
ISSN 0104-6500Journal of the Brazilian Computer Society, 2009; 15(1):35-48.

*e-mail: ja_sapienza@yahoo.com.br

A progressive vector map browser for the web

José Augusto Sapienza Ramos1*, Claudio Esperança2, Esteban Walter Gonzales Clua1

1Computer Science Institute, Federal Fluminense University – UFF, Niterói, RJ, Brazil

2Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering - COPPE,
Federal University of Rio de Janeiro – UFRJ, Brazil

A previous version of this paper appeared at GEOINFO 2008
(X Brazilian Symposium on Geoinformatics)

Received: March 10, 2009; Accepted: June 16, 2009

Abstract: With the increasing popularity of web-based map browsers, remotely obtaining a high quality depiction of
cartographic information has become commonplace. Most web mapping systems, however, rely on high-capacity servers
transmitting pre-rendered tiled maps in raster format. That approach is capable of producing good quality renderings on the
client side while using limited bandwidth and exploiting the browser’s image cache. These goals are harder to achieve for
maps in vector format. In this work, we present an alternative client-server architecture capable of progressively transmitting
vector maps in levels-of-detail (LOD) by using techniques such as polygonal line simplification, spatial data structures and,
most importantly, a customized memory management algorithm. A multiplatform implementation of this system is described,
where the client application is written entirely in JavaScript and processed within the web browser, avoiding the need of
external applications or plug-ins. Results of experiments aimed at gauging both the performance and the display quality
obtained with the system are presented and explained. Extensions to the system are also discussed, including issues such as
level-of-detail versus visual importance tradeoffs and the handling of closed polygonal lines.

Keywords: vector maps, map browsers, progressively transmitting, level of detail, client-server architecture.

1. Introduction and Related Work
The increasing popularity of web-based systems and serv-

ices for delivering maps can be regarded as one of the most
important developments in the advancement of cartography.
Several aspects of these systems have merited investigation in
recent years, such as the improving reliability of the Internet
and web server infrastructure, ascertaining the quality and
fidelity of the served data, coping with privacy and secu-
rity issues, maximizing the use of screen space, and making
rational usage of the available bandwidth33.

One important design decision when building a web
mapping application is the choice between raster and vector
data structures. Authors such as Burrough and McDonnell16
and Casanova et al.21 compare both in the context of
Geographical Information Systems. In a nutshell, raster data
structures are simple to process, are supported by inexpen-
sive technologies and may be stored in a wide variety of
formats. On the other hand, vector data structures are more
compact, support accurate representation of geometric data
at all scales, and allow an explicit topology description. Thus,
vector data structures offer distinct advantages for serving
maps on the web, as long as it is possible to circumvent its
heavier use of memory and processing resources.

Some of the most popular web mapping systems, such
as Google Maps9 or Yahoo Maps36, are mostly raster-based,
i.e., they serve pre-rendered digital images. Maps are first
rendered in several resolutions in the server, cut into blocks
(called tiles), and then sent to clients based on the desired

area and zoom level. The key reasons for using rasters are:
1) all work spent in authoring a good quality representation
can be done on the server, while the client merely composes a
big picture from several small image tiles; 2) the transmission
of raster data of fixed size uses limited bandwidth; 3) web
browsers already manage image caches and, thus, little or
no memory management is needed on the client side; and
4) until recently, most popular browsers did not support
vector data natively, requiring the installation of additional
applications or plug-ins.

Several web mapping systems have also been proposed
which use vector data. Perhaps the most widely used system
is the MapServer open source project29. The World Wide
Web Consortium (W3C) recently approved some stand-
ards for supporting vector data on the Web, namely, those
related with the Scalable Vector Graphics (SVG) format for
representing vector data using eXtensible Markup Language
(XML) and those pertaining to the Canvas element in HTML
5.0 specification. The latter is of special importance for
modern web applications, since Canvas elements can now
be used to display vector drawings using JavaScript or other
scripting languages provided by the browser21, 22, 34, 35. In this
same context, the Open Geospatial Consortium (OGC) also
approved formats and services of interest: 1) the Geography
Markup Language (GML), a XML-based standard for trans-
mitting vector features, and 2) the Web Feature Service (WFS),
that provides an interface allowing requests for geographical

Journal of the Brazilian Computer Society36 Ramos JAS, Esperança C, Clua EWG

features in vector data structure to be processed across the
web using platform-independent calls18, 22.

It should be mentioned that client-side web programming
has been on the rise in recent years. In particular, the so-called
JavaScript engines of popular browsers have become more
efficient and capable. This follows the trend of web service
providers striving to offer more flexibility in their client-side
applications.

In summary, advances in web technology have made
possible a new class of web mapping applications, where
features are represented, transmitted and displayed in vector
rather than raster format, without resorting to external
plug-ins or applications. For instance, several of such appli-
cations based on SVG can be reached through the carto:net
portal5.

The technology for serving maps in vector form has been
intensely researched (see Kraak and Brown4 for a survey).
An adequate solution for the problem clearly depends on the
usage of techniques for hierarchically organizing vector data
according to its visual importance, obtaining what is usually
known as level-of-detail (LOD) data structures6. The proper
nesting of the detail data needs to conform to topological and
geometric criteria, in order to ensure that key elements such
as road crossings or riverbed centerlines do not drift between
LODs3.

At the same time, some sort of spatial indexing is usually
required for quickly retrieving data overlapping the region
of interest10. Several authors have also investigated suitable
techniques for memory caching of spatial data with and
without prefetching31, 32, as well as methods appropriate for
handling multi-resolution vector data25.

Whereas many authors have delved in the the geomet-
rical and topological aspects of organizing vector map data
in order to support its progressive transmission over the web,
a less studied aspect of web cartography is the relationship
between the level of detail of the data being served, the use
of bandwidth and client memory management. In particular,
many systems assume that all clients have the same (small)
amount of memory at their disposal and, as a consequence,
statically link the level-of-detail of the served map to the size
of the area being viewed, or, more frequently, simply ignore
the problem of the memory organization of the client3.

