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Abstract: With the increasing popularity of web-based map browsers, remotely obtaining a high quality depiction of 
cartographic information has become commonplace. Most web mapping systems, however, rely on high-capacity servers 
transmitting pre-rendered tiled maps in raster format. That approach is capable of producing good quality renderings on the 
client side while using limited bandwidth and exploiting the browser’s image cache. These goals are harder to achieve for 
maps in vector format. In this work, we present an alternative client-server architecture capable of progressively transmitting 
vector maps in levels-of-detail (LOD) by using techniques such as polygonal line simplification, spatial data structures and, 
most importantly, a customized memory management algorithm. A multiplatform implementation of this system is described, 
where the client application is written entirely in JavaScript and processed within the web browser, avoiding the need of 
external applications or plug-ins. Results of experiments aimed at gauging both the performance and the display quality 
obtained with the system are presented and explained. Extensions to the system are also discussed, including issues such as 
level-of-detail versus visual importance tradeoffs and the handling of closed polygonal lines. 
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1. Introduction and Related Work
The increasing popularity of web-based systems and serv-

ices for delivering maps can be regarded as one of the most 
important developments in the advancement of cartography. 
Several aspects of these systems have merited investigation in 
recent years, such as the improving reliability of the Internet 
and web server infrastructure, ascertaining the quality and 
fidelity of the served data, coping with privacy and secu-
rity issues, maximizing the use of screen space, and making 
rational usage of the available bandwidth33.

One important design decision when building a web 
mapping application is the choice between raster and vector 
data structures. Authors such as Burrough and McDonnell16 
and Casanova et al.21 compare both in the context of 
Geographical Information Systems. In a nutshell, raster data 
structures are simple to process, are supported by inexpen-
sive technologies and may be stored in a wide variety of 
formats. On the other hand, vector data structures are more 
compact, support accurate representation of geometric data 
at all scales, and allow an explicit topology description. Thus, 
vector data structures offer distinct advantages for serving 
maps on the web, as long as it is possible to circumvent its 
heavier use of memory and processing resources.

Some of the most popular web mapping systems, such 
as Google Maps9 or Yahoo Maps36, are mostly raster-based, 
i.e., they serve pre-rendered digital images. Maps are first 
rendered in several resolutions in the server, cut into blocks 
(called tiles), and then sent to clients based on the desired 

area and zoom level. The key reasons for using rasters are: 
1) all work spent in authoring a good quality representation 
can be done on the server, while the client merely composes a 
big picture from several small image tiles; 2) the transmission 
of raster data of fixed size uses limited bandwidth; 3) web 
browsers already manage image caches and, thus, little or 
no memory management is needed on the client side; and 
4)  until recently, most popular browsers did not support 
vector data natively, requiring the installation of additional 
applications or plug-ins.

Several web mapping systems have also been proposed 
which use vector data. Perhaps the most widely used system 
is the MapServer open source project29. The World Wide 
Web Consortium (W3C) recently approved some stand-
ards for supporting vector data on the Web, namely, those 
related with the Scalable Vector Graphics (SVG) format for 
representing vector data using eXtensible Markup Language 
(XML) and those pertaining to the Canvas element in HTML 
5.0 specification. The latter is of special importance for 
modern web applications, since Canvas elements can now 
be used to display vector drawings using JavaScript or other 
scripting languages provided by the browser21, 22, 34, 35. In this 
same context, the Open Geospatial Consortium (OGC) also 
approved formats and services of interest: 1) the Geography 
Markup Language (GML), a XML-based standard for trans-
mitting vector features, and 2) the Web Feature Service (WFS), 
that provides an interface allowing requests for geographical 
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features in vector data structure to be processed across the 
web using platform-independent calls18, 22.

It should be mentioned that client-side web programming 
has been on the rise in recent years. In particular, the so-called 
JavaScript engines of popular browsers have become more 
efficient and capable. This follows the trend of web service 
providers striving to offer more flexibility in their client-side 
applications.

In summary, advances in web technology have made 
possible a new class of web mapping applications, where 
features are represented, transmitted and displayed in vector 
rather than raster format, without resorting to external 
plug-ins or applications. For instance, several of such appli-
cations based on SVG can be reached through the carto:net 
portal5.

The technology for serving maps in vector form has been 
intensely researched (see Kraak and Brown4 for a survey). 
An adequate solution for the problem clearly depends on the 
usage of techniques for hierarchically organizing vector data 
according to its visual importance, obtaining what is usually 
known as level-of-detail (LOD) data structures6. The proper 
nesting of the detail data needs to conform to topological and 
geometric criteria, in order to ensure that key elements such 
as road crossings or riverbed centerlines do not drift between 
LODs3.

At the same time, some sort of spatial indexing is usually 
required for quickly retrieving data overlapping the region 
of interest10. Several authors have also investigated suitable 
techniques for memory caching of spatial data with and 
without prefetching31, 32, as well as methods appropriate for 
handling multi-resolution vector data25.

Whereas many authors have delved in the the geomet-
rical and topological aspects of organizing vector map data 
in order to support its progressive transmission over the web, 
a less studied aspect of web cartography is the relationship 
between the level of detail of the data being served, the use 
of bandwidth and client memory management. In particular, 
many systems assume that all clients have the same (small) 
amount of memory at their disposal and, as a consequence, 
statically link the level-of-detail of the served map to the size 
of the area being viewed, or, more frequently, simply ignore 
the problem of the memory organization of the client3.

