
On the Design of Ontology-driven
Workflow Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova and Luis G. Ferrão
Department of Informatics

Pontifical Catholic University of Rio de Janeiro
Rua Marquês de São Vicente, 225

Rio de Janeiro, RJ - Brazil - CEP 22.453-900
Phone: +55-21-3114-1500 ext. 4347 / FAX +55-21-3114-1530

{tati, casanova, ferrao}@inf.puc-rio.br

Abstract
Workflow management systems usually interpret a

workflow definition rigidly. However, there are real life
situations where users should be allowed to deviate from
the prescribed static workflow definition for various
reasons, including lack of information and unavailability
of the required resources. To flexibilize workflow execution,
this paper first proposes mechanisms that allow execution
to proceed in the presence of incomplete information, by
adopting presuppositions, and in the presence of negative
information, by suggesting execution alternatives. Then,
the paper presents an architecture for a workflow system,
driven by ontologies that capture semantic relationships
between workflows and resources. The architecture
includes a component which uses matching techniques to
find alternatives for workflows and resources.

Keywords: workflow, flexibilization, ontology,
matching

1. INTRODUCTION

Workflow management systems have received
considerable attention lately, motivated by their wide
spectrum of applications. Standardization efforts are under
way in the context of consortia, such as WfMC, OASIS and
W3C. In particular, WfMC was created in 1993 by several
companies with the purpose of standardizing workflow

concepts and technologies [15]. Among other contributions,
these efforts resulted in new workflow definition languages
and coordination protocols.

Requirements for workflow management systems
comprise a long list. Among the requirements, we may
highlight distributed execution, cooperation and coordination,
and synchronization, that model the way user communities
work cooperatively to perform a given task [1] [2] [12].

This paper addresses what we collectively call flexible
execution. Briefly, workflow management systems usually
interpret a workflow definition rigidly. However, there are real
life situations where users should be allowed to deviate from
the prescribed static workflow definition for various reasons,
including lack of information and unavailability of the required
resources.

To achieve flexible execution, we propose in this paper:
(i) a mechanism to handle presuppositions, that uses default
values which allow execution to proceed in the presence of
incomplete information; (ii) a mechanism for choosing
alternatives to subworkflows and resources, thereby allowing
workflow execution to proceed when the predefined resource
is unavailable. In some sense, these mechanisms implement
a component substitution strategy, applied to workflow
execution, where subworkflows and resources play the role
of components [3].

The proposed mechanisms use workflow ontologies to:
choose appropriate default values, when the required information

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

34

is unavailable; (ii) find an alternative subworkflow or resource,
when the predefined resource is unavailable, or even when the
workflow definition is abstract; (iii) assess the choice of defaults
and alternatives, when work-flow execution terminates.

It must be noted that our flexibilization mechanisms
are not intended to allow users to directly interfere with
workflow execution. They rather use previous semantic
information about workflows and their resources, and the
current state of workflow execution, to suggest better
alternatives to the user, or to make educated guesses about
missing data, that allow execution to proceed when otherwise
it would have been stopped. In addition, the mechanisms
also support abstract definitions, a construct that introduces
flexibility at the workflow design level.

The paper is organized as follows. Section 2 summarizes
related work. Section 3 introduces a motivating example.
Section 4 presents the workflow and application ontologies,
based on the example in Section 3. Section 5 describes the
flexibilization mechanisms proposed in the paper. Section 6
outlines an architecture for a workflow management system
that includes the flexibilization mechanisms. Section 7 briefly
simulates how the flexibilization mechanisms behave. Finally,
Section 8 contains the conclusions.

2. RELATED WORK
The evolution of workflow systems towards less

restrictive coordination approaches is discussed in [21]. Most
of the earlier proposals for flexibilization mechanisms suggest
to dynamically change the workflow structure at runtime [8].

Rule-driven frameworks that support structural
changes in a workflow, by dictating how tasks can be inserted
or removed from the workflow at runtime, are presented in
[18]. The flexibilization mechanisms described in [24] [4] also
offer the user the possibility to include, remove or even stop
activities during workflow execution. The mechanisms
proposed in our paper follow a different strategy by allowing
execution to proceed in the presence of incomplete or
negative information, with minimal user intervention.

