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Absgtract

Automating semantic matching of attributes for the
purpose of information integration is challenging, and the
dynamics of the Web further exacerbate this problem.
Believing that many facets of metadata can contribute to a
resolution, we present a framework for multifaceted
exploitation of metadata in which we gather information
about potential matches fromvariousfacets of metadata and
combine this information to generate and place confidence
valueson potential attribute matches. To maketheframework
apply in the highly dynamic V\eb environment, we base our
process on machinelearning when sufficient applicable data
is available and base it otherwise on empirically observed
rules. Experiments we have conducted are encouraging,
showing that when the combination of facets converges as
expected, the results are highly reliable.

Keywords: semantic attribute matching, information
integration, exploitation of metadata.

1Introduction

In this paper, we focus on the long-standing and
challenging problem of attribute matching [1] for the
purpose of information integration. To addressthisproblem,
researchers have used a variety of techniques including
the use of data values [2, 3], data-dictionary information
[3], structura properties[4], ontologies[5], synonymsand
other terminological relationshipsfound in dictionariesand
thesauri [6, 7, 8], and various combinations of these
techniques [9, 10, 11]. These are the kinds of facets of
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metadatawe wishto exploit, all of which may contributeto
the resolution of attribute-matching issues.

Asin[12], weassumethat wewish to integrate datafrom
multiple source schemes into a target scheme, and we
assume that all schemes are described using the same
conceptua model [13]. Source schemesmay or may not have
associated populated data instance and additional metadata
beyond a basic database scheme. Typical sources we
consider include Web repositories, which we reverse
engineer into source schemes by the data-extraction
processes we have defined for semistructured and
unstructured Web pages [14], by the database reverse-
engineering process we have defined, which worksfor Web
tables and relational databases [15], and by the Web form
data-extraction process we are developing [16]. Moreover,
using standard representational transformations among
conceptual-model schemes, we can transform the
conceptual-model instance of any particular wrapper into a
conceptual-model instance required by our technology, and
thuswe can make use of any devel oped wrapper technology
(e.g.[17, 18, 19] and many more— seethe bibliography in
[14]). In addition to these assumptions for sources, we
assumethat target schemes are augmented with avariety of
both application-independent and application-speficic-
ontological information. For this paper the augmentations
we discuss are WordNet [20, 21], which is application
independent, sampl e data, which isapplication specific, and
regular-expression recognizers, which are partly application
specific and partly application independent.

Our contribution in this paper is the following
framework, which we propose as away to discover which
attributes in a source scheme Sdirectly match with which
attributesin atarget scheme T.!
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1. For eachindividual, independent facet,? find potential
attribute matches between the m attributesin S and the n
attributes in T. Provide confidence measures between 0
(lowest confidence) and 1 (highest confidence) for each
potential match. Section 2 explains how we generate
matching rules over independent facets.

2. Using the confidence measuresfrom (1), combinethe
measures for each potential match into a unified measure
of match confidence. The result is an m x n matrix M of
confidence measures. The last subsection of Section 2
explains how we combine confidence measures.

3. Using the matrix of combined confidence measure
from (2), apply a structural test to further refine the
confidence-measure matrix M. Section 3 explainshow we
apply this test.

4. |terate over M obtained from (3) using a best-first
match constrained by an injective assignment algorithm
until all matches whose confidence measures exceed a
predetermined threshold are settled. Section 4 explainshow
we settle attribute matches.

Although we have some idea about what metadata is
most useful and in what combination and under what
circumstances we should use this metadata, we do not
know with certainty. Thus, rather than try to encode
algorithms over the metadata ourselves, we use machine
learning, where possible, to develop the algorithms. This
approach also has the advantage of being flexible in the
presence of changing dynamics, which are so common on
the Web.

Weillustrate our framework using car advertisements,
which are plentiful on the Web, appearing in a variety of
unstructured and structured forms. In Section 5 we report
on the results obtained from this application.

Sometimes we are not able to make use of al facets of
metadata. Targets may not have sample data, for example,
and sometimes they may not have data descriptions.
Sometimes source schemes are known, but data has either
not yet been provided or is not available.

In these cases, even though we cannot make use of al
facets of metadata, we can still run our multifaceted attribute-
matching process by considering the facetswe do have. We
discuss the case of having only two facets, namely

1In future work we intend to expand this framework to indirect
matches in which target object and relationship sets match with
virtual source object and relationship sets formed by queries over
source model instances as set forth in [12], but we focus here only
on direct attribute matches.