This paper is an extension of Ramos et al.12, 22. Below, 
we present data structures and algorithms which make it 
possible to remotely deliver and present high-quality vector 
maps in a progressive manner, making efficient use of the 
available bandwidth, and adapted to the memory profile 
of any given client without encumbering the communica-
tion protocol with information about client memory state. 
In particular, although the server receives from the client 
only information pertaining to the area being viewed, i.e., 
the client view window, it is able to guess and progressively 
transmit only needed data. With respect to earlier reports of 
this work, the following points deserve mentioning: 1) The 
client is implemented in JavaScript and is processed entirely 
within the web browser rather than within a separate client 
application; 2) the client-server architecture is described in 

significantly more detail; 3) a larger set of experiments are 
presented and analyzed; and 4) finally, we discuss exten-
sions, such as working with closed polygonal lines and 
working with tradeoffs between visual importance and 
levels of detail.

2. Overall System Architecture

According to McMaster and Shea24, around 80% of the 
total data in vector geographical databases are polygonal 
lines. This statement guides the scope of the proposed archi-
tecture: 1) only vector maps with open or closed polygonal 
lines are considered, and 2) the use of network bandwidth 
is optimized by restricting the transmission of line data with 
just enough detail for a faithful representation.

Thus, we propose a client-server system for serving map 
data containing a program (the server) capable of directly 
accessing all polygonal lines of a given map – from a data-
base, for instance – and progressively sending it to interactive 
visualization applications (the clients). Clients have limited 
memory capacity and thus store only enough line data so as 
to present a good depiction of the map within a visualization 
window. Each time a user changes this window, the contents 
of the client memory must be updated by requesting relevant 
data from the server and discarding unneeded information.

The system preprocesses all polygonal lines comprising 
the map into two hierarchical data structures, which can be 
quickly traversed in order to obtain the needed informa-
tion. The two structures used are: 1) a spatial index, which is 
needed to prune out polygonal lines which do not contribute 
to the current viewing window, and 2) a structure for organ-
izing the vertices of each polygonal line in order of visual 
importance – the so-called level-of-detail (LOD) data struc-
ture. It should also be mentioned that the present architecture 
does not handle polygonal line importance classification, i.e., 
it is considered that all polygonal lines intersecting a given 
window need to be drawn at some level of detail. Although 
map visualization applications typically provide some way 
of establishing which lines can be left out when rendering the 
map at certain zoom levels, we do not concern ourselves with 
this feature in this paper.

Both server and client process the viewing window 
change in a similar manner. The client only needs to inform 
the server of the new viewing window in order to receive 
the needed data not yet stored in its memory. This approach 
requires that the server is kept aware of the memory state of 
each client: if there are n lines in a map, the server maintains 
for each client an array of n integers which maps each line 
to the level of detail in which it is represented in the client’s 
memory. Whenever new vertices need to be sent from server 
to client, this transmission is broken into blocks of limited 
size. In other words, the proposed architecture supports 
progressive transmission of detail information so that the 
visual quality of the client images improve over time, at a 
rate that depends solely on the available bandwidth.
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3. Server-side Preprocessing

For each map being served, their polygonal lines must be 
submitted to a preprocessing step in order to 1) build a hier-
archical level-of-detail data structure for their vertices, and 
2) build a spatial index used to support window queries.

3.1. Level-of-detail data structure

As a rule, any scheme for organizing vector data in levels 
of detail should employ some method for the simplification 
of polygonal lines24. Such methods have been researched 
actively since the 60s (see Davis6 for a comprehensive compi-
lation) with the purpose of obtaining line representations 
suitable for being used at varying viewing scales. Among 
these, we have chosen to employ the well-known Douglas-
Peucker (DP) line smoothing algorithm19. Although it is not a 
particularly fast algorithm, running in O(nlog n) at best and 
O(n2) in the worst case27, it is ranked as the best when it comes 
to preserving the shape of the original line17. Furthermore, it 
produces a hierarchical representation which can be used for 
level-of-detail processing.

The DP algorithm recursively subdivides a polygonal 
line by selecting the vertex at greatest distance from the line 
segment defined by the first and last point. Figure 1 illustrates 
this process for an example line. Observe that the subdivision 
process can be registered in a binary tree, where each node N 
corresponds to a subdivision vertex and the corresponding 
distance dN, whereas its left and right sons correspond to 
sub-trees for the left and right sub-chains of the original 
polygonal line. Thus, an approximation within tolerance ε 
for the polygonal line can be extracted by visiting the tree 
in pre-order and pruning out branches rooted at nodes with 
distances dN < ε.

In this work, we are interested in obtaining increas-
ingly finer representations for each polygonal line. This can 
easily be implemented by quantizing tolerance values into 
an integer range [1, MaxLOD]. A coarse representation will 
thus be assigned to level-of-detail (LOD) 1 by visiting the tree 
in pre-order for tolerance ε1. Vertices in this representation 
are then marked with LOD = 1. The process is repeated for 

increasingly smaller tolerances εi for i = 2…MaxLOD, and in 
each stage i, non-marked vertices are labeled with the corre-
sponding LOD = i value. An important consideration in this 
process is that, ideally, the number of vertices marked for 
each LOD value should be approximately constant, so that 
transmitting the next finer representation of a given line (see 
constant δ in Section 4) can be done in constant time. In our 
implementation, ε1 is chosen as the distance in world coordi-
nates corresponding to the width of a pixel for a fully zoomed 
out projection of the map, while successively finer tolerances 
were estimated by setting εi+1 = 0.8εi.