The OPENflow system [14] offers two distinct
flexibilization approaches: flexibility by selection and flexibility
by adaptation. Flexibility by selection allows several paths to
be included in the workflow description, but only one path is
chosen at runtime. Flexibility by adaptation leads to workflow
adaptation, at the instance level, when changes occur in the
workflow structure at runtime (inclusion of one or more
execution paths). Our approach does not cover flexibility by
selection, but it achieves flexibility by adaptation by using
semantic information about workflow description to partly
guide instance execution.

The flexibilization mechanisms in [13] account for the
cooperation between users and the anticipation of task
execution. The mechanism offers a special transaction model
for cooperative systems that deviates from the conventional

start-end synchronization model [5].

The construction of workflow schemas from a
standard set of modelling constructs is proposed in [19].
This is partially done at design time, and completed at runtime,
according to selection, termination and workflow definition
constraints, which dictate how each fragment of work can be
included in the workflow, under what conditions the workflow
instance can be terminated and what conditions must hold
during workflow definition. Flexibilization is achieved, in this
case, by leaving workflow definition to be completed at
runtime, according to the specified constraints. To some
extent, our mechanism for choosing alternatives achieves a
similar effect, as discussed in Section 5.

Lastly, the flexibilization mechanisms we propose bear
some similarity to the query relaxation strategy adopted in
the CoBase system [9] and in the CoSent system [10].

CoBase is a database system that uses the idea of
cooperative queries. When queries are submitted to the
system, CoBase analyzes a hierarchy of additional information
to enhance the query with relevant information. The
information added to the query is bounded by a maximum
semantic distance from the information present in the original
query. This query modification mechanism is similar to the
strategy we propose to deal with negative or incomplete
information. In our proposal, the workflow description is
enhanced with additional information available in the
workflow ontology, as discussed in Section 4.

3. A MOTIVATING EXAMPLE
This section introduces a motivating example, based on

a real-life emergency plan, defined in a lengthy (paper) document.
Albeit schematic, the example retains the essential characteristics
of the original emergency plan. The original emergency plan has
been translated into a workflow that runs under the InfoPAE
system [7] [6]. We note, however, that the ideas presented here
were not yet implemented as part of the InfoPAE project.

Consider the problem of cleaning coastal areas affected
by an oil spill. To address this type of accident, the emergency
plan defines a set of cleaning procedures that take into account
the oil type and the characteristics of the coastal area. Table 1
provides an schematic example of cleaning procedures, when
the type of coastal area is Sand Beach and the oil types are
schematically named Type I through Type V. Table cells are
filled with a weight indicating the environmental impact of each
of the procedures: 0.00 indicates the smallest environmental
impact, 0.25 some impact, 0.50 a significant impact, 0.75 the
greatest impact, and 1.00 inapplicable. The original emergency
plan identifies a number of other types of coastal areas and
describes the best cleaning procedures for each of them.

Now, suppose that an emergency team is assigned to
the accident. The team will be referred to as the user of the

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

35

emergency plan in what follows.

Suppose that the user comes to a point in the overall
emergency plan execution where he needs to select a cleaning
procedure for a sand beach affected by an oil spill. The user
(or the workflow management system) can then look up in
Table 1 to select the best procedure to clean the beach. For
example, if the oil is of Type II, the best procedures are “VC:
Vacuum Cleaning” and “CL: Cold, Low Pressure Cleaning”.

However, if there is no information about the oil type,
Table 1 becomes useless. In this case, the user may take an
educated guess and assume, say, that the oil is of Type II. He
will then proceed with the emergency plan based on this
assumption. Moreover, if he cannot execute the best procedures
for oil Type II (those with weight 0.00), because a predefined
resource is unavailable, then he may resort to “UA: Use of
Absorbents” and “CH: Cold, High Pressure Cleaning”, which
are the second best choices (those with weight 0.25).

This very simple example illustrates two general
flexibilization mechanisms. First, the user implicitly resorted
to presuppositions about the accidental scenario when he
selected Type II as the default for oil type. Second, he used a
form of component substitution when he decided to choose
an alternative cleaning procedure. We generalize this behavior
as explained in the next sections.

4. WORKFLOW AND APPLICATION ONTOLOGIES

4.1 WORKFLOW ONTOLOGY

This sections informally describes a small fragment
of the workflow ontology, WkOnt, behind the flexibilization
mechanisms. The full ontology extends the OWL-S process
ontology [20], which contains constructs to specify workflow
composition and which includes many concepts we need to
flexibly execute workflows. We refer the reader to [22] for the
full details.

