those with weight 0.25).

This very simple example illustrates two general
flexibilization mechanisms. First, theuser implicitly resorted
to presuppositions about the accidental scenario when he
sdlected Type |l asthe default for oil type. Second, he used a
form of component substitution when he decided to choose
andternative cleaning procedure. We generalizethisbehavior
as explained in the next sections.

4. \WoRKFLOW AND APPLICATION ONTOLOGIES

4.1 WorkrFLow ONTOLOGY

This sections informally describes a small fragment
of theworkflow ontology, WkOnt, behind theflexibilization
mechanisms. The full ontology extends the OWL-S process
ontology [20], which contains constructsto specify workflow
composition and which includes many concepts we need to
flexibly executeworkflows. Werefer thereader to [22] for the
full details.

Basicdly, OWL-S include the notion of workflows
and resources, and aso the notion of abstract and concrete
workflows, through the concepts of Simple, Atomic, and
Composite Process.

Using OWL terminology [23], the basic classes and
properties of WkOnt are defined as showed in Table 2.

Instances of the class Abstract are called abstract
objects, and likewise for the other classes.

A concrete object O is an implementation of an
abstract object A iff O and A are related by an instance of is
implementation-of. A concrete object O is an alternative for
another concrete object O0iff O and O0 areimplementations
of the same abstract object.

Abstract and concrete objects reflect a workflow
design strategy that leaves part of the specification open. At

design time, the user may create aworkflow definition with
the help of an abstract workflow A (or resource), rather than
specifying aconcreteworkflow (or resource). The semantics
of abstract objects, as well as of can-be-replaced and has-
default-value, depend on the flexibilization mechanismsand
will be discussed in Section 5.

The class Weight permits associating weights to
instances of the object property is-implemented-by. Its role
will befurther discussed in the next section.

4.2 AprpLicaTION ONTOLOGY

Intuitively, when modelling an application area, theuser
should start by defining an application ontology, AppOnt,
that importsWkOnt, our workflow ontology, and that contains
a set of workflows, resources and parameters, defined as
instances of WkOnt classes. He may then specify additiona
workflow definitionsthat reusetheinitia set of objectsdefined
in AppOnt. Indeed, this strategy considerably smplifies the
specification of the emergency plans aluded to in Section 3.
More importantly, when executing one such workflow, the
flexibilization mechanisms must have accessto AppOnt.

Figure 1 shows a simplified RDF graph that
correspondsto the examplein Section 3. Briefly, we have:

* CB is an abstract workflow that represents all
cleaning procedures for Sand Beaches;

*ND, UA, VC, CL, CH, HL, HH and PC are concrete
workflowsthat model specific cleaning procedures
(seeTable 1);

e CBisrdatedtoND, UA, VC, CL, CH, HL,HH and PC
by instances of the is-implementation-of property;

 Ab, Rk, Bg, 3, Tk, Ba, and Wa are abstract resources,

* Abl, Ab5, Rk5,Mcl andM ¢4 are concrete resources,

e Abisrelated to Abl and Ab5, Rkisrelated to Rk5
and Mcl, and Mc isrelated to Mc4 by instances
of the is-implementation-of property;

* Qil Typeisaparameter;

* Oil Typeisrelated to Typel, Typell, Typelll, Type
IV and Type V by instances of the has-domain-
value property;

« has-oil-type, anew datatype property with domain
Weight and range Literal, that indicatesto which
ail types the weight applies.

The application ontology may also contain an
additional set of rules (see[22] for the details), classified as:

presupposition rules: select the appropriate
default values,

congistency rules: assesstheflexibilization decisions
made, when workflow execution terminates;
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Table 1. Environmental impact of cleaning procedures for sand beaches.
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Figure 1: Fragment of an application ontology that shows the beach cleaning procedures.

semantic proximity rules: define instances of
the datatype property has-weight-value, perhaps
depending on parameter values.

For example, the semantic proximity rules may
capture the information about weights shown in Table
1. Thefirst entry of the table would correspond to the
following rule, written in SWRL human readable syntax
[16]:

has-oil-type(?x,' Type 1') & has-source(?x,'CB’)
& hastarget(?x,'ND") = has-weight-value(?x,0.0)

Note that, in this specific application ontology,
the type of coastal area is implicitly given when the
user defines the abstract workflows. For example, CB
applies only to sand beaches. However, the
dependency of the weights on the oil type had to be
modelled by an additional datatype property, has-oil-
type, of the class Weight. Then, the semantic proximity
rules may be used to implicitly generate instances of
has-weight-value.
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Thiscircumvented way of capturing theinformation
in Table 1 just reflects the limitations of the ontology
language chosen, viz. OWL, which supports only binary
relationships.