3.2. Spatial indexing

In theory, the worst case scenario for vector map browsing 
consists of setting the viewing window so that it encloses all 
polygonal lines. In practice, however, users frequently are 
interested in investigating a small portion of the whole map. 
It stands to reason, therefore, to use some spatial indexing 
selecting polygonal lines intersecting any given query 
window.

Although the present work does not focus on the issue 
of efficient spatial indexing, we surveyed several works in 
the field (see Samet23 for a comprehensive compilation) and 
chose the relatively simple Expanded MX-CIF Quadtree26 
data structure for speeding up window queries.

This is a data structure for rectangles which, in the context 
of this work, correspond to each polygonal line minimum 
enclosing bounding box. Each rectangle is represented in the 
data structure by a collection of enclosing quadtree blocks. 
In our implementation, this collection contains a maximum 
of four blocks, although other configurations might also be 
possible. The four blocks are obtained by determining the 
minimum enclosing quadtree block, say B, for each rectangle, 
say R, and then splitting B once to obtain quadtree blocks Bi 
(i ∈{NW, NE, SW, SE}) such that Ri is the portion of R, if any, 
that is contained in Bi. Next, for each Bi we find the minimum 
enclosing quadtree block, say Di, that contains Ri. Now, each 
rectangle is represented by the set of blocks consisting of Di 
(refer to Figure 2 for an example). Window queries can be 
easily computed by means of a recursive descent algorithm 
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Figure 1. Douglas-Peucker line simplification (adapted from Casanova et al.21). a) A polygonal line with 29 vertices; b) vertex 15 is furthest 
from line segment 1–29, c) polygonal lines 1–15 and 15–29 are processed recursively. 
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on the tree, i.e., start with the root and recursively visit sons 
if their quadrants intersect the given window.

The simple example helps understanding the structure. 
Consider, for instance, rectangle G as shown in Figure 2a. 
First, the smallest quadrant R enclosing G is found – the 
lower right quadrant, in this case, corresponding to the right-
most branch of the root node in Figure 2b. In the MX-CIF 
variant used in this work, one additional subdivision of R is 
required, where portions of G intersecting each of the four 
subquadrants of R are generated, namely, GNW, GNE, GSW and 
GSE. Since GNW and GNE are empty, references to G are stored 
only in RSW and RSE, as can be observed in Figure 2b.

The key advantadge of the MX-CIF structure over other 
similar structures for indexing rectangles is that, like the 
R-tree and its variants, and unlike other quadtree variants 
such as the PMR-quadtree, it stores references to the indexed 
object in a constant number of tree nodes, thus guaran-
teeing that the structure has O(n) size, where n is the number 
of rectangles. On the other hand, unlike the R-tree, it is a 
genuine space partitioninig data structure, meaning that each 
point of the space is represented by a single leaf node23. As 
with other structures for indexing spatial data with extent, its 
asymptotic time complexity with respect to window queries 
is dependent on the spatial distribution of the indexed data. 
Clearly, no window query will run slower than O(n), since 
that corresponds to the size of the whole data structure. In 
practice, however, at least for small windows, its expected 
running time is O(flogn), where f is the size of the answer.

4. Memory Management

In the context of a client-server system, the issue of 
memory management should be governed by the following 
considerations:

Memory capacity: It is assumed that the client memory 
is bounded by some given constant. At any time, the client 
has its memory partially occupied with a subset of the 
map’s polygonal lines at some level-of-detail. When the user 
changes the viewing window, i.e., performs a zooming or 
panning operation, the memory contents should be altered 
if it does not contain a “good” representation of the map as 
revealed by the newly defined window.

Memory control protocol: When requesting new data 
from the server, some agreement must be reached on what 
data is needed. In other words, the server must either be told, 
or must already know what data to transmit to the client 
in response to a user action. Thus, there are two general 
approaches for the control protocol: 1) the client requests the 
needed data items, meaning that the server does not know 
the client memory’s contents, or 2) the server is aware of the 
memory management operations performed by the client 
by simulating the same operations as stipulated by a fixed 
algorithm. Clearly, the former approach uses more band-
width than the latter. On the other hand, CPU usage could 
be greatly increased if the server reproduces operations of all 
clients. In this work, we adopt the second strategy, where the 
increase in time complexity is alleviated by employing a rela-
tively simple memory management rationale which can be 
executed in tandem by both server and client.

In order to describe our approach, let us first define a few 
terms:

•	 M is the maximum client memory size; 

•	 m is the amount of data that can be transmitted from 
the server to the client in one transaction, i.e., in time 
for the client displaying the next frame; 

•	 W is the current viewing window; 
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Figure 2. Example Expanded MX-CIF Quadtree (b) and the block decomposition induced by it for the rectangles in (a) (adapted from 
Samet23).
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•	 S = {Li} is the current resident set, i.e., the set of 
polygonal lines Li that intercept the current viewing 
window W; 

•	 LOD(L) is an integer in [0,MAXLOD(L)] representing 
the level-of-detail of polygonal line L. It is assumed 
that if L ∉ S, then LOD(L) = 0; 

•	 BestLOD(L,W) be an estimate for the “best” level-of-
detail for exhibiting a polygonal line L in viewing 
window W. In our implementation, this function 
returns 0 if L is not visible within W. For instance, an 
estimate is computed using the length of the shortest 
edge of L at a given LOD as a measuring stick. In other 
words, suppose that the current width of a pixel has 
size d in world space, then the “best” LOD corresponds 
to the biggest (i.e., finest) LOD for which the shortest 
edge is still bigger than d. The rationale is that using a 
finer LOD would not improve the display quality by 
much since it would probably lead to drawing details 
smaller than the pixel size; and 

 •	 δ is an estimative of how much memory is associated 
with increasing or decreasing a level-of-detail step 
for any given polygonal line L. In other words, on 
average, a polygonal line L should occupy approxi-
mately δ × LOD(L) memory. 