Basically, OWL-S include the notion of workflows
and resources, and also the notion of abstract and concrete
workflows, through the concepts of Simple, Atomic, and
Composite Process.

Using OWL terminology [23], the basic classes and
properties of WkOnt are defined as showed in Table 2.

Instances of the class Abstract are called abstract
objects, and likewise for the other classes.

A concrete object O is an implementation of an
abstract object A iff O and A are related by an instance of is
implementation-of. A concrete object O is an alternative for
another concrete object O0 iff O and O0 are implementations
of the same abstract object.

Abstract and concrete objects reflect a workflow
design strategy that leaves part of the specification open. At

design time, the user may create a workflow definition with
the help of an abstract workflow A (or resource), rather than
specifying a concrete workflow (or resource). The semantics
of abstract objects, as well as of can-be-replaced and has-
default-value, depend on the flexibilization mechanisms and
will be discussed in Section 5.

The class Weight permits associating weights to
instances of the object property is-implemented-by. Its role
will be further discussed in the next section.

4.2 APPLICATION ONTOLOGY

Intuitively, when modelling an application area, the user
should start by defining an application ontology, AppOnt,
that imports WkOnt, our workflow ontology, and that contains
a set of workflows, resources and parameters, defined as
instances of WkOnt classes. He may then specify additional
workflow definitions that reuse the initial set of objects defined
in AppOnt. Indeed, this strategy considerably simplifies the
specification of the emergency plans alluded to in Section 3.
More importantly, when executing one such workflow, the
flexibilization mechanisms must have access to AppOnt.

Figure 1 shows a simplified RDF graph that
corresponds to the example in Section 3. Briefly, we have:

• CB is an abstract workflow that represents all
cleaning procedures for Sand Beaches;

• ND, UA, VC, CL, CH, HL, HH and PC are concrete
workflows that model specific cleaning procedures
(see Table 1);

• CB is related to ND, UA, VC, CL, CH, HL, HH and PC
by instances of the is-implementation-of property;

• Ab, Rk, Bg, Sp, Tk, Ba, and Wa are abstract resources;

• Ab1, Ab5, Rk5,Mc1 andMc4 are concrete resources;

• Ab is related to Ab1 and Ab5, Rk is related to Rk5
and Mc1, and Mc is related to Mc4 by instances
of the is-implementation-of property;

• Oil Type is a parameter;

• Oil Type is related to Type I, Type II, Type III, Type
IV and Type V by instances of the has-domain-
value property;

• has-oil-type, a new datatype property with domain
Weight and range Literal, that indicates to which
oil types the weight applies.

The application ontology may also contain an
additional set of rules (see [22] for the details), classified as:

presupposition rules: select the appropriate
default values;

consistency rules: assess the flexibilization decisions
made, when workflow execution terminates;

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

36

Figure 1: Fragment of an application ontology that shows the beach cleaning procedures.

Table 1: Environmental impact of cleaning procedures for sand beaches.

semantic proximity rules: define instances of
the datatype property has-weight-value, perhaps
depending on parameter values.

For example, the semantic proximity rules may
capture the information about weights shown in Table
1. The first entry of the table would correspond to the
following rule, written in SWRL human readable syntax
[16]:

has-oil-type(?x,‘Type I’) & has-source(?x,‘CB’)
& has-target(?x,‘ND’) has-weight-value(?x,0.0)

Note that, in this specific application ontology,
the type of coastal area is implicitly given when the
user defines the abstract workflows. For example, CB
applies only to sand beaches. However, the
dependency of the weights on the oil type had to be
modelled by an additional datatype property, has-oil-
type, of the class Weight. Then, the semantic proximity
rules may be used to implicitly generate instances of
has-weight-value.

This circumvented way of capturing the information
in Table 1 just reflects the limitations of the ontology
language chosen, viz. OWL, which supports only binary
relationships.

On the other hand, with the help of rules, we may
define weight values that depend on complex
configurations.

5. FLEXIBILIZATION MECHANISMS

This section describes two mechanisms that allow
workflow execution to proceed in the presence of
incomplete information, by adopting presuppositions, and
in the presence of negative information or when abstract
definitions are used, by suggesting alternatives for
workflows or resources.