This paper is an extension of Ramos et al.12, 22. Below,
we present data structures and algorithms which make it
possible to remotely deliver and present high-quality vector
maps in a progressive manner, making efficient use of the
available bandwidth, and adapted to the memory profile
of any given client without encumbering the communica-
tion protocol with information about client memory state.
In particular, although the server receives from the client
only information pertaining to the area being viewed, i.e.,
the client view window, it is able to guess and progressively
transmit only needed data. With respect to earlier reports of
this work, the following points deserve mentioning: 1) The
client is implemented in JavaScript and is processed entirely
within the web browser rather than within a separate client
application; 2) the client-server architecture is described in

significantly more detail; 3) a larger set of experiments are
presented and analyzed; and 4) finally, we discuss exten-
sions, such as working with closed polygonal lines and
working with tradeoffs between visual importance and
levels of detail.

2. Overall System Architecture

According to McMaster and Shea24, around 80% of the
total data in vector geographical databases are polygonal
lines. This statement guides the scope of the proposed archi-
tecture: 1) only vector maps with open or closed polygonal
lines are considered, and 2) the use of network bandwidth
is optimized by restricting the transmission of line data with
just enough detail for a faithful representation.

Thus, we propose a client-server system for serving map
data containing a program (the server) capable of directly
accessing all polygonal lines of a given map – from a data-
base, for instance – and progressively sending it to interactive
visualization applications (the clients). Clients have limited
memory capacity and thus store only enough line data so as
to present a good depiction of the map within a visualization
window. Each time a user changes this window, the contents
of the client memory must be updated by requesting relevant
data from the server and discarding unneeded information.

The system preprocesses all polygonal lines comprising
the map into two hierarchical data structures, which can be
quickly traversed in order to obtain the needed informa-
tion. The two structures used are: 1) a spatial index, which is
needed to prune out polygonal lines which do not contribute
to the current viewing window, and 2) a structure for organ-
izing the vertices of each polygonal line in order of visual
importance – the so-called level-of-detail (LOD) data struc-
ture. It should also be mentioned that the present architecture
does not handle polygonal line importance classification, i.e.,
it is considered that all polygonal lines intersecting a given
window need to be drawn at some level of detail. Although
map visualization applications typically provide some way
of establishing which lines can be left out when rendering the
map at certain zoom levels, we do not concern ourselves with
this feature in this paper.

Both server and client process the viewing window
change in a similar manner. The client only needs to inform
the server of the new viewing window in order to receive
the needed data not yet stored in its memory. This approach
requires that the server is kept aware of the memory state of
each client: if there are n lines in a map, the server maintains
for each client an array of n integers which maps each line
to the level of detail in which it is represented in the client’s
memory. Whenever new vertices need to be sent from server
to client, this transmission is broken into blocks of limited
size. In other words, the proposed architecture supports
progressive transmission of detail information so that the
visual quality of the client images improve over time, at a
rate that depends solely on the available bandwidth.

37A progressive vector map browser for the web2009; 15(2)

3. Server-side Preprocessing

For each map being served, their polygonal lines must be
submitted to a preprocessing step in order to 1) build a hier-
archical level-of-detail data structure for their vertices, and
2) build a spatial index used to support window queries.

3.1. Level-of-detail data structure

As a rule, any scheme for organizing vector data in levels
of detail should employ some method for the simplification
of polygonal lines24. Such methods have been researched
actively since the 60s (see Davis6 for a comprehensive compi-
lation) with the purpose of obtaining line representations
suitable for being used at varying viewing scales. Among
these, we have chosen to employ the well-known Douglas-
Peucker (DP) line smoothing algorithm19. Although it is not a
particularly fast algorithm, running in O(nlog n) at best and
O(n2) in the worst case27, it is ranked as the best when it comes
to preserving the shape of the original line17. Furthermore, it
produces a hierarchical representation which can be used for
level-of-detail processing.

The DP algorithm recursively subdivides a polygonal
line by selecting the vertex at greatest distance from the line
segment defined by the first and last point. Figure 1 illustrates
this process for an example line. Observe that the subdivision
process can be registered in a binary tree, where each node N
corresponds to a subdivision vertex and the corresponding
distance dN, whereas its left and right sons correspond to
sub-trees for the left and right sub-chains of the original
polygonal line. Thus, an approximation within tolerance ε
for the polygonal line can be extracted by visiting the tree
in pre-order and pruning out branches rooted at nodes with
distances dN < ε.

In this work, we are interested in obtaining increas-
ingly finer representations for each polygonal line. This can
easily be implemented by quantizing tolerance values into
an integer range [1, MaxLOD]. A coarse representation will
thus be assigned to level-of-detail (LOD) 1 by visiting the tree
in pre-order for tolerance ε1. Vertices in this representation
are then marked with LOD = 1. The process is repeated for

increasingly smaller tolerances εi for i = 2…MaxLOD, and in
each stage i, non-marked vertices are labeled with the corre-
sponding LOD = i value. An important consideration in this
process is that, ideally, the number of vertices marked for
each LOD value should be approximately constant, so that
transmitting the next finer representation of a given line (see
constant δ in Section 4) can be done in constant time. In our
implementation, ε1 is chosen as the distance in world coordi-
nates corresponding to the width of a pixel for a fully zoomed
out projection of the map, while successively finer tolerances
were estimated by setting εi+1 = 0.8εi.

3.2. Spatial indexing

In theory, the worst case scenario for vector map browsing
consists of setting the viewing window so that it encloses all
polygonal lines. In practice, however, users frequently are
interested in investigating a small portion of the whole map.
It stands to reason, therefore, to use some spatial indexing
selecting polygonal lines intersecting any given query
window.

Although the present work does not focus on the issue
of efficient spatial indexing, we surveyed several works in
the field (see Samet23 for a comprehensive compilation) and
chose the relatively simple Expanded MX-CIF Quadtree26
data structure for speeding up window queries.

This is a data structure for rectangles which, in the context
of this work, correspond to each polygonal line minimum
enclosing bounding box. Each rectangle is represented in the
data structure by a collection of enclosing quadtree blocks.
In our implementation, this collection contains a maximum
of four blocks, although other configurations might also be
possible. The four blocks are obtained by determining the
minimum enclosing quadtree block, say B, for each rectangle,
say R, and then splitting B once to obtain quadtree blocks Bi
(i ∈{NW, NE, SW, SE}) such that Ri is the portion of R, if any,
that is contained in Bi. Next, for each Bi we find the minimum
enclosing quadtree block, say Di, that contains Ri. Now, each
rectangle is represented by the set of blocks consisting of Di
(refer to Figure 2 for an example). Window queries can be
easily computed by means of a recursive descent algorithm

1 1 1

2

3
4

5
6 7

8

9
9

11

12

13

14
15 15 15

16

17

18

19

10
2122

23
24

25 26
27

28

29
29 29

20

a

Tolerance Tolerance

b c

Figure 1. Douglas-Peucker line simplification (adapted from Casanova et al.21). a) A polygonal line with 29 vertices; b) vertex 15 is furthest
from line segment 1–29, c) polygonal lines 1–15 and 15–29 are processed recursively.