Adjusting the items resident in memory requires two 
classes of operations: operations that increase and operations 
that decrease the use of memory. Operations in the first class 
makes some data to be transferred from the server to the 
client. We distinguish two of these: 

1.	 IncreaseLOD(L) increases the level-of-detail for polyg-
onal line L. This means that if LOD(L) = k > 0, then 
after its execution LOD(L) = k + 1; and

2.	 Load(L) brings polygonal line L from the server in its 
coarsest form. As a precondition, LOD(L) and after its 
execution, LOD(L) = 1. 

The second class corresponds to operations which cause 
data to be thrown away from client memory. Observe that 
these operations do not cause any network traffic between 
server and client. We also define two operations of this class: 

1.	 DecreaseLOD(L) decreases the level-of-detail for 
polygonal line L; and

2.	 Unload(L) unloads polygonal line L from memory 
altogether. 

Thus, any memory management algorithm will consist 
of sequentially performing these operations in some order in 
a timely manner and without infringing memory limits M 
and m. Our algorithm uses two heaps, defined as I and D, 
which hold operations of each of the two classes described 
above. A crucial consideration is how to define the ordering 
between operations in each heap. Clearly, operations of type 
Load should have a higher priority than all operations of 
type IncreaseLOD. Similarly, operations of type DecreaseLOD 
should have higher priority than operations of type Unload. 
In our implementation, the ordering between operations 
IncreaseLOD for two lines L1 and L2 depend on how distant the 
LOD’s of each line are from their estimated “best”. In other 

words, we use |BestLOD(L) – LOD(L)| as a priority measure. 
The priority between operations DecreaseLOD is defined 
in a similar way. Algorithm 1, called as DefineOperations, 
describes how the two heaps are created.

Once the operation heaps are known, client and server 
process them in parallel. Operations are executed constrained 
to the memory and bandwidth restrictions, as discussed 
above. Algorithm 2, called as ExecuteOperations, summa-
rizes the rationale for operation execution. It is important to 
realize that executing an operation has different meanings 
for client and server. For instance, executing an IncreaseLOD 
operation in the client entails receiving line detail from the 
server and updating the geometry for that line, while for 
the server it means merely sending the additional vertices. 

Algorithm 1. DefineOperations.

Template de Figuras - JBCS
* Fontes Palatino (Roman) Tamanho 8.
* "Cenário" - linhas com 0.5 de Stroke.
* Linhas pertencente a "Dados gráficos" com 0.6 de Stroke.
* Preencimento de barras pb devem ter 10% de preto quando houver texto e 50% quando não.
* Dados na tabela ou figura devem estar no mesmo idioma do artigo.
* Legendas devem estar dentro de caixas de texto com 2 mm de distância nas extremidades.
* Texto da figura ou gráfico deve estar em "Sentence case".
* Setas devem ter 0.6 ponto de Stroke.
* Letras que representam figuras ex: ©, devem estar no canto superior direito com 2 mm de 
distância das extremidades da figura.
* Retirar eixos sem valores de gráficos.
* Retirar efeito 3D dos gráficos, e deixar somente em gráfico de pizza.
* Padrão de cor Grayscale.
OBS: DELETAR ESTA CAIXA APÓS O TÉRMINO DAS FIGURAS.

begin

Input: Wnew: the new window set by the user
Output: I and D: heaps containing operations wich cause
memory increase/decrease

then

for L  S' S do

for i  LOD(L)  to

for i  LOD(L, Wnew)  to

if L  S then

if L  S’ then

if LOD(L) < BestLOD(L, Wnew) then

else if LOD(L) > BestLOD(L, Wnew)

BestLOD(L, Wnew) do

LOD(L) do

end

I Ø
D Ø
S’ set of lines wich intersect Wnew

Enqueue [Load, L] in I

Enqueue [IncreaseLOD, L] in I

Enqueue [DecreaseLOD, L] in D

Enqueue [Unload, L] in D

Algorithm 2. ExecuteOperations.

Input: I and D: heaps containing operations memory
management operations

while I  Ø and t < m do
if |S|+  > M then

t 0

[op, L] Dequeue from D

[op, L] Dequeue from I

begin

end

execute op(L)

execute op(L)

else

t t +  
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Similarly, while DecreaseLOD entails updating the polygonal 
line data structure for the client, the server needs only to take 
note that the corresponding memory was disposed in the 
client.

A limitation of Algorithm 2 is related to the fact that δ is 
merely an estimate of the amount of memory associated with 
decreasing or increasing the LOD of any given line. This may 
lead to |S|, the amount of memory used for the polygonal 
data, eventually exceeding M if the newly received LOD data 
is bigger that δ. This, in general, is not a problem since the 
overflow should be small on average. In any case, the restric-
tion can easily be lifted by assigning to δ a sufficiently large 
value.

