
7

Optimistic Replication in Pharos,
a Collaborative Application on the Web

Abstract
Pharos is a collaborative application which enables

users to share document annotations. Annotations of a same
subject are stored altogether in channels, and channels are
replicated to improve performance. What characterises data
replication in a collaborative application like Pharos is
the way users see data. If, for instance, mutual consistency is
required, then collaboration should be synchronous. On
the other hand, if remote users can work in disconnected
mode, collaboration can be asynchronous with weaker con-
straints on data freshness. In this paper, we focus on asyn-
chronous replication which is typically required on the
Web. We propose an optimistic replication model based on
lazy group replication and a protocol to detect and resolve
potential conflicts to refresh the replicas. This protocol is
based on the ordering of write operations at each site using
its timestamps values. Careful log management is the key to
its implementation. We describe the implementation of our
model in the Pharos application.

Keywords: Web, Collaborative Applications, Asynchro-
nous Replication, Optimistic Replication, Log Management

1 Introduction
The Web enables and encourages collaboration between

remote users. There are various ways to collaborate but
they all involve groups of people sharing a common inter-
est, which may be professional (e.g. Java programming) or
personal (e.g. painting). These groups of people form com-
munities that share information in various ways. The most
basic ways (forums, mailing lists, IRC channels) are restricted
to the exchange of text messages. In advanced collabora-
tive applications, such as groupware, information is more
structured and data replication is used for improving in-
formation sharing. With the emergence of communities on
the Internet, we can expect the majority of Web applica-

tions to integrate the collaborative dimension through data
replication.

Pharos [http://webtools.dyade.fr/pharos/] is a collabo-
rative application on the Web developed in GIE Dyade, a
joint venture between Bull and INRIA. It allows users to
share their knowledge on a specific topic through annota-
tions that are stored in a specific database called channel.
If users are located world-wide, the latency of annotation
fetching can become unacceptable. To improve perform-
ance, channels can be replicated close to users locations. If
users requires mutual consistency, then data replication
should be synchronous. On the other hand, if mutual con-
sistency can be relaxed, for instance users may want to
work in disconnected mode, then data replication must be
asynchronous with weaker constraints on data freshness
[11]. In this case, pessimistic replication protocols which
lock write operations [1] to get strong consistency are not
appropriate. Our solution is to trade consistency for effi-
ciency using optimistic replication. An optimistic replica-
tion protocol accepts all writes as they come, and thus may
introduce conflicts which should be resolved at some point,
guaranteeing eventual consistency.

Another important characteristic is the nature of repli-
cated data (replicas). Replicas may be strongly or weakly
structured (e.g. objects, tables or text) as well as modifiable
or destructible. In addition, if replicas are interrelated among
themselves, special care is needed to update them. For
instance, a department d is deleted from replica R while
there is an insertion of a new employee in replica R’. The
problem then is how to preserve consistency. The nature of
the replicated data combined with the interaction mode (syn-
chronous or asynchronous) determine the replication model
for a collaborative application.

In this paper, we focus on asynchronous collaborative
applications with interrelated replicas, which are typically

Optimistic Replication in Pharos,
a Collaborative Application on the Web

Esther Pacitti,
Olivier Dedieu

Esther Pacitti

Atlas Group, Inria and IRIN,
Nantes - France

Esther.Pacitti@irin.univ-nantes.fr

Olivier Dedieu

GIE Dyade (Bull-INRIA)
Le Chesnay, France

Olivier.Dedieu@inria.fr

8

required on the Web. Existing replication solutions [10,13],
developed in the context of relational DBMS, are limited to
unrelated replicas, i.e. single tables, and thus do not ad-
dress the more general needs of collaborative applications.
In Section 2, we present Pharos, the application which
motivated our research. In Section 3, we propose an opti-
mistic replication model based on lazy group replication (all
replicated data are updateable). We also present the asyn-
chronous protocol used to detect and resolve the conflicts,
and refresh the replicas. The principle is to provide a total
order on write operations at each site. Section 4 presents
the underlying replication architecture used by Pharos. Sec-
tion 5 presents the main issues of the Pharos implementa-
tion. Finally, we present our conclusions in Section 6.