Journal of the Brazilian Computer Society38 Ramos JAS, Esperança C, Clua EWG

on the tree, i.e., start with the root and recursively visit sons
if their quadrants intersect the given window.

The simple example helps understanding the structure.
Consider, for instance, rectangle G as shown in Figure 2a.
First, the smallest quadrant R enclosing G is found – the
lower right quadrant, in this case, corresponding to the right-
most branch of the root node in Figure 2b. In the MX-CIF
variant used in this work, one additional subdivision of R is
required, where portions of G intersecting each of the four
subquadrants of R are generated, namely, GNW, GNE, GSW and
GSE. Since GNW and GNE are empty, references to G are stored
only in RSW and RSE, as can be observed in Figure 2b.

The key advantadge of the MX-CIF structure over other
similar structures for indexing rectangles is that, like the
R-tree and its variants, and unlike other quadtree variants
such as the PMR-quadtree, it stores references to the indexed
object in a constant number of tree nodes, thus guaran-
teeing that the structure has O(n) size, where n is the number
of rectangles. On the other hand, unlike the R-tree, it is a
genuine space partitioninig data structure, meaning that each
point of the space is represented by a single leaf node23. As
with other structures for indexing spatial data with extent, its
asymptotic time complexity with respect to window queries
is dependent on the spatial distribution of the indexed data.
Clearly, no window query will run slower than O(n), since
that corresponds to the size of the whole data structure. In
practice, however, at least for small windows, its expected
running time is O(flogn), where f is the size of the answer.

4. Memory Management

In the context of a client-server system, the issue of
memory management should be governed by the following
considerations:

Memory capacity: It is assumed that the client memory
is bounded by some given constant. At any time, the client
has its memory partially occupied with a subset of the
map’s polygonal lines at some level-of-detail. When the user
changes the viewing window, i.e., performs a zooming or
panning operation, the memory contents should be altered
if it does not contain a “good” representation of the map as
revealed by the newly defined window.

Memory control protocol: When requesting new data
from the server, some agreement must be reached on what
data is needed. In other words, the server must either be told,
or must already know what data to transmit to the client
in response to a user action. Thus, there are two general
approaches for the control protocol: 1) the client requests the
needed data items, meaning that the server does not know
the client memory’s contents, or 2) the server is aware of the
memory management operations performed by the client
by simulating the same operations as stipulated by a fixed
algorithm. Clearly, the former approach uses more band-
width than the latter. On the other hand, CPU usage could
be greatly increased if the server reproduces operations of all
clients. In this work, we adopt the second strategy, where the
increase in time complexity is alleviated by employing a rela-
tively simple memory management rationale which can be
executed in tandem by both server and client.

In order to describe our approach, let us first define a few
terms:

•	 M is the maximum client memory size;

•	 m is the amount of data that can be transmitted from
the server to the client in one transaction, i.e., in time
for the client displaying the next frame;

•	 W is the current viewing window;

A

E

B

D

C

F

G

{A}

{B} {D} {G}

{G}

{E}

{F}

{B, C} {C, D}

{A, E}

a b

Figure 2. Example Expanded MX-CIF Quadtree (b) and the block decomposition induced by it for the rectangles in (a) (adapted from
Samet23).

39A progressive vector map browser for the web2009; 15(2)

•	 S = {Li} is the current resident set, i.e., the set of
polygonal lines Li that intercept the current viewing
window W;

•	 LOD(L) is an integer in [0,MAXLOD(L)] representing
the level-of-detail of polygonal line L. It is assumed
that if L ∉ S, then LOD(L) = 0;

•	 BestLOD(L,W) be an estimate for the “best” level-of-
detail for exhibiting a polygonal line L in viewing
window W. In our implementation, this function
returns 0 if L is not visible within W. For instance, an
estimate is computed using the length of the shortest
edge of L at a given LOD as a measuring stick. In other
words, suppose that the current width of a pixel has
size d in world space, then the “best” LOD corresponds
to the biggest (i.e., finest) LOD for which the shortest
edge is still bigger than d. The rationale is that using a
finer LOD would not improve the display quality by
much since it would probably lead to drawing details
smaller than the pixel size; and

 •	 δ is an estimative of how much memory is associated
with increasing or decreasing a level-of-detail step
for any given polygonal line L. In other words, on
average, a polygonal line L should occupy approxi-
mately δ × LOD(L) memory.

Adjusting the items resident in memory requires two
classes of operations: operations that increase and operations
that decrease the use of memory. Operations in the first class
makes some data to be transferred from the server to the
client. We distinguish two of these:

1.	 IncreaseLOD(L) increases the level-of-detail for polyg-
onal line L. This means that if LOD(L) = k > 0, then
after its execution LOD(L) = k + 1; and

2.	 Load(L) brings polygonal line L from the server in its
coarsest form. As a precondition, LOD(L) and after its
execution, LOD(L) = 1.

The second class corresponds to operations which cause
data to be thrown away from client memory. Observe that
these operations do not cause any network traffic between
server and client. We also define two operations of this class:

1.	 DecreaseLOD(L) decreases the level-of-detail for
polygonal line L; and

2.	 Unload(L) unloads polygonal line L from memory
altogether.

Thus, any memory management algorithm will consist
of sequentially performing these operations in some order in
a timely manner and without infringing memory limits M
and m. Our algorithm uses two heaps, defined as I and D,
which hold operations of each of the two classes described
above. A crucial consideration is how to define the ordering
between operations in each heap. Clearly, operations of type
Load should have a higher priority than all operations of
type IncreaseLOD. Similarly, operations of type DecreaseLOD
should have higher priority than operations of type Unload.
In our implementation, the ordering between operations
IncreaseLOD for two lines L1 and L2 depend on how distant the
LOD’s of each line are from their estimated “best”. In other

words, we use |BestLOD(L) – LOD(L)| as a priority measure.
The priority between operations DecreaseLOD is defined
in a similar way. Algorithm 1, called as DefineOperations,
describes how the two heaps are created.