Note that the scheme described above is easily adapted to 
support progressive transmission. Suppose that Algorithm 2 
terminates with a non-empty heap I. Then, if the viewing 
window for the next frame is unchanged, there is no need to 
run Algorithm 1 again, and the next execution of Algorithm 2 
will further process heaps I and D, thus providing an increas-
ingly finer rendering of the map, as illustrated in Figure 6.

4.1. A step-by-step example

These algorithms may be better understood by following 
example. Let 

•	 DS = [L1, L2, L3, L4, L5] be a list containing the polygonal 
lines of a given map; 

•	 S = [L1, L2, L4, L5] be the subset of lines currently resi-
dent in a client’s memory; 

•	 W0 be the current viewing window; 

•	 A=[3,2,0,2,1] be a list with the current LODs for DS in 
the client, i.e., [LOD(L,W0), ∀L ∈ DS]; and 

•	 LOD(L) ≥ BestLOD(L,W0), ∀L ∈ S, meaning that heap I 
is currently empty. 

At this point, assume that a navigation operation issued 
by the user defines a new viewing window W1, making the 
client inform this alteration to the server and causing both to 
execute Algorithm 1. Suppose further that the new situation 
is such that: 

•	 S’ = [L1, L2, L3] is the set of lines which intersect W1; 
and 

•	 the target LODs for DS in the client are given by 
[BestLOD(L,W1); ∀L ∈ S] = [4,4,4,0,0]. 

As a result, the following heaps are built (leftmost opera-
tions have higher priority): 

•	 I  = [Load L3, IncreaseLOD L3, IncreaseLOD L2, IncreaseLOD 
L3, IncreaseLOD L1, IncreaseLOD L2, IncreaseLOD L3]; 
and 

•	 D = [DecreaseLOD L4, Unload L4, Unload L5]. 
The progressive transmission of the changes is then initi-

ated by the server executing Algorithm 2, forming a block 
and sending it over to the client. The client, in turn, having 
also executed Algorithm 1 for the same input, will receive 
the block from the server, thus effecting the changes to its 
memory and generating a new display of the window. This 

cycle is repeated until both parties have an updated list A. It 
should be mentioned that this repetition may be interrupted 
if, say, the user navigates to another viewing window W2.

5. Implementation
A prototype implementation of the framework described 

in this paper was built and several experiments conducted in 
order to validate our proposal.

The development was supported by the following tools: 
user interfaces were built with version 4.4.1 of the multi-plat-
form Qt28 library and the Shapelib library v. 1.2 was used for 
reading Shapefiles15.

The preprocessor was written in C++ and compiled using 
version 4.1 of the gcc compiler7. The server program which 
implements the algorithms described above was written in 
Python (version 2.5.3)20. The client program is in the form 
of JavaScript code so that it may be run in web browsers 
using no additional software. The client was developed in 
the Processing Language1 and ported to JavaScript using the 
tools described in Resig13. Communication between clients 
and server use the XML-RPC specification, a protocol for 
Remote Procedural Call (RPC) coded in XML30. It is impor-
tant to remark that all of these tools are Open Source and, 
thus, freely available.

The preprocessing described in Section 3, was carried out 
with a dedicated program which: 1) reads polygonal map 
data in Shapefile format, 2) executes the Douglas-Peucker 
algorithm and computes the level-of-detail hierarchy for each 
polygonal line, 3) creates an extended MX-CIF Quadtree for 
supporting window queries, and 4) saves the relevant infor-
mation into a structured XML (eXtensible Markup Language) 
file which is used as input for the server program.

The system deployment is straightforward, requiring 
only that a server process is started in some computer and 
one or more client processes are started in some machine 
connected to the server by a TCP/IP network. Starting a 
client consists of pointing the web browser to the html page 
containing the client code, which can reside in any machine 
connected to the network. When initialized, the server 
will load the XML generated in the preprocessing stage. 
When a client connects to the server, it informs its cache 
memory size and transmission block size, i.e., constants M 
and m discussed in Section 4. The server then sends a reply 
message containing the coarsest possible map representa-
tion and a compressed representation of the MX-CIF data 
structure, i.e., a relatively small data structure. After this 
initialization stage, the communication protocol proceeds  
as discribed in the above sections.

An important issue when implementing web clients is 
its compatibility with popular browsers. Despite the efforts 
of the W3C in laying down comprehensive standards, 
browser vendors frequently lag in their implementation or 
simply ignore them. Among the facilities required by the 
map browsing client, the Canvas element seems to pose 
most compatibility problems. The Canvas element is part 
of the W3C’s HTML 5.0 specification published in January, 
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200834. According to compatibility tests performed with 
our prototype, the client worked perfectly with Mozilla 
Firefox versions 2.0 and 3.0 and Google Chrome version 1.0. 
Unfortunately, Microsoft’s Internet Explorer versions 7.0 and 
8.0 do not support the Canvas element, although the latter 
may be extended with this feature by means of an extension 
called ExplorerCanvas provided by Google8. Other popular 
browsers such as Opera 9.0 and Apple’s Safari 2.0 reportedly 
support the Canvas element, but have not been tested.

6. Results
Two sets of experiments were conducted in order to assess 

important aspects of the system described herein. In the first 
set, the system was monitored in order to obtain information 
about the use of bandwidth, the use of cache memory and the 
display quality exhibited at the client during a map browsing 
session consisting of several pan and zoom operations. The 
second set of experiments uses two versions of the same data 
set – one with roughly 10 times more information than the 
other – in order to contrast the system behavior when serving 
small and large data sets.