On the other hand, with the help of rules, we may
define weight values that depend on complex
configurations.

5. FLEXIBILIZATION M ECHANISMS

This section describes two mechanisms that allow
workflow execution to proceed in the presence of
incompleteinformation, by adopting presuppositions, and
in the presence of negative information or when abstract
definitions are used, by suggesting alternatives for
workflows or resources.

In what follows, assume that AppOnt is the
underlying application ontology.
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Table 2: Classes and properties of WkOnt ontology.

Class/Property name

Class/property description

Object

The root class

has-name

A functional datatype property with domain Object and range String that as-
signs a name to each object

Abstract and Concrete

Subclasses of Object that represent abstract and concrete objects

is-implemented-by

An object property with domain Abstract and range Concrete

is-implementation-of

The inverse of is-implemented-by

Cost

A datatype property with domain Concrete and range Float that indicates a
cost value for the concrete objects

Workflow and Subclasses of Object, with the obvious meaning

Resource

AbstractWorkflow and Classes defined as the intersection of Abstract and Concrete with Workflow,
ConcreteWorkflow respectively

AbstractResource and
ConcreteResource

Classes defined as the intersection of Abstract and Concrete with Resource,
respectively

requires

An object property with domain Workflow and range Resource that indicates
which resources a workflow requires

is-required-by

The inverse of requires

can-be-replaced

A datatype property with domain Concrete-Workflow and range Boolean that
indicates whether a workflow can be replaced by an equivalent one or not

is-available

A datatype property with domain Concrete-Resource and range Boolean that
indicates whether a resource is available or not

Parameter

A subclass of Object that represents parameters

parameter-of

An object property with domain Parameter and range Workflow that indicates
which parameters a workflow depends on

has-parameter

The inverse of parameter-of

has-domain-value

A datatype property with domain Parameter and range Literal that enumerates
the allowed values of a parameter

has-default-value

A datatype property with domain Parameter and range Literal that defines a
default value for a parameter

has-current-value

A functional datatype property with domain Parameter and range Literal that
indicates the current value of a parameter

Weight A subclass of Object that represents weight values for the object type property
is-implemented-by

has-source An object property with domain Weight and range Abstract that indicates
which abstract object the weight applies

has-target An object property with domain Weight and range Concrete that indicates

which concrete object the weight applies

has-weight-value

A datatype property with domain Weight and range Float that indicates weight
values
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Let W beaworkflow definition and E bean execution
engine that runs a workflow instance IW of W. Let V be a
subworkflow of W and assume that V has a pre-condition
C[p], wherepisaparameter, and that V requiresaresourcer.
Therefore, V cannot be executed when C[p] is false or the
value of p isundefined, and when resourcer is unavailable.

The engine E may invoke the mechanism to handle
presuppositions in two digtinct points of the execution. First,
when delegating asubworkflow V to another execution engine
F, the engine E may find out that the value of parameter p,
required to test C[p], is undefined. In this case, E takes the
followingactions: (1) E executesthe presupposition mechanism
to sdect adefault vauedpfor p; (2) if C[p/dp] istrue (the pre-
condition C when p hasvalue dp), then E delegatesV to F.

Second, when the engine E executes IW, it may
also miss the value of some parameter p. Then, E may
again invoke the presupposition mechanism to select a
default valuefor p.

The mechanism to handle presuppositions has a
reasoner component that uses presupposition rules and
instances of has-default-value, both defined in AppOnto,
to select adefault valuefor p. The mechanismwill fail, if
no such instance is found. Intuitively, thisindicates that
the user, when he defined A ppOnt, decided that p should
not be flexibilized in the current context.

Note that the use of rules is necessary to select
default values based on context information. Therefore,
the process of selecting a default value is a deductive
process, and not merely a query over instances of has-
default-value.

The mechanism for choosing alternatives operates
in two different modes, which are essentially equivalent,
but require slightly different interpretations (and
modelling) of the semantic proximity rules.