Once the operation heaps are known, client and server
process them in parallel. Operations are executed constrained
to the memory and bandwidth restrictions, as discussed
above. Algorithm 2, called as ExecuteOperations, summa-
rizes the rationale for operation execution. It is important to
realize that executing an operation has different meanings
for client and server. For instance, executing an IncreaseLOD
operation in the client entails receiving line detail from the
server and updating the geometry for that line, while for
the server it means merely sending the additional vertices.

Algorithm 1. DefineOperations.

Template de Figuras - JBCS
* Fontes Palatino (Roman) Tamanho 8.
* "Cenário" - linhas com 0.5 de Stroke.
* Linhas pertencente a "Dados gráficos" com 0.6 de Stroke.
* Preencimento de barras pb devem ter 10% de preto quando houver texto e 50% quando não.
* Dados na tabela ou figura devem estar no mesmo idioma do artigo.
* Legendas devem estar dentro de caixas de texto com 2 mm de distância nas extremidades.
* Texto da figura ou gráfico deve estar em "Sentence case".
* Setas devem ter 0.6 ponto de Stroke.
* Letras que representam figuras ex: ©, devem estar no canto superior direito com 2 mm de
distância das extremidades da figura.
* Retirar eixos sem valores de gráficos.
* Retirar efeito 3D dos gráficos, e deixar somente em gráfico de pizza.
* Padrão de cor Grayscale.
OBS: DELETAR ESTA CAIXA APÓS O TÉRMINO DAS FIGURAS.

begin

Input: Wnew: the new window set by the user
Output: I and D: heaps containing operations wich cause
memory increase/decrease

then

for L S' S do

for i LOD(L) to

for i LOD(L, Wnew) to

if L S then

if L S’ then

if LOD(L) < BestLOD(L, Wnew) then

else if LOD(L) > BestLOD(L, Wnew)

BestLOD(L, Wnew) do

LOD(L) do

end

I Ø
D Ø
S’ set of lines wich intersect Wnew

Enqueue [Load, L] in I

Enqueue [IncreaseLOD, L] in I

Enqueue [DecreaseLOD, L] in D

Enqueue [Unload, L] in D

Algorithm 2. ExecuteOperations.

Input: I and D: heaps containing operations memory
management operations

while I Ø and t < m do
if |S|+ > M then

t 0

[op, L] Dequeue from D

[op, L] Dequeue from I

begin

end

execute op(L)

execute op(L)

else

t t +

Journal of the Brazilian Computer Society40 Ramos JAS, Esperança C, Clua EWG

Similarly, while DecreaseLOD entails updating the polygonal
line data structure for the client, the server needs only to take
note that the corresponding memory was disposed in the
client.

A limitation of Algorithm 2 is related to the fact that δ is
merely an estimate of the amount of memory associated with
decreasing or increasing the LOD of any given line. This may
lead to |S|, the amount of memory used for the polygonal
data, eventually exceeding M if the newly received LOD data
is bigger that δ. This, in general, is not a problem since the
overflow should be small on average. In any case, the restric-
tion can easily be lifted by assigning to δ a sufficiently large
value.

Note that the scheme described above is easily adapted to
support progressive transmission. Suppose that Algorithm 2
terminates with a non-empty heap I. Then, if the viewing
window for the next frame is unchanged, there is no need to
run Algorithm 1 again, and the next execution of Algorithm 2
will further process heaps I and D, thus providing an increas-
ingly finer rendering of the map, as illustrated in Figure 6.

4.1. A step-by-step example

These algorithms may be better understood by following
example. Let

•	 DS = [L1, L2, L3, L4, L5] be a list containing the polygonal
lines of a given map;

•	 S = [L1, L2, L4, L5] be the subset of lines currently resi-
dent in a client’s memory;

•	 W0 be the current viewing window;

•	 A=[3,2,0,2,1] be a list with the current LODs for DS in
the client, i.e., [LOD(L,W0), ∀L ∈ DS]; and

•	 LOD(L) ≥ BestLOD(L,W0), ∀L ∈ S, meaning that heap I
is currently empty.

At this point, assume that a navigation operation issued
by the user defines a new viewing window W1, making the
client inform this alteration to the server and causing both to
execute Algorithm 1. Suppose further that the new situation
is such that:

•	 S’ = [L1, L2, L3] is the set of lines which intersect W1;
and

•	 the target LODs for DS in the client are given by
[BestLOD(L,W1); ∀L ∈ S] = [4,4,4,0,0].

As a result, the following heaps are built (leftmost opera-
tions have higher priority):

•	 I = [Load L3, IncreaseLOD L3, IncreaseLOD L2, IncreaseLOD
L3, IncreaseLOD L1, IncreaseLOD L2, IncreaseLOD L3];
and

•	 D = [DecreaseLOD L4, Unload L4, Unload L5].
The progressive transmission of the changes is then initi-

ated by the server executing Algorithm 2, forming a block
and sending it over to the client. The client, in turn, having
also executed Algorithm 1 for the same input, will receive
the block from the server, thus effecting the changes to its
memory and generating a new display of the window. This

cycle is repeated until both parties have an updated list A. It
should be mentioned that this repetition may be interrupted
if, say, the user navigates to another viewing window W2.

5. Implementation
A prototype implementation of the framework described

in this paper was built and several experiments conducted in
order to validate our proposal.

The development was supported by the following tools:
user interfaces were built with version 4.4.1 of the multi-plat-
form Qt28 library and the Shapelib library v. 1.2 was used for
reading Shapefiles15.

The preprocessor was written in C++ and compiled using
version 4.1 of the gcc compiler7. The server program which
implements the algorithms described above was written in
Python (version 2.5.3)20. The client program is in the form
of JavaScript code so that it may be run in web browsers
using no additional software. The client was developed in
the Processing Language1 and ported to JavaScript using the
tools described in Resig13. Communication between clients
and server use the XML-RPC specification, a protocol for
Remote Procedural Call (RPC) coded in XML30. It is impor-
tant to remark that all of these tools are Open Source and,
thus, freely available.

The preprocessing described in Section 3, was carried out
with a dedicated program which: 1) reads polygonal map
data in Shapefile format, 2) executes the Douglas-Peucker
algorithm and computes the level-of-detail hierarchy for each
polygonal line, 3) creates an extended MX-CIF Quadtree for
supporting window queries, and 4) saves the relevant infor-
mation into a structured XML (eXtensible Markup Language)
file which is used as input for the server program.