2 Pharos: A of Collaborative Application
on the Web
The Web is the easiest way to disseminate information

to the global community. Nevertheless, users usually find
it hard to find the information they are looking for. The Web
infrastructure relies on hypertext and does not provide a
mechanism to quickly find a valuable document on a pre-
cise topic. As a result, people search information in dedi-
cated sites that index the Web, or consult alternative com-
munication channels such as news groups or mailing lists.
Search engines index the content of the Web and provide a
query interface of a Web site. Their robots travel through
hyperlinks to discover new documents. Their success is
due to two main reasons: (i) they are the easiest place to
find information; (ii) they have a relatively good coverage
of the Web [6]. However, one major drawback of search
engines is that they only give links. The user must read and
determine whether if the proposed documents are interest-
ing or not. This work is time-consuming and must be done
by all users for a given search. Factorizing this repetitive
effort would help people to find more quickly the most rel-
evant documents. There is clearly a need to provide a sys-
tem that integrates functionalities similar to search engines
but which references valuable information such as that ex-
changes within groups of experts.

Pharos is a collaborative infrastructure which allows
people to share their knowledge on a specific topic. People
finding a valuable document put annotations in the appro-
priate channel. An annotation is a structured datum refer-
encing a URL. It is composed of values such as a title, a
rating (a subjective note), a free comment and a list of key-
words. A channel is a database of annotations dedicated
to a specific topic (e.g. games, music, Java language, Web
technologies, etc). People interact with Pharos by using a
browser assistant. It observes the URLs the user accesses,
requests channel servers for annotations associated with
each URL and displays them. As a result, the user can quickly

evaluate the interest of the document. Pharos also helps to
find rated information. Queries can be performed to extract
annotated documents matching some criteria (e.g. all docu-
ments rated as “good” by Bob and categorized with the
keyword “documentation:book”). Futhermore, new key-
words may be added, modified, and old ones may be de-
leted.

As the amount of available annotations increases, it
becomes more difficult for users to exploit them. If users are
located world-wide the latency of annotation fetching can
become unacceptable. To improve performance, channels
can be replicated close to user’s locations. This creates
consistency issues which Pharos addresses with an opti-
mistic protocol.

3 Optimistic Replication Model
Our replication model is based on a lazy replication

scheme [9]. We focus on lazy group replication which is
well-suited for collaborative applications on the Web. We
characterize a lazy group replication scheme using: owner-
ship, propagation, refreshment and configuration. We
present the principles of our optimistic protocol based on
the previous parameters. To easy comprehension, we use
a simple electronic address book application as underlying
example.

The ownership parameter defines the permissions for
updating replica copies. If a replica copy is updateable, it
is called a primary copy, otherwise it is called a secondary
copy. In lazy group replication, primary copies are written
asynchronously, i.e. the property of mutual consistency is
relaxed [8]. Therefore, a site may work in connected mode or
in disconnected mode. The configuration parameter de-
fines the component sites of a replication scheme. In our
case all nodes are master sites (stores primary copies).

Object-oriented languages (e.g. Java) are widely used
to write applications on the Web. Therefore, the replicated
data may structured in complex ways. We consider that the
schema of each primary copy is defined using a Java class.
Thus, each replica R consists of a set of objects. For in-
stance, let us define R using the address book schema
(name, email, homePhone, etc). Thus, a replica R is a set of
objects , each providing address and telephone informa-
tion of a person. Each site that stores R is called a master for
this copy.

 In lazy group replication, a conflict arises whenever two
masters of a same replica R write the same attribute of the
same object. For instance, a conflict arises when two master
sites change Olivier Dedieu’s e-mail address to a different
one, which yields an inconsistent state since users may see
two different e-mail addresses. Such write operations are not
commutative and must be executed in the same order at all
sites. Such property is called total oreder. Another case of

Optimistic Replication in Pharos,
a Collaborative Application on the Web

Esther Pacitti,
Olivier Dedieu

9

conflict may also happen with interrelated replicas. Suppose
that object O in Replica R is deleted, however it is referenced
by a new created object O’ at replica R’. In this case, write
operations execution order must reflect the dependency
between replicas. Such property is called causal order. To
enforce consistency respecting causal and total order re-
strictions we use a pseudo Lamport like clock (logical
timestamps with temporal increment [4]) to order and pro-
duce timestamps values during synchronization.