To analyze the first mode, suppose that E is about to
delegate a subworkflow V to another execution engine F.
Assume that C[p] is true for the current value of p, but
resource r is unavailable. The engine E may invoke the
mechanism for choosing dternatives, which in turn usesthe
semantic proximity rulesto try to find: (i) aresourcerO such
that rOissemantically equivalent tor andrOisavailable; or (ii)
asubworkflow VO suchthat VOissemantically equivalent to
V and VO canbeexecuted, i.e., dl preconditionsof VOaretrue
and all resources that VO requires are available. It is worth
noting that these two choices are not independent, in the
sensethat (ii) may trigger (i) when VO requiresresourcesthat
areunavailable.

To analyze the second mode, assume that W has
an abstract subworkflow A. Suppose that E is about to
create asubworkflow instance of A. Then, E hasto invoke
the mechanism for choosing alternatives to select a
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concrete workflow B that isrelated to A by an instance of
the of-of property, contained in AppOnt.

In both operation modes, typically more than one
alternativeispossible. Hence, the mechanism for choosing
alternatives has a matching component that uses weight
information, included in AppOnto (see Table 2), to select
the best alternative, or at least an heuristically reasonable
alternative. Therefore, the process of choosing aternatives
is also a deductive process, and not merely a query over
instances of classes of AppOnto.

Themechanismfor choosing dternativescan bemade
more sophisticated by taking into account the execution
context. Briefly, dternative subworkflowsor resourcesshould
be chosenin away that favors parallelism and optimizesthe
use of resources. For instance, the mechanism should avoid
replacing asubworkflow A by an alternative subworkflow B,
if B will block another subworkflow C being executed or that
wasscheduledtorunin parallel with A. Asanother example,
if B will be followed by an activity D then, if possible, the
resources that B uses should have a non-trivial intersection
with the resources D requires (intuitively, B will be able to
hand to D anumber of resources, thereby reducing the setup
timeof D).

When a subworkflow instance terminates, the
execution engine must invoke the consistency rules to
analyze possible conflicts caused by the use of a default
value or by the choice of an alternative workflow or
resource. If conflicts indeed occurred, the execution
engine may invoke compensating actions, among those
registered in the ontology, to try to undo the effects of the
faulty workflow execution.

Finally, we note that this is just one of the
exceptionsthat the execution engineis prepared to handle,
as discussed in the next section.

6. ARCHITECTURE OF THE WORKFLOW M ANAGEMENT

Srstem

Thissection outlinesthe architecture of theworkflow
management system. Briefly, the system consists of (see
Figure 2): (i) an ontology manager, which offers servicesto
store, manipulate and query the workflow ontology; (ii) a
collection of execution engines, responsible for running
workflow instances; and (iii) an instance manager, which
keepstrack of all workflow instancesin the system.

The discussion that follows is independent of the
protocol used to invoke the services these components
provide; in particular, they could be accessed as Web
services.

A complete description of thearchitecturein ACME
[11] canbefoundin[22].
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Figure 2: The ontology-driven architecture proposed for flexible workflow execution.

6.1 OnTOLOGY MANAGER
The ontology manager is decomposed into the
matching module and the ontology services module.

The matching moduleisan instance of aframework
designed to solve matching problems among individual s of
agiven domain, such as*find the resource whose semantic
distance from resource B is the smallest possible”. This
framework hasthefollowing major characteristics:

1. Independence from the application domain
knowledge, achieved by the Domain Knowledge
component, which encapsulates the matching functions
required to solve the matching problem. Such functions
define similarity values, covering 3 cases. one individual
matching oneindividua (1-1); oneindividua matching many
individuals (1-N); and many individuals matching many
individuas(N-N);

2. Independence from the application data model,
achieved by the Model component, which offersaninterface
that can be extended to essentially trandate the application
datamodel tothe datamode! theframework implements. The
interface can be extended to cover the most popular data
models used to design ontologies and databases,
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3. Independence from the matching strategies,
achieved by the Matching Strategy component, which
offers an interface that can be extended to cover new
matching algorithms. Such algorithms use the information
contained in the Domain Knowledge component to match
individuals of the application domain.

Recall that, in the context of the workflow
flexibilization mechanisms, theworkflow ontology playsthe
role of the application data model. We therefore have the
following major adaptations of the framework.

First, the matching functions define similarity values
between pairs of workflows and pairs of resources. The
matching modul e uses the matching functions to create an
ordered list of alternative workflows or resources.