The system deployment is straightforward, requiring
only that a server process is started in some computer and
one or more client processes are started in some machine
connected to the server by a TCP/IP network. Starting a
client consists of pointing the web browser to the html page
containing the client code, which can reside in any machine
connected to the network. When initialized, the server
will load the XML generated in the preprocessing stage.
When a client connects to the server, it informs its cache
memory size and transmission block size, i.e., constants M
and m discussed in Section 4. The server then sends a reply
message containing the coarsest possible map representa-
tion and a compressed representation of the MX-CIF data
structure, i.e., a relatively small data structure. After this
initialization stage, the communication protocol proceeds
as discribed in the above sections.

An important issue when implementing web clients is
its compatibility with popular browsers. Despite the efforts
of the W3C in laying down comprehensive standards,
browser vendors frequently lag in their implementation or
simply ignore them. Among the facilities required by the
map browsing client, the Canvas element seems to pose
most compatibility problems. The Canvas element is part
of the W3C’s HTML 5.0 specification published in January,

41A progressive vector map browser for the web2009; 15(2)

200834. According to compatibility tests performed with
our prototype, the client worked perfectly with Mozilla
Firefox versions 2.0 and 3.0 and Google Chrome version 1.0.
Unfortunately, Microsoft’s Internet Explorer versions 7.0 and
8.0 do not support the Canvas element, although the latter
may be extended with this feature by means of an extension
called ExplorerCanvas provided by Google8. Other popular
browsers such as Opera 9.0 and Apple’s Safari 2.0 reportedly
support the Canvas element, but have not been tested.

6. Results
Two sets of experiments were conducted in order to assess

important aspects of the system described herein. In the first
set, the system was monitored in order to obtain information
about the use of bandwidth, the use of cache memory and the
display quality exhibited at the client during a map browsing
session consisting of several pan and zoom operations. The
second set of experiments uses two versions of the same data
set – one with roughly 10 times more information than the
other – in order to contrast the system behavior when serving
small and large data sets.

For all maps used in the experiments, polygons are
described as open polygonal lines as defined by the
Polygon-arc Topology21, 2. This data structure removes dupli-
cate paths which separate adjoining polygons leading to a
more compact representation. The topology of the polygonal
subdivision must however be represented separately. It
should be mentioned, however, that our prototype does not
render close polygons, but only polygonal lines.

6.1. First set of experiments

The goal of the first set of experiments was to assess
system performance indicators such as the use of client cache
memory, the use of network bandwidth and overall display
quality as perceived by the client.

Test data consists of a map of year 2005 with the state
limits of Brazil in 1:1.000.000 scale produced by the Brazilian
Geography and Statistics Institute (IBGE)11. This map contains
349 polygonal lines, each one with 173 vertices on average.
An overview is shown in Figure 6a.

The preprocessing stage produced an Extended MX CIF
Quadtree of height 6 and containing 172 leaf nodes, while
polygonal lines were split into 25 LOD steps.

The tests used two distinct parameter sets for cache
memory size (M) and block size (m), as shown in Table 2.
The first parameter set uses relatively small values for both
M and m in order to observe more closely the behavior of the
progressive transmission for this small data set. The larger
values in the second parameter set simulate an environment
with more memory and network resources thus permitting
the adaptability of the system to be observed.

Each test simulates a map browsing session by issuing
a fixed sequence of zooming and panning operations. These
are shown in Table 1, where ZF, Z+, Z- and P stand for zoom
full, zoom in, zoom out and pan, respectively.

The first experiment aimed at measuring the use of client
cache memory per frame during the browsing session for
each parameter set. In this context, we call “frame” the trans-
mission, processing and display of one data block. The chart
in Figure 3 shows, as expected, that use of client memory
increases steadily with a slope proportional to m and tops off
at the maximum allowed value M.

The second experiment gauged bandwidth usage by
measuring the sizes of transmitted blocks. These numbers are
shown in the chart of Figure 4. As expected, network usage
is kept under the imposed limit for both parameter sets. It is
important to observe that successive frames with high band-
width usage – but without intervening browsing operations
– correspond to progressive transmission and rendering of
map data.

Due to the bigger block size used in the second test,
bandwidth usage peaks are higher, but have shorter duration
than those observed for the first test. In general, we also note
that zooming in and zooming to the full map generate more
network traffic than panning or zooming out.

Next, it was defined some way for measuring the picture
quality observed in the client as a function of time (frame).
For this purpose, we considered that a given polygonal line L
present in window W is rendered perfectly if it is represented
in cache memory with LOD BestLOD(L,W) or greater. Thus,
a percentage measure of display quality Q may be estimated
by

100 ((), (,))
=

| | (,)∈
× ∑

L R

min LOD L BestLOD L W
Q

R BestLOD L W
	 (1)

where R is the set of lines intersecting W. A plot of this quality
measure at the end of each frame is shown in Figure 5. It can
be observed that the system achieves maximum quality after
a few frames and never falls significantly below 80% when
parameter set 2 was used. This threshold is clearly dependent
on the relationship between the total map size and the cache
memory size M. As expected, display quality drops more
abruptly for parameter set 1 than for set 2 whenever browsing
operations require data to be retrieved from the server.
Similarly, the latency observed for reaching maximum quality
is smaller for the bigger block size m of the second set.

Table 2. Client memory sizes (M) and block sizes (m) used in the first
set of experiments.

 Parameter set Cache size (M) Block Size (m)

 1 96 Kb 6 Kb

 2 144 Kb 12 Kb

Table 1. Sequence of map browsing operations used in the first set
of experiments.
Frame 1 9 13 15 17 22 24 26 28 35 37 39 41 43 45

Op. ZF Z+ Z+ P Z+ Z+ P P P Z- Z- Z- Z- P ZF

Journal of the Brazilian Computer Society42 Ramos JAS, Esperança C, Clua EWG

144

120

96

72

48

24

0
0 5 10 15 20 25 30 35 40 45 50

Frame

M
em

or
y

us
ag

e
(K

b)

P. set 02 P. set 01

Figure 3. Client cache memory usage per frame.

12

9

6

3

0
0 5 10 15 20 25 30 35 40 45 50

Frame

B
K

yt
es

 tr
an

sm
it

te
d

P. set 02 P. set 01

ZF Z+ Z+ P P P PZ+ Z+ Z– Z– Z– Z– P ZF

Figure 4. KBytes transmitted per frame.