 We now present the principles of the optimistic proto-
col using the propagation and refreshment parameters. The
propagation parameter defines “when” the writes done on
R at master must be propagated towards other masters of
R . In our replication model, we consider that update propa-
gation occurs exclusively between a Sender and a Re-
ceiver in a client-server fashion. The sender performs propa-
gation and the receiver performs refreshment. Therefore,
the receiver can participate at most at one refreshment at a
time. On the other hand, the sender may propagate to sev-
eral receivers.

The refreshment parameter defines the management of
write operations to refresh primary copies. In fact, it imple-
ments conflict detection and resolution using the log his-
tory H of each site, which is used to store the sequence of
write operations locally. Therefore, refreshment is performed
in three steps:

1) Integration of non-conflicting write operations us-
ing the history of each site involved

2) Conflict detection and resolution. For write integra-
tion and update/update conflicts, we choose to ex-
ecute them in timestamp order. On the other hand,
for update/delete conflicts, the delete operation is
favoured.

3) Finally, updates are propagated epidemically [3]:
changes made to one copy eventually migrate to all,
which guarantees that all replicas will finally reach a
consistent state.

4 System Architecture
Figure 1 shows the replication architecture for our model

that is similar to the one presented in [12]. Each site has 3
main components: Object Manager, Log Manager,
Synchronizer.

Object Manager: it implements all procedures and data
structures necessary to represent the replicas (Java ob-
jects) and manage them (update, delete, create, insert).
Replicas are stored in the local database system. After
performing local write operations on R, the object manager
invokes the Log Manager to log the sequence of opera-
tions on R. Conversely, whenever R is refreshed, the Log
Manager requests the Object Manager to update R, be-

cause updates are first registerd in the Log. Whenever it
runs out of memory, the Object Manager uses a DBMS to
swap objects to disk.

Figure 1: Replication Architecture

Log Manager: To identify conflicts, we need to know
the sequence of write operations that produced the con-
flict. For instance, if a data is missing on a replica, additional
information is necessary to check whether the replica never
received the data or the data was received but destroyed.
Thus, replica storage plays an important role for conflict
detection and resolution. It must provide mechanisms to
store and retrieve all write operations that may generate
conflicts so that conflicts may be analysed to produce a
conciliated sequence of write operations. The log man-
ager is used for replica storage. It records in the log the
sequence of all write operations performed on R (create,
update, delete) and provides support for querying the log
for conflict detection and resolution purposes. Each logged
operation is represented in XML which is useful here to
describe and query structured data. For each operation on
an object, the log manager adds timestamp, identifier and
operation information. Timestamp is the clock value when
the operation started and is given by the Stamp Manager.
Identifier is the object identifier and operation is the type
of operation. Figure 2 shows an example of a sequence of 2
log records, as two XML elements with all information rep-
resented as XML attributes.

Synchronizer: implements propagation using the net-
work interface when the site acts as a sender. It also per-
forms refreshment on R, using the Conflict Manager, when-
ever the site is a receiver. The Conflict Manager queries the
Log Manager for a sequence of write operations since a
specific timestamp value. Then, it compares the incoming
sequence of write operations sent by the Sender to detect
and resolve conflicts. Finally, the Conflict Manager trans-
mits to the log manager the conciliated sequence of write
operations on R. The network interface is used to propa-
gate and receive messages.

Optimistic Replication in Pharos,
a Collaborative Application on the Web

Esther Pacitti,
Olivier Dedieu

Stamp

Manager

Log

Manager

Object

Manager
XML logDB

Receiver Propagator

Conflict

Manager

Network

Synchronizer

10

5 Pharos Implementation
Our replication model and architecture is used as an

underlying component of the Pharos system. This section
presents Pharos in more details, in particular the way
annotations and channels are implemented.