In what follows, assume that AppOnt is the
underlying application ontology.

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

37

Table 2: Classes and properties of WkOnt ontology.

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

38

Let W be a workflow definition and E be an execution
engine that runs a workflow instance IW of W. Let V be a
subworkflow of W and assume that V has a pre-condition
C[p], where p is a parameter, and that V requires a resource r.
Therefore, V cannot be executed when C[p] is false or the
value of p is undefined, and when resource r is unavailable.

The engine E may invoke the mechanism to handle
presuppositions in two distinct points of the execution. First,
when delegating a subworkflow V to another execution engine
F, the engine E may find out that the value of parameter p,
required to test C[p], is undefined. In this case, E takes the
following actions: (1) E executes the presupposition mechanism
to select a default value dp for p; (2) if C[p/dp] is true (the pre-
condition C when p has value dp), then E delegates V to F.

Second, when the engine E executes IW, it may
also miss the value of some parameter p. Then, E may
again invoke the presupposition mechanism to select a
default value for p.

The mechanism to handle presuppositions has a
reasoner component that uses presupposition rules and
instances of has-default-value, both defined in AppOnto,
to select a default value for p. The mechanism will fail, if
no such instance is found. Intuitively, this indicates that
the user, when he defined AppOnt, decided that p should
not be flexibilized in the current context.

Note that the use of rules is necessary to select
default values based on context information. Therefore,
the process of selecting a default value is a deductive
process, and not merely a query over instances of has-
default-value.

The mechanism for choosing alternatives operates
in two different modes, which are essentially equivalent,
but require slightly different interpretations (and
modelling) of the semantic proximity rules.

To analyze the first mode, suppose that E is about to
delegate a subworkflow V to another execution engine F.
Assume that C[p] is true for the current value of p, but
resource r is unavailable. The engine E may invoke the
mechanism for choosing alternatives, which in turn uses the
semantic proximity rules to try to find: (i) a resource r0 such
that r0 is semantically equivalent to r and r0 is available; or (ii)
a subworkflow V0 such that V0 is semantically equivalent to
V and V0 can be executed, i.e., all preconditions of V0 are true
and all resources that V0 requires are available. It is worth
noting that these two choices are not independent, in the
sense that (ii) may trigger (i) when V0 requires resources that
are unavailable.

To analyze the second mode, assume that W has
an abstract subworkflow A. Suppose that E is about to
create a subworkflow instance of A. Then, E has to invoke
the mechanism for choosing alternatives to select a

concrete workflow B that is related to A by an instance of
the of-of property, contained in AppOnt.

In both operation modes, typically more than one
alternative is possible. Hence, the mechanism for choosing
alternatives has a matching component that uses weight
information, included in AppOnto (see Table 2), to select
the best alternative, or at least an heuristically reasonable
alternative. Therefore, the process of choosing alternatives
is also a deductive process, and not merely a query over
instances of classes of AppOnto.

The mechanism for choosing alternatives can be made
more sophisticated by taking into account the execution
context. Briefly, alternative subworkflows or resources should
be chosen in a way that favors parallelism and optimizes the
use of resources. For instance, the mechanism should avoid
replacing a subworkflow A by an alternative subworkflow B,
if B will block another subworkflow C being executed or that
was scheduled to run in parallel with A. As another example,
if B will be followed by an activity D then, if possible, the
resources that B uses should have a non-trivial intersection
with the resources D requires (intuitively, B will be able to
hand to D a number of resources, thereby reducing the setup
time of D).

When a subworkflow instance terminates, the
execution engine must invoke the consistency rules to
analyze possible conflicts caused by the use of a default
value or by the choice of an alternative workflow or
resource. If conflicts indeed occurred, the execution
engine may invoke compensating actions, among those
registered in the ontology, to try to undo the effects of the
faulty workflow execution.

Finally, we note that this is just one of the
exceptions that the execution engine is prepared to handle,
as discussed in the next section.

6. ARCHITECTURE OF THE WORKFLOW MANAGEMENT

SYSTEM

This section outlines the architecture of the workflow
management system. Briefly, the system consists of (see
Figure 2): (i) an ontology manager, which offers services to
store, manipulate and query the workflow ontology; (ii) a
collection of execution engines, responsible for running
workflow instances; and (iii) an instance manager, which
keeps track of all workflow instances in the system.