For all maps used in the experiments, polygons are 
described as open polygonal lines as defined by the 
Polygon-arc Topology21, 2. This data structure removes dupli-
cate paths which separate adjoining polygons leading to a 
more compact representation. The topology of the polygonal 
subdivision must however be represented separately. It 
should be mentioned, however, that our prototype does not 
render close polygons, but only polygonal lines.

6.1. First set of experiments

The goal of the first set of experiments was to assess 
system performance indicators such as the use of client cache 
memory, the use of network bandwidth and overall display 
quality as perceived by the client.

Test data consists of a map of year 2005 with the state 
limits of Brazil in 1:1.000.000 scale produced by the Brazilian 
Geography and Statistics Institute (IBGE)11. This map contains 
349 polygonal lines, each one with 173 vertices on average. 
An overview is shown in Figure 6a.

The preprocessing stage produced an Extended MX CIF 
Quadtree of height 6 and containing 172 leaf nodes, while 
polygonal lines were split into 25 LOD steps.

The tests used two distinct parameter sets for cache 
memory size (M) and block size (m), as shown in Table 2. 
The first parameter set uses relatively small values for both 
M and m in order to observe more closely the behavior of the 
progressive transmission for this small data set. The larger 
values in the second parameter set simulate an environment 
with more memory and network resources thus permitting 
the adaptability of the system to be observed.

Each test simulates a map browsing session by issuing 
a fixed sequence of zooming and panning operations. These 
are shown in Table 1, where ZF, Z+, Z- and P stand for zoom 
full, zoom in, zoom out and pan, respectively.

The first experiment aimed at measuring the use of client 
cache memory per frame during the browsing session for 
each parameter set. In this context, we call “frame” the trans-
mission, processing and display of one data block. The chart 
in Figure 3 shows, as expected, that use of client memory 
increases steadily with a slope proportional to m and tops off 
at the maximum allowed value M.

The second experiment gauged bandwidth usage by 
measuring the sizes of transmitted blocks. These numbers are 
shown in the chart of Figure 4. As expected, network usage 
is kept under the imposed limit for both parameter sets. It is 
important to observe that successive frames with high band-
width usage – but without intervening browsing operations 
– correspond to progressive transmission and rendering of 
map data.

Due to the bigger block size used in the second test, 
bandwidth usage peaks are higher, but have shorter duration 
than those observed for the first test. In general, we also note 
that zooming in and zooming to the full map generate more 
network traffic than panning or zooming out.

Next, it was defined some way for measuring the picture 
quality observed in the client as a function of time (frame). 
For this purpose, we considered that a given polygonal line L 
present in window W is rendered perfectly if it is represented 
in cache memory with LOD BestLOD(L,W) or greater. Thus, 
a percentage measure of display quality Q may be estimated 
by 

100 ( ( ), ( , ))
=

| | ( , )∈
× ∑

L R

min LOD L BestLOD L W
Q

R BestLOD L W
	 (1)

where R is the set of lines intersecting W. A plot of this quality 
measure at the end of each frame is shown in Figure 5. It can 
be observed that the system achieves maximum quality after 
a few frames and never falls significantly below 80% when 
parameter set 2 was used. This threshold is clearly dependent 
on the relationship between the total map size and the cache 
memory size M. As expected, display quality drops more 
abruptly for parameter set 1 than for set 2 whenever browsing 
operations require data to be retrieved from the server. 
Similarly, the latency observed for reaching maximum quality 
is smaller for the bigger block size m of the second set.

Table 2. Client memory sizes (M) and block sizes (m) used in the first 
set of experiments.

 Parameter set  Cache size (M)  Block Size (m) 

 1  96 Kb  6 Kb 

 2  144 Kb  12 Kb 

Table 1. Sequence of map browsing operations used in the first set 
of experiments.
Frame 1 9 13 15 17 22 24 26 28 35 37 39 41 43 45

Op. ZF Z+ Z+ P Z+ Z+ P P P Z- Z- Z- Z- P ZF
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It should be remarked that the visual aspect of progres-
sive transmission of vector data is in general less distracting 
than the behavior of raster based systems which may leave 
blank large portions of the screen while data is fetched from 
the server. An example of quality increase over time is shown 
in Figure 6. The user performs a zoom operation in a window 
displaying a map with all states of Brazil, causing the system 
to perform a progressive transmission and rendering until it 
reaches 100% of display quality.

The following experiment measured client cache hit 
ratios for each browsing operation. Results for both sets of 
parameters are shown in Figure 7. A cache hit corresponds to 
IncreaseLOD or LoadLOD operations which do not have to be 
executed due to the fact that cache memory already contains 
the needed data. The cache hit ratio, then, is defined as the 
ratio between cache hits and the sum of all increase operations 
that would have been needed were the cache empty. Suppose, 
for instance, that after a given change in the viewing window, 
and considering that the client memory is empty, 40 opera-
tions are put in heap I, whereas with the actual contents of 
the cache, only 10 operations are needed. This means that the 
cache hit ratio is 75%. In our experiment, the cache hit ratio is 
computed just after heap I is built using Equation 2: 

100 | |
=

| | ( ( ), ( , ))
L R

I
CH

I min LOD L BestLOD L W
∈

×
+ ∑ 	 (2)

 where |I| is the number of operations in heap I.
Observing Figure 7, we notice that the tests for both 

parameter sets behave in identical fashion up to the point 
when the client with smaller memory – parameter set 1 – is 
completely full. After this point, although the client for set 2 
reaches higher cache hit ratios overall, the client for set 1 
occasionally has a better resident set with respect to the new 
viewing window. Also notice that for last point of the chart, 
corresponding to a Zoom Full operation, the client with a 
larger memory has necessarily a better cache hit ratio than 
the client with smaller memory.