Second, the extension of the Model component must
support a variety of ontology data models, including RDF,
RDF-S and OWL. It uses the OntoAPI, based on Jena
Framework [17], that offers such support and amechanism
to cache individuals, which speeds up the computation of
alternative workflows and resources.

Briefly, the OntoAPI providesaseriesof servicesthat
facilitate access to ontology elements (classes, properties
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and instances). It smplifies accessing ontologies stored in a
Jenarepository, facilitatesthe devel opment of objectoriented
applicationsthat mani pul ate ontol ogies by mapping ontol ogy
information into sets of objects and classes, and provides
efficient access to ontology information since it implements
an optimized object cache. However, the OntoAPI does not
define a complete set of operations, as does the Jena
framework. Instead, the OntoAPI provides an interface that
issimpleto use and covers most of the methods commonly
used to access ontology information.

The ontology services module uses the matching
module to find aternative workflows and resources, and
to compute default values, using the workflow and the
application ontologies, as previously discussed.

The ontology services module offersfive classes of
services. SCompensation, SConcretization, SException,
SFlexibilization, and SSubstitution. These services
represent the implementation core of the flexibilization
mechanisms proposed in this paper. They are accessible
only through the corresponding services in the execution
engines, which arein turn invoked by their supervisor. The
execution enginesassumetheroleof client and the ontology
manager assumes the role of server in thisinteraction.

6.2 ExeEcuTioN ENGINE

The execution engine is responsible for running
workflow instances. The workflow management system
may have any number of execution enginesinvolved with
the execution of a single workflow, organized asfollows.

Let W be a workflow definition and V be a sub
workflow of W. Let E be an execution engine controlling an
instance W of W. If W alows, E may distributeV to another
execution engine F, which then createsan instance IV of V .
Inthiscase, wesay that E delegated V to F, that E coordinates
F and that F is directly subordinated to E. We also say that
IV is directly subordinated to IW. Furthermore, we define
theissubordinated to rel ationship between execution engines
by taking thetransitive closure of theisdirectly subordinated
to relationship, and likewise for workflow instances.

The Supervisor is the core component of the
execution engine. It controlsthe execution of one or more
workflow instances, and may delegate a subworkflow to
another execution machine. When the subordinated
instance terminates, it is also responsible for sending the
result to the coordinator machine.

The Supervisor may invoke six different services:

SCoordination, invoked when the supervisor requires
communication with other execution engines. The
service is based on message passing.

SConcretization, invoked when the supervisor reaches
an abstract subworkflow definition A. The service
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then tries to find an appropriate concretization for
A, among those registered in the ontol ogy.

SFlexihilization, invoked when the supervisor detects a
timeout caused by an undefined parameter. The
service then tries to find an appropriate default
value, using the ontology.

SSubstitution, invoked when the supervisor detects a
timeout caused by an unavailable resource. The
service first tries to find an aternative resource,
among those registered in the ontology; if it fails,
it then tries to find an alternative workflow, again
among those registered in the ontology.

SCompensation, invoked when the supervisor detects an
execution conflict, possibly caused by the use of a
default value or the choice of an alternative
workflow or resource. The supervisor passes the
faulty workflow and its execution engine to the
service, which then tries to find an appropriate
compensating action, among those registered in
the ontology.

SException, invoked when the supervisor detects an
exception raised during workflow execution. The
service then tries to find an appropriate treatment
for the exception raised, among those registered in
the ontol ogy.

Note that, except for the first, al these services require
access to the ontology. Therefore, they interact
with the corresponding services implemented by
the ontology manager. The supervisor directly
communicates only with the instance manager.

6.3 INSTANCE M ANAGER

Theinstance manager keepstrack of the workflow
instances running in the system. Each time the supervisor
of an execution engine creates a workflow instance I, it
sends a message to the instance manager containing the
identification of the related process, the identification and
the start time of |, and the identification of its execution
engine. The end time and the final state of | are marked
“unknown”, indicating that | has not yet finished. When |
finishes and the supervisor detected no conflict, it sends
a message to its coordinator signalling that | terminated
successfully. The coordinator then updates I’s entry at
the instance manager with the end time and final state.

When an execution engine is running a workflow
instance and needs a parameter value that comes from
another subworkflow, the supervisor sends a request for
the instance manager asking for the last instance of the
required process whose execution ended. Using the
identification of the execution engine and of the instance,
the supervisor obtains the necessary parameter value. If
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the value is not yet available and a timeout occurs, the
supervisor must invoke the SFlexibilization service to
obtain adefault valuefor the parameter, asexplained before.