5.1 Annotations

An annotation is a structured datum, published by
someone on a channel, to describe a Web document. The
user publishes annotations explicitly. An impotant charac-
teristic of an annotation is that it is structured. This data
structure depends on the channel class. A basic class, named
BasicClass, is provided for general purpose. A
BasicChannel annotation contains a title which is by de-
fault the document’s title, a rating which is the user’s ap-
preciation of the document, some keywords which are cho-
sen in an extensible hierarchical list, and a comment which
is a free textual note.

An annotation may contain multiple keywords. The key-
word hierarchy may be viewed as a simple thesaurus. This
thesaurus helps the community to share a common, tree-
structured vocabulary when annotating documents. The
thesaurus simplifies searching by keywords and gives a
global view of the channel topic organisation. The keyword
hierarchy may be modified only by authorized users.

a. Channels

A channel represents a community of users sharing a
same interest. The number of users registered in a channel
varies according to the community. A channel can be com-
posed of a few users annotationg documents on a very in-
depth topic or, at the opposite extreme, it can concern a
more general topic intended for mass consumption on the
world-wide scale. The channel stores member’s annota-
tions in a database. It can extract annotations associated
with a specific document and annotated documents match-
ing some annotation criteria. Channels are autonomous
entities. That is, instead of having one huge database for
all annotations of all topics, they are as many channels as
there are topics.

b. Implementation

Pharos has been developped in Java which provides
useful features for building dynamic and portable architec-
tures. Channels are mainly composed of two parts: the
backend and the frontend. The backend is the server part of
a channel. It manages member subscription, the annotation
database and additional data such as the thesaurus of key-
words. The frontend is the client part of a channel. It con-
tains GUI hosted in the browser assistant. It allows the user
to add, display and query annotations, to edit the thesau-
rus and to customize his profile. The backend processes
queries from frontend. The data replication architecture
presented in Section 4 is implemented as an autonomous
component placed together with the backend part of the
channel, queries are submitted towards the annotation da-
tabase, using the object manager.

Frontend/backend communication relies on RMI (Re-
mote Method Invocation). Each backend exports a remote
object which is invoked by frontends. To factorize certains
resource consumption (e.g. network port, Web Access, etc),
backends may me aggregated in a same machine (Pharos
Server). This helps users to discover and choose the chan-
nels they want to subscribe.

Pharos handles a variety of channels thanks to a com-
position architecture. This architecture relies on the JP frame-
work [5] which is intended for building modular and exten-
sible Java applications. Channel frontends and backends
are Jplug components which are respectively plugged into
the browser assistant and the PharosServer. When a user
subscribes to a new channel, the corresponding frontend is
downloaded, installed and loaded.

Pharos’s Web site [http://webtools.dyade.fr/pharos/]
features more than twenty different channels. Pharos is also
used by FTPress, a French news agency, and Wanadoo,
the first Internet Service Provider in France, to allow for
collaborative annotation and ranking of documents.

6 Conclusion
Pharos is a collaborative infrastructure which allows people

to share their knowledge on a specific topic. People finding a
valuable document put annotations in the appropriate chan-
nel. Channels are replicated to improve performance. This pa-

<card stamp=“ab1:273441”, id = “ab1:27341”, op = “create”,

homeTel = “01 23 45 67 89”, workTel= “01 39 63 51 47”, email = dedieu@tif.inria.fr, name = “Olivier Dedieu”>

</card>

<card stamp=“ab1:27357”, id=“ab1:27341”, op=“update”,

email=“Olivier.Dedieu@inria.fr”>

</card>

Figure 2: A sequence of log records

Optimistic Replication in Pharos,
a Collaborative Application on the Web

Esther Pacitti,
Olivier Dedieu

11

per has several contributions. First, we proposed an optimistic
replication model for asynchronous collaborative applications
on the Web with interrelated replicas. Our model is based on
lazy group replication. Second, we proposed a protocol to
detect and resolve potential conflicts, and refresh the replicas.
Log management plays an important role in our protocol since
it is used to identify conflicts. In addition, timestamp ordering
is used as the criteria to solve conflicts.