It is also useful to observe the frequency of cache memory 
management operations as a function of the frame number. 
The chart in Figure 8 plots two lines, one depicting the cache 
inclusion operations, i.e., those that generate network traffic, 
and another depicting the cache exclusion operations for a 

client with parameter set 1. Note that no exclude operations 
are required before frame 19, as there is still enough room 
for storing polygonal data. Another important observation is 
that the number of operations does not necessarily follow the 
pattern of bandwidth usage. This can be attributed to the fact 
that the amount of data for each LOD step is not constant.

6.2. Second set of experiments

These were conducted using a map of year 2005 standing 
for the municipal limits of Brazil in 1:1.000.000 scale 
produced by the Brazilian Geography and Statistics Institute 
(IBGE)11. This map contains 16,660 polygonal lines, each with 
65 vertices on average. An overview is shown in Figure 9.

In the second set of experiments, two data sets repre-
senting the same collection of polygonal lines are used. The 
first data set, labeled original, contains the lines in full reso-
lution with 25 LOD steps, whereas in the second data set, 
labeled simplified, these lines were coarsened to LOD 12 using 
the Douglas-Peucker algorithm19. The data set original has 
1,076,029 vertices and simplified has 92,353.

The preprocessing stage produced an Extended MX-CIF 
Quadtree of height 6 and containing 536 leaf nodes, while 
polygonal lines were split into up to 25 LOD steps. Since this 
set of experiments aimed for understanding how the system 
scales with respect to the size of the data being served, a 
second data set was obtained by simplifying the original map 
with only up to 12 LOD steps.

The same sequence of browsing operations, shown in 
Table 3, was used in experiments with both data sets. The 
values for the client cache size and for the block size were 
also kept constant, namely, M = 1152 Kb and m = 48 KB.

After a first display of the whole map, i.e., just after 
the first Zoom Full operation, two series corresponding to 
1 Zoom More and 5 Panning operations each were issued. 
After the first Zoom More operation, polygonal lines need 
8 IncreaseLOD operations on average to reach maximum 

a b c d

Figure 6. A zoom-in operation performed on the black rectangle (a) causes progressive transmission and rendering (b), (c) until the system 
achieves maximum display quality (d).

Table 3. Sequence of map browsing operations used in the second 
set of experiments.
Frame 1 25 27 29 32 34 36 38 40 42 44 46 48

Op. ZF Z+ P P P P P Z+ P P P P P



Journal of the Brazilian Computer Society44 Ramos JAS, Esperança C, Clua EWG

100

80

60

40

20

0

Browser operation

C
ac

he
 h

it
 (%

 o
f o

p.
)

P. set 02 P. set 01

Zoom
full

Zoom
more

Zoom
more

Zoom
more

Zoom
less

Zoom
less

Zoom
less

Zoom
less

Zoom
full

Zoom
more

Panning PanningPanningPanning Panning

Figure 7. Cache hit ratios measured for each zooming and panning operation.

350

300

250

200

150

50

100

0
0 5 10 15 20 25 30 35 40 45 50

Frame

N
um

be
r 

of
 o

pe
ra

ti
on

Include Exclude

ZF Z+ Z+ P P P PZ+ Z+ Z– Z– Z– Z– P ZF

Parameter set 01

Figure 8. Cache memory management operations per frame for a client with parameter set 1.

Figure 9. Map with the municipal limits of Brazil.

display quality. The next Zoom More requires 8 additional 
IncreaseLOD operations. Since the simplified data set contains 
only 12 LOD steps, the second series of operations leads to less 
data being retrieved from the server than with the original 
data. This can be observed in the chart shown in Figure 10, 
where the experiments with both data sets behave identically 
up to the point where the second Zoom More operation is 
issued at frame 38. After this, the interaction with the original 
data set always uses more bandwidth than with the simpli-
fied data set. It should be stressed that this means only that 
the use of bandwidth depends on the availability of detail 
levels for a given view window, not on the size of the data 
set per se.

Lastly, it is shown in Figure 11 a plot of cache hit ratios 
computed as described above. We also observe identical 
behavior for both data sets up to frame 38. After this, browsing 
the simplified data set yields higher ratios than the original 
data set. This is expected, since the original set requires more 
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memory for storing the data up to LOD 16, whereas with the 
simplified data set the memory requirements of LODs up to 
12 are more modest.

7. Extensions

The results discussed in the previous section were 
obtained with relatively low values for M, considering that 
modern desktop workstations are ordinarily equipped 
with memory on the order of a few gigabytes. For instance, 
allowing M = 4 Mb and considering that each polygon vertex 
occupies 16  bytes (8 bytes per coordinate), cache memory 
would be able to accommodate more than 250,000 vertices.

On the other hand, allowing large block sizes (m) may 
impose a lower update rate on the client, depending on the 
available bandwidth. In our implementation this effect can 
be amplified due to the relatively simple-minded XML-RPC 
coding, which requires numbers to be first converted to string 

and then wrapped inside XML tags. For instance, a 5-digit 
integer value which is represented internally with 64 bits will 
require 14 bytes, or a 75% increase when coded as string and 
wrapped inside XML tags, e.g., <i4>12345</i4>. The repre-
sentation of floats is even more wasteful.