The discussion that follows is independent of the
protocol used to invoke the services these components
provide; in particular, they could be accessed as Web
services.

A complete description of the architecture in ACME
[11] can be found in [22].

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

39

Figure 2: The ontology-driven architecture proposed for flexible workflow execution.

6.1 ONTOLOGY MANAGER

The ontology manager is decomposed into the
matching module and the ontology services module.

The matching module is an instance of a framework
designed to solve matching problems among individuals of
a given domain, such as “find the resource whose semantic
distance from resource B is the smallest possible”. This
framework has the following major characteristics:

1. Independence from the application domain
knowledge, achieved by the Domain Knowledge
component, which encapsulates the matching functions
required to solve the matching problem. Such functions
define similarity values, covering 3 cases: one individual
matching one individual (1-1); one individual matching many
individuals (1-N); and many individuals matching many
individuals (N-N);

2. Independence from the application data model,
achieved by the Model component, which offers an interface
that can be extended to essentially translate the application
data model to the data model the framework implements. The
interface can be extended to cover the most popular data
models used to design ontologies and databases;

3. Independence from the matching strategies,
achieved by the Matching Strategy component, which
offers an interface that can be extended to cover new
matching algorithms. Such algorithms use the information
contained in the Domain Knowledge component to match
individuals of the application domain.

Recall that, in the context of the workflow
flexibilization mechanisms, the workflow ontology plays the
role of the application data model. We therefore have the
following major adaptations of the framework.

First, the matching functions define similarity values
between pairs of workflows and pairs of resources. The
matching module uses the matching functions to create an
ordered list of alternative workflows or resources.

Second, the extension of the Model component must
support a variety of ontology data models, including RDF,
RDF-S and OWL. It uses the OntoAPI, based on Jena
Framework [17], that offers such support and a mechanism
to cache individuals, which speeds up the computation of
alternative workflows and resources.

Briefly, the OntoAPI provides a series of services that
facilitate access to ontology elements (classes, properties

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

40

and instances). It simplifies accessing ontologies stored in a
Jena repository, facilitates the development of objectoriented
applications that manipulate ontologies by mapping ontology
information into sets of objects and classes, and provides
efficient access to ontology information since it implements
an optimized object cache. However, the OntoAPI does not
define a complete set of operations, as does the Jena
framework. Instead, the OntoAPI provides an interface that
is simple to use and covers most of the methods commonly
used to access ontology information.

The ontology services module uses the matching
module to find alternative workflows and resources, and
to compute default values, using the workflow and the
application ontologies, as previously discussed.

The ontology services module offers five classes of
services: SCompensation, SConcretization, SException,
SFlexibilization, and SSubstitution. These services
represent the implementation core of the flexibilization
mechanisms proposed in this paper. They are accessible
only through the corresponding services in the execution
engines, which are in turn invoked by their supervisor. The
execution engines assume the role of client and the ontology
manager assumes the role of server in this interaction.

6.2 EXECUTION ENGINE

The execution engine is responsible for running
workflow instances. The workflow management system
may have any number of execution engines involved with
the execution of a single workflow, organized as follows.

Let W be a workflow definition and V be a sub
workflow of W. Let E be an execution engine controlling an
instance IW of W. If W allows, E may distribute V to another
execution engine F, which then creates an instance IV of V .
In this case, we say that E delegated V to F, that E coordinates
F and that F is directly subordinated to E. We also say that
IV is directly subordinated to IW. Furthermore, we define
the is subordinated to relationship between execution engines
by taking the transitive closure of the is directly subordinated
to relationship, and likewise for workflow instances.

The Supervisor is the core component of the
execution engine. It controls the execution of one or more
workflow instances, and may delegate a subworkflow to
another execution machine. When the subordinated
instance terminates, it is also responsible for sending the
result to the coordinator machine.

The Supervisor may invoke six different services:

SCoordination, invoked when the supervisor requires
communication with other execution engines. The
service is based on message passing.

SConcretization, invoked when the supervisor reaches
an abstract subworkflow definition A. The service

then tries to find an appropriate concretization for
A, among those registered in the ontology.

SFlexibilization, invoked when the supervisor detects a
timeout caused by an undefined parameter. The
service then tries to find an appropriate default
value, using the ontology.