Third, we proposed a replication architecture that con-
tains the most relevant components to implement lazy group
replication. In our architecture we proposed Java as the
underlying language for object management and we use
XML for log management description. Java makes our com-
ponents highly portable while XML makes our log records
easy to exchange between sites.

Our model and architecture has been used in Pharos,
and validated through existing Pharos applications. Our
solution is novel in that it deals with interrelated replicas
and provides a complete solution to conflict resolution. It is
also lightweight in the sense that it does not need to be
integrated within a DBMS.

Several works address collaborative systems . Marais
and Bharat [7] uses both content and collaborative index-
ing. However, they use a centralised database which repre-
sents the CommonKnowledge of the community. As a re-
sult, they do not address replication issues as proposed in
this paper. From a replication point of view, the closest work
to ours is [10]. The authors propose an optimistic replica-
tion model with session guarantees as coherency criteria.
In our case, we do not impose any consistency criteria be-
cause the underlying timestamp management is sufficient
for consistency enforcement.

References
[1] P.A. Bernstein, E. Newcomer: Principles of Transaction

Processing. Morgan Kaufmann, 1997.

[2] V. Bouthors, O. Dedieu: Pharos, a Collaborative Infra-
structure for Web Knowledge Sharing. European Con-
ference on Digital Libraries (ECDL’99), Paris, Lecture
Notes in Computer Science, Springer-Verlag, 1999.

[3] A. D. Birrel, R. Levin., R.M. Needham, M. D.Schroeder :
“Grapevine: an exercise in distributing computing”,
Communications of the ACM (25) 4, April 1982.

[4] O. Dedieu: “Réplication Optimiste pour les Applications
Collaboratives Asynchrones”, Thèse de Doctorat, Systèmes
Informatiques, Université de Marne la Vallée, 2000.

[5] O. Dedieu : “JPlug, a framework to build modular ap-
plications”, http://webtools.dyade.fr/jplug.

[6] S. Lawrence , C. L. Giles: “Searching the World Wide
Web”, Science 280, 5360, 1998

[7] H. Marais, K. Bharat : Supporting cooperative and per-
sonal surfing with a desktop assistant. ACM Sympo-
sium on User Interface Software and Technology (UIST-
97), ACM Press, pp. 129-138, NY, 1997.

 [8] M.T. Özsu, P.Valduriez: Principles of Distributed Data-
base Systems”, 2nd Edition, Prentice Hall, 1999.

[9] E. Pacitti, P. Minet, E. Simon: “Replica Consistency in
Lazy Master Replicated Databases”. Distributed and
Parallel Databases, Kluwer Academic, accepted for
publication, to appear.

[10] E. Pacitti, P. Minet, E. Simon: Fast Algorithms for Main-
taining Replica Consistency in Lazy Master Replicated
Databases. Int. Conf. on Very Large Databases
(VLDB’99), Edinburgh, 1999.

[11] E. Pacitti, E. Simon: Update Propagation Strategies to
Improve Freshness in Lazy Master Replicated Data-
bases. The VLDB Journal, 8(3-4) :305-318, 2000.

[12] E.Pacitti, E. Simon, R. Melo: Improving Data Freshness
in Lazy Master Schemes. IEEE Int. Conf. on Distrib-
uted Computing Systems (ICDCS’98), Amsterdam,
1998.

[13] E. Pacitti, P. Valduriez: Replicated Databases: concepts,
architectures and techniques. Networking and Infor-
mation Systems Journal, 1(4-5): 519-546, 1998.

[14] D. B. Terry, A. J. et. al. : Session Guarantees for Weakly
Consistent Replicated Data. Int. Conf. On Parallel
and Distributed Information Systems (PDIS’ 94),
Austin, Texas, 1994.

Optimistic Replication in Pharos,
a Collaborative Application on the Web

Esther Pacitti,
Olivier Dedieu