Note that the instance manager module
communicates only with execution engines to maintain
information about workflow instances.

7. SMULATING THE ExecuTioN oF A WORKFLOW

INSTANCE
Thissection simulatesapartia execution of asample
workflow, indicating how the flexibilization mechanisms
use the workflow ontology.

Consider a very simple workflow W capturing an
emergency plan designed to clean coasta areas affected by an
oil spill. Supposethat W iscomposed of 4 subworkflows: W1
determinesthetypeof oil spilled, setting theva ueof aparameter
QilType; W2 determinesthetypeof coastd areaaffected, setting
thevaue of another parameter Coastal AreaType; and W3 and
W4 define cleaning proceduresfor two different combinations
of ail typeand coastal areatype. Assumethat they may dl run
in paralle, but W3 and W4 have pre-conditions that depend
on the vaues of QilType and Coastal AreaType. Furthermore,
assumethat W3 contai nsan abstract workflow, corresponding,
say, to node CB of the ontology shown in Figure 1.

Suppose that an execution engine E is running an
instance IW of W.

As afirst example, suppose that E is running W3
and that E reaches CB. Then, E invokesthe SConcretization
service, whichin turn sendsamessageto the corresponding
service of the ontology services module. At the ontology
services module, the SConcretization service calls the
matching modul e to find the best match between the abstract
workflow CB and all concreteworkflowsrelatedtoiit by the
property is-implemented-by.

Supposethat the best matchesareL = (VC,CL). This
listisreturned to the SConcretizati on service of theexecution
engine E, which then verifies the workflows in L that can
indeed be run, i.e., whose pre-conditions are al true and
whoseresources are dl available, asillustrated in Figure 3.

Suppose that VC is selected. Then, E continues
the execution of W by running VC.

As a second example, suppose that E stops
executing becauseW1 is not responding with the
appropriate oil type.

Assume that a timeout associated with the pre-
conditions of W3 or W4 (or both) occurs. The supervisor
of the execution engine E then calls the SFlexibilization
service, which sends a message to the corresponding
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service of ontology services module. At the ontology
services module, the SFlexibilization service selects a
default value do for the missing oil type, using the
workflow ontology. The default value do is returned to
the SFlexibilization service of the execution engine E.
The supervisor of E then tests the pre-conditions of W3
and W4 with this default value.

Supposethat the pre-condition of W4 istrue. Then,
E continues the execution of W by running W4.

When IW terminates, the supervisor runs
consistency rules to verify if the presupposed value, do,
wasconfirmed. If aconflict isdetected, the SCompensation
service is invoked and a compensation workflow for W4
is selected from the workflow ontology, in a process very
similar to those already described.

8. CoNncLusIiON

We described in this paper two mechanisms to
flexibilizethe execution of workflow instances: amechanism
to handle presuppositions that allows workflow execution
to proceed in the presence of incompleteinformation, and a
mechanism for choosing alternative subworkflows or
resources, in the presence of negative information or when
an abstract definition is reached. These two mechanisms
use additional semantic information about the workflow
definitions and resources involved.

We also outlined an implementation architecture
for the workflow management system, pointing out how
ontologies are handled. The focus was on the matching
module, which is the component responsible for finding
aternatives for workflows and resources. The matching
module and the OntoAPI are fully operational and a
complete implementation of the workflow management
moduleis planned for the end of 2005.

The ontology approach played acentral rolein our
overall strategy in two interrelated aspects. First, it
facilitated modelling the application as a collection of
workflows and their resources - the application ontology
- much in the same way experts define complex tasks in
rea life - as a structured collection of separate, smaller
procedures. Second, it permitted constructing the
workflow management system as a combination of a
standard workflow execution engine, a deductive
component (the mechanism to handle presuppositions)
and a matching component (the mechanism for choosing
aternatives), that use the application ontology again much
in the same way final users combine the procedures, that
experts defined, to achieve their goals, according to the
current situation.
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Abstract Modeling
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Figure 3: The process realized by the concretization service over an application ontology.

To achieveflexibility, we had to pay the price of the
extra overhead of the deductive and the matching
components. However, for the applications we had in mind,
such as disaster response, the added flexibility and the gains
in design smplicity far compensate the additional runtime
overhead.

Finally, we refer the reader to [22] for a detailed
description of the concepts informally introduced here,
reformulated as OWL-S extensions.
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