SSubstitution, invoked when the supervisor detects a
timeout caused by an unavailable resource. The
service first tries to find an alternative resource,
among those registered in the ontology; if it fails,
it then tries to find an alternative workflow, again
among those registered in the ontology.

SCompensation, invoked when the supervisor detects an
execution conflict, possibly caused by the use of a
default value or the choice of an alternative
workflow or resource. The supervisor passes the
faulty workflow and its execution engine to the
service, which then tries to find an appropriate
compensating action, among those registered in
the ontology.

SException, invoked when the supervisor detects an
exception raised during workflow execution. The
service then tries to find an appropriate treatment
for the exception raised, among those registered in
the ontology.

Note that, except for the first, all these services require
access to the ontology. Therefore, they interact
with the corresponding services implemented by
the ontology manager. The supervisor directly
communicates only with the instance manager.

6.3 INSTANCE MANAGER

The instance manager keeps track of the workflow
instances running in the system. Each time the supervisor
of an execution engine creates a workflow instance I, it
sends a message to the instance manager containing the
identification of the related process, the identification and
the start time of I, and the identification of its execution
engine. The end time and the final state of I are marked
“unknown”, indicating that I has not yet finished. When I
finishes and the supervisor detected no conflict, it sends
a message to its coordinator signalling that I terminated
successfully. The coordinator then updates I’s entry at
the instance manager with the end time and final state.

When an execution engine is running a workflow
instance and needs a parameter value that comes from
another subworkflow, the supervisor sends a request for
the instance manager asking for the last instance of the
required process whose execution ended. Using the
identification of the execution engine and of the instance,
the supervisor obtains the necessary parameter value. If

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

41

the value is not yet available and a timeout occurs, the
supervisor must invoke the SFlexibilization service to
obtain a default value for the parameter, as explained before.

Note that the instance manager module
communicates only with execution engines to maintain
information about workflow instances.

7. SIMULATING THE EXECUTION OF A WORKFLOW

INSTANCE

This section simulates a partial execution of a sample
workflow, indicating how the flexibilization mechanisms
use the workflow ontology.

Consider a very simple workflow W capturing an
emergency plan designed to clean coastal areas affected by an
oil spill. Suppose that W is composed of 4 subworkflows: W1
determines the type of oil spilled, setting the value of a parameter
OilType; W2 determines the type of coastal area affected, setting
the value of another parameter CoastalAreaType; and W3 and
W4 define cleaning procedures for two different combinations
of oil type and coastal area type. Assume that they may all run
in parallel, but W3 and W4 have pre-conditions that depend
on the values of OilType and CoastalAreaType. Furthermore,
assume that W3 contains an abstract workflow, corresponding,
say, to node CB of the ontology shown in Figure 1.

Suppose that an execution engine E is running an
instance IW of W.

As a first example, suppose that E is running W3
and that E reaches CB. Then, E invokes the SConcretization
service, which in turn sends a message to the corresponding
service of the ontology services module. At the ontology
services module, the SConcretization service calls the
matching module to find the best match between the abstract
workflow CB and all concrete workflows related to it by the
property is-implemented-by.

Suppose that the best matches are L = (VC,CL). This
list is returned to the SConcretization service of the execution
engine E, which then verifies the workflows in L that can
indeed be run, i.e., whose pre-conditions are all true and
whose resources are all available, as illustrated in Figure 3.

Suppose that VC is selected. Then, E continues
the execution of W by running VC.

As a second example, suppose that E stops
executing becauseW1 is not responding with the
appropriate oil type.

Assume that a timeout associated with the pre-
conditions of W3 or W4 (or both) occurs. The supervisor
of the execution engine E then calls the SFlexibilization
service, which sends a message to the corresponding

service of ontology services module. At the ontology
services module, the SFlexibilization service selects a
default value do for the missing oil type, using the
workflow ontology. The default value do is returned to
the SFlexibilization service of the execution engine E.
The supervisor of E then tests the pre-conditions of W3
and W4 with this default value.

Suppose that the pre-condition of W4 is true. Then,
E continues the execution of W by running W4.

When IW terminates, the supervisor runs
consistency rules to verify if the presupposed value, do,
was confirmed. If a conflict is detected, the SCompensation
service is invoked and a compensation workflow for W4
is selected from the workflow ontology, in a process very
similar to those already described.