100

80

60

40

20

0
0 5 10 15 20 25 30 35 40 45 50

Frame

D
is

pl
ay

 q
ua

lit
y

(%
)

P. set 02 P. set 01

ZF Z+ Z+ Z+ Z+ Z– Z– Z– Z– P ZFP P P P

Figure 5. Display quality per frame.

43A progressive vector map browser for the web2009; 15(2)

It should be remarked that the visual aspect of progres-
sive transmission of vector data is in general less distracting
than the behavior of raster based systems which may leave
blank large portions of the screen while data is fetched from
the server. An example of quality increase over time is shown
in Figure 6. The user performs a zoom operation in a window
displaying a map with all states of Brazil, causing the system
to perform a progressive transmission and rendering until it
reaches 100% of display quality.

The following experiment measured client cache hit
ratios for each browsing operation. Results for both sets of
parameters are shown in Figure 7. A cache hit corresponds to
IncreaseLOD or LoadLOD operations which do not have to be
executed due to the fact that cache memory already contains
the needed data. The cache hit ratio, then, is defined as the
ratio between cache hits and the sum of all increase operations
that would have been needed were the cache empty. Suppose,
for instance, that after a given change in the viewing window,
and considering that the client memory is empty, 40 opera-
tions are put in heap I, whereas with the actual contents of
the cache, only 10 operations are needed. This means that the
cache hit ratio is 75%. In our experiment, the cache hit ratio is
computed just after heap I is built using Equation 2:

100 | |
=

| | ((), (,))
L R

I
CH

I min LOD L BestLOD L W
∈

×
+ ∑ 	 (2)

 where |I| is the number of operations in heap I.
Observing Figure 7, we notice that the tests for both

parameter sets behave in identical fashion up to the point
when the client with smaller memory – parameter set 1 – is
completely full. After this point, although the client for set 2
reaches higher cache hit ratios overall, the client for set 1
occasionally has a better resident set with respect to the new
viewing window. Also notice that for last point of the chart,
corresponding to a Zoom Full operation, the client with a
larger memory has necessarily a better cache hit ratio than
the client with smaller memory.

It is also useful to observe the frequency of cache memory
management operations as a function of the frame number.
The chart in Figure 8 plots two lines, one depicting the cache
inclusion operations, i.e., those that generate network traffic,
and another depicting the cache exclusion operations for a

client with parameter set 1. Note that no exclude operations
are required before frame 19, as there is still enough room
for storing polygonal data. Another important observation is
that the number of operations does not necessarily follow the
pattern of bandwidth usage. This can be attributed to the fact
that the amount of data for each LOD step is not constant.

6.2. Second set of experiments

These were conducted using a map of year 2005 standing
for the municipal limits of Brazil in 1:1.000.000 scale
produced by the Brazilian Geography and Statistics Institute
(IBGE)11. This map contains 16,660 polygonal lines, each with
65 vertices on average. An overview is shown in Figure 9.

In the second set of experiments, two data sets repre-
senting the same collection of polygonal lines are used. The
first data set, labeled original, contains the lines in full reso-
lution with 25 LOD steps, whereas in the second data set,
labeled simplified, these lines were coarsened to LOD 12 using
the Douglas-Peucker algorithm19. The data set original has
1,076,029 vertices and simplified has 92,353.

The preprocessing stage produced an Extended MX-CIF
Quadtree of height 6 and containing 536 leaf nodes, while
polygonal lines were split into up to 25 LOD steps. Since this
set of experiments aimed for understanding how the system
scales with respect to the size of the data being served, a
second data set was obtained by simplifying the original map
with only up to 12 LOD steps.

The same sequence of browsing operations, shown in
Table 3, was used in experiments with both data sets. The
values for the client cache size and for the block size were
also kept constant, namely, M = 1152 Kb and m = 48 KB.

After a first display of the whole map, i.e., just after
the first Zoom Full operation, two series corresponding to
1 Zoom More and 5 Panning operations each were issued.
After the first Zoom More operation, polygonal lines need
8 IncreaseLOD operations on average to reach maximum

a b c d

Figure 6. A zoom-in operation performed on the black rectangle (a) causes progressive transmission and rendering (b), (c) until the system
achieves maximum display quality (d).

Table 3. Sequence of map browsing operations used in the second
set of experiments.
Frame 1 25 27 29 32 34 36 38 40 42 44 46 48

Op. ZF Z+ P P P P P Z+ P P P P P

Journal of the Brazilian Computer Society44 Ramos JAS, Esperança C, Clua EWG

100

80

60

40

20

0

Browser operation

C
ac

he
 h

it
 (%

 o
f o

p.
)

P. set 02 P. set 01

Zoom
full

Zoom
more

Zoom
more

Zoom
more

Zoom
less

Zoom
less

Zoom
less

Zoom
less

Zoom
full

Zoom
more

Panning PanningPanningPanning Panning

Figure 7. Cache hit ratios measured for each zooming and panning operation.

350

300

250

200

150

50

100

0
0 5 10 15 20 25 30 35 40 45 50

Frame

N
um

be
r

of
 o

pe
ra

ti
on

Include Exclude

ZF Z+ Z+ P P P PZ+ Z+ Z– Z– Z– Z– P ZF

Parameter set 01

Figure 8. Cache memory management operations per frame for a client with parameter set 1.

Figure 9. Map with the municipal limits of Brazil.

display quality. The next Zoom More requires 8 additional
IncreaseLOD operations. Since the simplified data set contains
only 12 LOD steps, the second series of operations leads to less
data being retrieved from the server than with the original
data. This can be observed in the chart shown in Figure 10,
where the experiments with both data sets behave identically
up to the point where the second Zoom More operation is
issued at frame 38. After this, the interaction with the original
data set always uses more bandwidth than with the simpli-
fied data set. It should be stressed that this means only that
the use of bandwidth depends on the availability of detail
levels for a given view window, not on the size of the data
set per se.

Lastly, it is shown in Figure 11 a plot of cache hit ratios
computed as described above. We also observe identical
behavior for both data sets up to frame 38. After this, browsing
the simplified data set yields higher ratios than the original
data set. This is expected, since the original set requires more

45A progressive vector map browser for the web2009; 15(2)

memory for storing the data up to LOD 16, whereas with the
simplified data set the memory requirements of LODs up to
12 are more modest.