Thus, the use of thechniques to reduce this overhead is 
advisable. A simple alternative would be base-64 coding – a 
conversion type already supported by the XML-RPC 
standard. Another possibility is to employ compression, if 
supported by both server and client. The JavaScript Object 
Notation – JSON14 has also been proposed to address this 
same problem.

Examining the results for the second set of experiments, 
one may notice that the initial transmission of data required 
for showing the complete map to the user takes 23 frames. This 
high volume of transmitted data is due to the large number of 
polygonal lines which, even when represented at the lowest 
possible level of detail, comprise 34,686 vertices. Observing 
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Figure 9, however, it is clear that many of these lines are not 
relevant for an initial overview of the map, see Bertolotto  
and Egenhofer3. This suggests that visual importance classifi-
cation of the polygonal lines should be incorporated into the 
system. This would allow, for instance, that the first overview 
of the map contain only polygonal lines pertaining to state 
limits, leaving municipal divisions to zoomed-in views.

In the context of Geographic Information Systems (GIS), 
the use of two or more data sets which represent the same 
objective reality at different scales is common. However, the 
second set of experiments, as reported in Section 6.2, suggests 
that the same functionality may be reached by mixing visual 
importance rules together with LOD processing. Thus, it 
would be possible to obtain an adequately detailed world 
view for any desired viewing window of the same reality.

Another important aspect of any web mapping frame-
work is the support of other geometric features such as points 
and polygons. These are not yet handled by the architecture 
described here. In fact, being dimensionless, points do not 
lend themselves to strict level-of-detail processing, although 
they could be easily submitted to visual importance classifi-

cation. Closed polygonal lines representing area features can 
be easily processed with the Douglas-Peucker algorithm, but 
obtaining these polygons from a set of open polygonal lines 
representing a space partition requires additional informa-
tion as prescribed by the Polygon-arc Topology (see Section 6).

Extending our framework in order to support closed 
polygonal line would require little effort, except for one 
crucial problem related to the fact that, given a visualiza-
tion window W, the set of polygonal lines that cross it do 
not necessarily limit completely all polygons intersecting 
that same window. In other words, a polygon which inter-
sects W may be bounded by polygonal lines which are not 
in the client’s cache memory. The problem can be circum-
vented by projecting the endpoints of those polygonal lines 
that do intersect the window onto the edges and vertices of 
a sufficiently large rectangle enclosing the viewing window. 
By following the polygon circulation along this rectangle it 
is possible to obtain a closed polygonal lines which will later 
be clipped against the window. The procedure is illustrated 
in Figure 12.

Open polygonal line

Window

Large rectangle

Endpoint projected onto edge

Endpoint projected onto a vertex

a b

c d

Figure 12. Obtaining closed polygonal lines from an incomplete set of polygonal lines. a) A rectangle big enough to enclose all polygonal lines 
and the window is computed; b) Endpoints of the polygonal lines are projected onto edges or vertices depending on which of the 8 rectangular 
regions around the window they lay; the closed path formed formed by the rectangle edges and the polygonal lines is traversed in either; 
c) counterclockwise or d) clockwise circulation. 
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8. Conclusions and Suggestions for Future 
Work

The client-server framework for remotely displaying 
vector maps described in this work was designed to achieve 
several goals: be simple, scalable, make predictable use of 
network bandwidth and support progressive transmission 
and rendering. The prototype implementation and admit-
tedly limited experimental evidence seem to indicate that 
these objectives were largely met.

An enhanced version of the prototype could adopt alter-
native solutions for some of the design decisions discussed 
here. We are particularly dissatisfied with the way LOD steps 
were defined, which results in a very heterogenous partition 
of detail space. Also, as pointed out in Davis6 and McMaster 
and Shea24, the Douglas-Peucker do not provide an optimal 
approximation of the original line for large tolerances. The 
communication protocol between client and server could 
be overhauled by using some less wasteful coding than 
XML-RPC. A more finely tuned spatial index could also lead 
to a better overall performance.

Addressing browser compatibility is a major considera-
tion when it comes to browser-embedded applications such 
as the one described in this paper. Unfortunately, browser 
specifications will continue to represent a moving target, at 
least as long as browser vendors choose to ignore standardi-
zation efforts.

Although our prototype was not tested within a more 
realistic context where the server is requested by multiple 
client connections, it is nevertheless clear that memory usage 
would increase linearly with a relatively small slope since the 
server needs to store for connected each client a single integer 
for each polygonal line (see list A in the example of Section 4). 
Additionally, for every client actively navigating the map, the 
server must also compute heaps I and D, but these tend to be 
small for small changes of the viewing window as suggested 
by Figure 8. On the other hand, the processing of Algorithm 1 
on both client and server, although helping to keep the band-
width usage at a minimum, may impose a heavy processing 
load on the server.

A continuation of this work would necessarily incor-
porate the extensions discussed in Section 7 as well as a 
more thorough testing of its various aspects. The proto-
type would probably also benefit from a closer adherence 
to OGC standards for client-server communication18. A 
more general preprocessing of vector data sets is also being 
planned, including the treatment of topological relation-
ships among geometries as discussed in Bertolotto and 
Egenhofer3.

Clearly, a production system would require the addition 
of several improvements such as visual importance classifi-
cation. A complete system would probably also include the 
ability to serve raster data in situations where this format is 
more appealing.
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