8. CONCLUSION

We described in this paper two mechanisms to
flexibilize the execution of workflow instances: a mechanism
to handle presuppositions that allows workflow execution
to proceed in the presence of incomplete information, and a
mechanism for choosing alternative subworkflows or
resources, in the presence of negative information or when
an abstract definition is reached. These two mechanisms
use additional semantic information about the workflow
definitions and resources involved.

We also outlined an implementation architecture
for the workflow management system, pointing out how
ontologies are handled. The focus was on the matching
module, which is the component responsible for finding
alternatives for workflows and resources. The matching
module and the OntoAPI are fully operational and a
complete implementation of the workflow management
module is planned for the end of 2005.

The ontology approach played a central role in our
overall strategy in two interrelated aspects. First, it
facilitated modelling the application as a collection of
workflows and their resources - the application ontology
- much in the same way experts define complex tasks in
real life - as a structured collection of separate, smaller
procedures. Second, it permitted constructing the
workflow management system as a combination of a
standard workflow execution engine, a deductive
component (the mechanism to handle presuppositions)
and a matching component (the mechanism for choosing
alternatives), that use the application ontology again much
in the same way final users combine the procedures, that
experts defined, to achieve their goals, according to the
current situation.

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

42

Figure 3: The process realized by the concretization service over an application ontology.

To achieve flexibility, we had to pay the price of the
extra overhead of the deductive and the matching
components. However, for the applications we had in mind,
such as disaster response, the added flexibility and the gains
in design simplicity far compensate the additional runtime
overhead.

Finally, we refer the reader to [22] for a detailed
description of the concepts informally introduced here,
reformulated as OWL-S extensions.

ACKNOWLEDGMENT
This work was partially supported by CNPq, under

grants 140600/01-9 and 55.2040/02-9, and also by CAPES/
PROSUP. We gratefully acknowledge the fruitful
discussions with the InfoPAE development team at
TeCGraf/PUC-Rio.

REFERENCES

[1] Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi,
and C. Mohan. Functionality and Limitations of
Current Workflow Management Systems. IEEE
Expert, 2(5), 1997.

[2] Gustavo Alonso and Hans-Joerg Schek. Research
Issues in Large Workflow Management Systems.

Technical Report 1996PA-as96-nsfws, Institute for
Information Systems, Switzerland, April 1996.

[3] Valeria De Antonellis, Michele Melchiori, and Pierluigi
Plebani. An Approach to Web Service Compatibility
in Cooperative Processes. In 2003 Symposium on
Applications and the Internet Workshops (SAINT’03
Workshops), pages 95- 100, Orlando, Florida, January
2003. IEEE.

[4] Ilia Bider and Maxim Khomyakov. Is it Possible to Make
Workflow Management Systems Flexible? Dynamical
Systems Approach to Business Processes. In
Proceedings of the 6th International Workshop on
Groupware (CRIWG’ 2000), pages 138-141, Madiera,
Portugal, October 2000.

[5] G. Canals, C. Godart, F. Charoy, P. Molli, and H.
Skaf. COO Approach to Support Cooperation in
Software Developments. In IEEE Proceedings in
Software Engineering, volume 145, pages 79-84,
April/June 1998.

[6] Marco A. Casanova, Tatiana A. S. Coelho, Marcelo Tílio
M. de Carvalho, Eduardo T. L. Corseuil, Hérica
Nobrega, Fábio M. Dias, and Carlos H. Levy. The
Design of XPAE - An Emergency Plan Definition
Language. In IV Simpósio Brasileiro de
Geoinformática (GeoInfo’ 2002), Caxambu, Minas
Gerais, Dezembro 2002.

On the Design of Ontology-driven Workflow
Flexibilization Mechanisms

Tatiana A. S. C. Vieira, Marco A. Casanova
and Luis G. Ferrão

43

[7] Marco A. Casanova, Marcelo Tílio M. de Carvalho,
and Juliana Freire. The Architecture of an Emergency
Plan Deployment System. In III Simpósio Brasileiro
de Geoinformática (GeoInfo’ 2001), Rio de Janeiro,
RJ, 2001.

[8] Fabio Casati, Stefano Ceri, Barbara Pernici, and
Giuseppe Pozzi. Workflow Evolution. In Bernhard
Thalheim, editor, International Conference on
Conceptual Modeling / the Entity Relationship
Approach (15th ER’ 96), pages 438-455, Cottbus,
Germany, October 1996. Lecture Notes in Computer
Science.