7. Extensions

The results discussed in the previous section were
obtained with relatively low values for M, considering that
modern desktop workstations are ordinarily equipped
with memory on the order of a few gigabytes. For instance,
allowing M = 4 Mb and considering that each polygon vertex
occupies 16 bytes (8 bytes per coordinate), cache memory
would be able to accommodate more than 250,000 vertices.

On the other hand, allowing large block sizes (m) may
impose a lower update rate on the client, depending on the
available bandwidth. In our implementation this effect can
be amplified due to the relatively simple-minded XML-RPC
coding, which requires numbers to be first converted to string

and then wrapped inside XML tags. For instance, a 5-digit
integer value which is represented internally with 64 bits will
require 14 bytes, or a 75% increase when coded as string and
wrapped inside XML tags, e.g., <i4>12345</i4>. The repre-
sentation of floats is even more wasteful.

Thus, the use of thechniques to reduce this overhead is
advisable. A simple alternative would be base-64 coding – a
conversion type already supported by the XML-RPC
standard. Another possibility is to employ compression, if
supported by both server and client. The JavaScript Object
Notation – JSON14 has also been proposed to address this
same problem.

Examining the results for the second set of experiments,
one may notice that the initial transmission of data required
for showing the complete map to the user takes 23 frames. This
high volume of transmitted data is due to the large number of
polygonal lines which, even when represented at the lowest
possible level of detail, comprise 34,686 vertices. Observing

36

48

24

12

0
0 5 10 15 20 25 30 35 40 45 50

Frame

K
B

yt
es

 tr
an

sm
it

te
d

Simplified Original

ZF Z+ P P P P P P P P P PZ+

Figure 10. KBytes transmitted per frame.

100

80

60

40

20

0

Browser operation

C
ac

he
 h

it
 (%

 o
f o

p.
)

Simplified Original

Zoom
full

Zoom
more

Zoom
more

Panning Panning PanningPanning Panning Panning Panning Panning PanningPanning

Figure 11. Cache hit in percent of include memory operations per each zooming and panning operation.

Journal of the Brazilian Computer Society46 Ramos JAS, Esperança C, Clua EWG

Figure 9, however, it is clear that many of these lines are not
relevant for an initial overview of the map, see Bertolotto
and Egenhofer3. This suggests that visual importance classifi-
cation of the polygonal lines should be incorporated into the
system. This would allow, for instance, that the first overview
of the map contain only polygonal lines pertaining to state
limits, leaving municipal divisions to zoomed-in views.

In the context of Geographic Information Systems (GIS),
the use of two or more data sets which represent the same
objective reality at different scales is common. However, the
second set of experiments, as reported in Section 6.2, suggests
that the same functionality may be reached by mixing visual
importance rules together with LOD processing. Thus, it
would be possible to obtain an adequately detailed world
view for any desired viewing window of the same reality.

Another important aspect of any web mapping frame-
work is the support of other geometric features such as points
and polygons. These are not yet handled by the architecture
described here. In fact, being dimensionless, points do not
lend themselves to strict level-of-detail processing, although
they could be easily submitted to visual importance classifi-

cation. Closed polygonal lines representing area features can
be easily processed with the Douglas-Peucker algorithm, but
obtaining these polygons from a set of open polygonal lines
representing a space partition requires additional informa-
tion as prescribed by the Polygon-arc Topology (see Section 6).

Extending our framework in order to support closed
polygonal line would require little effort, except for one
crucial problem related to the fact that, given a visualiza-
tion window W, the set of polygonal lines that cross it do
not necessarily limit completely all polygons intersecting
that same window. In other words, a polygon which inter-
sects W may be bounded by polygonal lines which are not
in the client’s cache memory. The problem can be circum-
vented by projecting the endpoints of those polygonal lines
that do intersect the window onto the edges and vertices of
a sufficiently large rectangle enclosing the viewing window.
By following the polygon circulation along this rectangle it
is possible to obtain a closed polygonal lines which will later
be clipped against the window. The procedure is illustrated
in Figure 12.

Open polygonal line

Window

Large rectangle

Endpoint projected onto edge

Endpoint projected onto a vertex

a b

c d

Figure 12. Obtaining closed polygonal lines from an incomplete set of polygonal lines. a) A rectangle big enough to enclose all polygonal lines
and the window is computed; b) Endpoints of the polygonal lines are projected onto edges or vertices depending on which of the 8 rectangular
regions around the window they lay; the closed path formed formed by the rectangle edges and the polygonal lines is traversed in either;
c) counterclockwise or d) clockwise circulation.

47A progressive vector map browser for the web2009; 15(2)

8. Conclusions and Suggestions for Future
Work

The client-server framework for remotely displaying
vector maps described in this work was designed to achieve
several goals: be simple, scalable, make predictable use of
network bandwidth and support progressive transmission
and rendering. The prototype implementation and admit-
tedly limited experimental evidence seem to indicate that
these objectives were largely met.

An enhanced version of the prototype could adopt alter-
native solutions for some of the design decisions discussed
here. We are particularly dissatisfied with the way LOD steps
were defined, which results in a very heterogenous partition
of detail space. Also, as pointed out in Davis6 and McMaster
and Shea24, the Douglas-Peucker do not provide an optimal
approximation of the original line for large tolerances. The
communication protocol between client and server could
be overhauled by using some less wasteful coding than
XML-RPC. A more finely tuned spatial index could also lead
to a better overall performance.

Addressing browser compatibility is a major considera-
tion when it comes to browser-embedded applications such
as the one described in this paper. Unfortunately, browser
specifications will continue to represent a moving target, at
least as long as browser vendors choose to ignore standardi-
zation efforts.

Although our prototype was not tested within a more
realistic context where the server is requested by multiple
client connections, it is nevertheless clear that memory usage
would increase linearly with a relatively small slope since the
server needs to store for connected each client a single integer
for each polygonal line (see list A in the example of Section 4).
Additionally, for every client actively navigating the map, the
server must also compute heaps I and D, but these tend to be
small for small changes of the viewing window as suggested
by Figure 8. On the other hand, the processing of Algorithm 1
on both client and server, although helping to keep the band-
width usage at a minimum, may impose a heavy processing
load on the server.

A continuation of this work would necessarily incor-
porate the extensions discussed in Section 7 as well as a
more thorough testing of its various aspects. The proto-
type would probably also benefit from a closer adherence
to OGC standards for client-server communication18. A
more general preprocessing of vector data sets is also being
planned, including the treatment of topological relation-
ships among geometries as discussed in Bertolotto and
Egenhofer3.