[9] Wesley W. Chu, Q. Chen, and M. Merzbacher. Studies
in Logic and Computation 3: Nonstandard Queries
and Nonstandard Answers, volume 3, chapter
CoBase: a Cooperative Database System, pages 41-
72. Oxford University Press, New York, 1994. Edited
by R. Demolombe and T. Imielinski.

[10] Wesley W. Chu and Wenlei Mao. CoSent: a
Cooperative Sentinel for Intelligent Information
Systems, March 2000. Computer Science Department
- University of California, LA.

[11] David Garlan, Robert T. Monroe, and David Wile.
ACME: An Architecture Description Interchange
Language. In Proceedings of the 1997 Conference of
the Centre for Advanced Studies on Collaborative
Research (CASCON’97), pages 169–183, Toronto,
Ontario, Canada, November 1997. IBM Press.

[12] Dimitrios Georgakopoulos, Mark F. Hornick, and Amit
P. Sheth. An Overview of Workflow Management: from
Process Modeling to Workflow Automation
Infrastructure. Distributed and Parallel Databases,
3(2):119-153, April 1995.

[13] Daniela Grigori, François Charoy, and Claude Gobart.
Flexible Data Management and Execution to
Support Cooperative Workflow: the COO
Approach. In Proceedings of the Third
International Symposium on Cooperative
Database Systems for Advanced Applications
(CODAS 2001), pages 124-131, April 2001.

[14] J. J. Halliday, S. K. Shrivastava, and S. M. Wheater.
Flexible Workflow Management in the OPENflow
System. In Proceedings of the Fifth IEEE International
Enterprise Distributed Object Computing Conference
(EDOC ’01), pages 82–92. IEEE, September 2001.

[15] David Hollingsworth. TheWorkflow Reference Model.
The Workflow Management Coalition Specification
TC00-1003, Workflow Management Coalition,
Hampshire, UK, January 1995.

[16] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley,
Said Tabet, Benjamin Grosof, and Mike Dean. SWRL:
A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission, May 2004. http:/

/www.w3.org/Submission/2004/ SUBM-SWRL-
20040521/Overview.html.

[17] HP. Jena 2 - A Semantic Web Framework . http://
www.hpl.hp.com/semweb/jena.htm, 2004.

[18] G. Joeris. Defining Flexible Workflow Execution
Behaviors. In Enterprise-wide and Cross-enterprise
Workflow Management - Concepts, Systems,
Applications, GI Workshop Proceedings - Informatik
’99, pages 49-55, 1999. Ulmer Informatik Berichte Nr.
99-07.

[19] Peter Mangan and Shazia Sadiq. On Building Workflow
Models for Flexible Processes. In ACM International
Conference Proceeding Series - Proceedings of the
Thirteenth Australasian Conference on Database
Technologies (ADC’2002), volume 5, pages 103-109,
Melbourne, Australia, January/February 2002.
Australian Computer Society, Inc. Darlinghurst.

[20] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila,
Drew McDermott, Sheila McIlraith, Srini Narayanan,
Massimo Paolucci, Bijan Parsia, Terry Payne, Evren Sirin,
Naveen Srinivasan, and Katia Sycara. OWL-S: Semantic
Markup for Web Services. W3C Member Submission,
November 2004. http://www.w3.org/Submission/2004/
SUBM-OWL-S20041122/Overview.html.

[21] Gary J. Nutt. The Evolution Toward FlexibleWorkflow
Systems. In Distributed Systems Engineering, volume
3, pages 276-294, December 1996.

[22] Tatiana A. S. C. Vieira. Execução Flexível de Workflows.
PhD thesis, Department of Informatics - Pontifical
Catholic University of Rio de Janeiro, Brazil, Rio de
Janeiro, RJ - Brazil, August 2005. In Portuguese.

[23] W3C. OWL Web Ontology Language - Overview. W3C
Recommendation, February 2004. http://www.w3. org/
TR/owl-features/.

[24] MathiasWeske. Flexible Modeling and Execution of
Work-flow Activities. In Proceedings of the Thirty-
First Hawaii International Conference on System
Sciences, volume 7, pages 713-722, January 1998.

	journal NOVEMBRO final parte 1.pdf
	journal NOVEMBRO paper 4 versao final.pdf
	journal NOVEMBRO final parte 2.pdf