Clearly, a production system would require the addition
of several improvements such as visual importance classifi-
cation. A complete system would probably also include the
ability to serve raster data in situations where this format is
more appealing.

References

1.	 Fry B and Reas C. Download Processing 1.0. Available from:
<http://processing.org/download/index.html>. Access in:
03/2009.

2.	 Gordillo S and Balaguer F. Refining an object-oriented GIS
design model: topologies and field data. GIS ‘98: Proceedings of
the 6th ACM international symposium on Advances in geographic
information systems; 1998; New York, NY, USA. p. 76-81.

3.	 Bertolotto M and Egenhofer MJ. Progressive Transmission of
Vector Map Data over the World Wide Web. Geoinformatica
2001; 5(4):345-373.

4.	 Kraak M and Brown A. Web Cartography -Developments and
prospects. New York: Taylor & Francis; 2001.

5.	 CARTO: net - cartographers on the net. SVG, scalable vector
graphics: tutorials, examples, widgets and libraries. Available
from: <http://www.carto.net>. Access in: 03/2009.

6.	 Davis C. Geometria computacional para sistemas de informação
geográfica. Available from: <http://www.dpi.inpe.br/
gilberto/livro/geocomp/>. Access in: 03/2009. [In
Portuguese]

7.	 Free Software Foundation Inc. GCC, the GNU compiler
collection. Available from: <http://gcc.gnu.org/>. Access in:
03/2009.

8.	 Google Inc. ExplorerCanvas. Available from: <http://
excanvas.sourceforge.net>. Access in: 03/2009.

9.	 Google Inc. Google Maps. Available from: <http://maps.
google.com>. Access in: 03/2009.

10.	 Gaede V and Günther O. Multidimensional access methods.
ACM Computing Surveys 1998; 30(2):170-231.

11.	 Instituto Brasileiro de Geografia e Estatística – IBGE. Available
from: <http://www.ibge.gov.br>. Access in: 03/2009. [In
Portuguese]

12.	 Ramos JAS, Esperança C and Clua EWG. A Progressive
Vector Map Browser. Proceedings of X Brazilian Symposium of
Geoinformatics; 2008. Sociedade Brasileira de Computação.
p. 127-138.

13.	 Resig J. John Resig - Processing.js. Available from: <http://
ejohn.org/blog/processingjs/>. Access in: 03/2009.

14.	 JSON.org. Available from: <http://www.json.org/>. Access
in: 03/2009.

15.	 MapTools. Shapefile C Library V1.2. Available from: <http://
shapelib.maptools.org/>. Access in: 03/2009.

16.	 Burrough PA and McDonnell RA. Principles of geographical
information systems. New York: Oxford University Press;
1997.

17.	 McMaster RB. Automated Line Generalization. Cartographica
1987; 24(2):74-111.

18.	 Open Geospatial Consortium Inc. Welcome to the OGC Website.
Available from: <http://www.opengeospatial.org/>. Access
in: 03/2009.

19.	 Douglas DH and Peucker TK. Algorithms for the reduction of
the number of points required to represent a digitized line or
its caricature. The Canadian Cartographer 1973; 2(10):112-122.

Journal of the Brazilian Computer Society48 Ramos JAS, Esperança C, Clua EWG

20.	 Python Software Foundation. Download Python Software.
Available from: <http://www.python.org/download/>.
Access in: 03/2009.

21.	 Casanova M, Câmara G, Davis C, Vinhas L and Queiroz G.
Bancos de dados geográficos. Curitiba: Editora MundoGEO;
2005. [In Portuguese]

22.	 Ramos JAS. Navegador de Mapas Vetoriais com Atualização
Progressiva. Rio de Janeiro: Universidade Federal Fluminense;
2008. Technical report.

23.	 Samet H. Foundations of Multidimensional and Metric Data
Structures. San Francisco: Morgan-Kaufman; 2006.

24.	 McMaster RB and Shea KS. Generalization in digital cartography.
Washington, D.C.: Association of American Geographers;
1992.

25.	 Chim JHP, Green M, Lau RWH, Va Leong H and Si A. On
caching and prefetching of virtual objects in distributed
virtual environments. MULTIMEDIA ‘98: Proceedings of the
sixth ACM international conference on Multimedia; 1998; New
York, NY, USA, 1998. p. 171-180

26.	 Abel DJ and Smith JL. A data structure and query algorithm
for a database of areal entities. Australian Computer Journal
1984; 16(4):147-154.

27.	 Hershberger J and Snoeyink J. Speeding Up the Douglas-
Peucker Line-Simplification Algorithm. Proc. 5th Intl. Symp.
on Spatial Data Handling; 1992. p. 134-143.

28.	 TrollTech. Qt Cross-Platform Application Framework. Available
from: <http://trolltech.com/products/qt/>. Access in:
03/2009.

29.	 University of Minnesota. UMN MapServer. Available from:
<http://mapserver.gis.umn.edu>. Access in: 03/2009.

30.	 UserLand Software Inc. XML-RPC Homepage. Available from:
<http://www.xmlrpc.com>. Access in: 03/2009.

31.	 Stroe ID, Rundensteiner EA and Ward MO. Scalable Visual
Hierarchy Exploration. DEXA ‘00: Proceedings of the 11th
International Conference on Database and Expert Systems
Applications; 2000. London, UK: Springer-Verlag; 2000. p.
784-793.

32.	 Doshi PR, Rundensteiner EA and Ward MO. Prefetching for
Visual Data Exploration. DASFAA ‘03: Proceedings of the Eighth
International Conference on Database Systems for Advanced
Applications; 2003; Washington, DC, USA. IEEE Computer
Society. p. 195

33.	 Burghardt D, Neun M and Weibel R. Generalization Services
on the Web - A Classification and an Initial Prototype
Implementation. Proceedings of the American Congress on
Surveying and Mapping - Auto-Carto; 2005. p. 257-268.

34.	 World Wide Web Consortium. HTML 5. Available from:
<http://dev.w3.org/html5/spec/Overview.html>. Access
in: 03/2009.

35.	 World Wide Web Consortium. W3C - The World Wide Web
Consortium. Available from: <http://www.w3.org/>. Access
in: 03/2009.

36.	 Yahoo! Inc. Yahoo! Maps. Available from: < http://maps.yahoo.
com>. Access in: 03/2009.