2 All facets except structural facets are independent. Since structural
graph matching in the absence of guiding constraints is
exponential, we avoid this intractability by letting structural facets
depend on tentative matches found by considering non-structural
facets.

terminological relationships and structural properties, in
Section 6. We also give results for three additional
applications: music CDs, genealogy, and real estate.

In Section 7 we summarize, draw conclusions, and give
guidancefor future work.

2 I ndependent Facet M atching

We have investigated three independent facets: (1)
terminological relationships (e.g. synonyms, word
senses, and hypernym groupings), (2) data-value
characteristics (e.g. average values, variances, string
lengths), and (3) target-specific, regular-expression
matches (i.e. whether expected strings appear inthe data).
For each independent facet we obtain a vector of
measures for the features of interest and then apply
machine learning over this feature vector to generate a
decision rule and a measure of confidence for each
generated decision. We use C4.5 [22] as our decision-
rule and confidence-measure generator.

In the subsections bel ow, we explain the details about
how we generate confidence values for source-target
attribute pairs for the independent facets we have
investigated. Then, in a subsequent subsection we explain
how we combine the confidence val ues obtained from the
independent facets into a single combined confidence-
value matrix for each pair of source-target attributes.

2.1 Terminological Relationships

One facet of metadata that provides a clue about
which attributes to match isthe meaning of the attribute
names. To match attribute names, we need a dictionary
or thesaurus. WordNet [20, 21] is a readily available
lexical reference system that organizes English nouns,
verbs, adjectives, and adverbs into synonym sets, each
representing one underlying lexical concept. Other
researchers have also suggested using WordNet to
match attributes (e.g. [7, 23]), but have given few, if any,
details.

f3<=0:NO(222.0/26.0)
f3>0
f2<=2: YES(181.0/3.0)
f2>2
| f4<=11
| | f2<=5:YES(15.0/5.0)
|| f2>5:NO(14.0/6.0)
| f4>11:NO(17.0/2.0)
Figure 1. Generated WordNet Rule
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Initially we investigated the possibility of using 27
available features of WordNet in an attempt to match an
attribute A of a source scheme with an attribute B of a
target scheme. The C4.5-generated decision tree, however,
was not intuitive.® We therefore introduced some bias by
selecting only those features we believed would contribute
toahuman’sdecision to declareapotential attribute match,
namely (fO) same word (1 if A = B and 0 otherwise), (f1)
synonym (1if “yes’ and Oif “no™), (f2) sum of thedistances
of A and B toacommon hypernym (“iskind of”) root (if A
and B have no common hypernym root, the distance is
defined as a maximum number in the algorithm), (f3) the
number of different common hypernym roots of A and B,
and (f4) the sum of the number of senses of A and B. For
our training datawe used 222 positive and 227 negativeA-
B pairs selected from attribute names found in database
schemes, which were readily available to us, along with
synonym names found in dictionaries. Figure 1 showsthe
resulting decision tree. Surprisingly, neither fO (sameword)
nor f1 (synonym) became part of the decision rule. Feature
f3 dominates - when WordNet cannot find a common
hypernym root, thewordsare not related. After f3, f2 makes
themost difference- if two wordsare closely related to the
same hypernym root, they areagood potential match. (Note
that f2 covers f0 and f1 because both identical words and
direct synonyms have zero distance to a common root;
this helps mitigate the surprise about fO and f1.) Lastly, if
the number of sensesistoo high (f4 > 11), apair of words
tends to match almost randomly; thus the C4.5-generated
rule rejects these pairs and accepts fewer senses only if
pairsarereasonably close (f2 <= 5) to acommon root. The
parenthetical numbers (x /y) following “YES" and “NO” for
a decision-tree leaf L give the total number of training
instances x classified for L and the number of incorrect
training instancesy classified for L.

Cax Yexr Make Model Style Payment

Ca 9L 11U 1 1 12 A1
Year 1 98 U1 A1 A1

Make 11 11 98 93 ie 3] A1
Model 11 11 98 98 93 1
Mileage 11 11 11 A1 A1 43
Phone 43 11 11 1 43 1
Price 4 N R 1 12 98
Feature 11 11 67 12 12 A1

Figure 2: WordNet Confidence-Value Matrix

3 An advantage of decision-tree learners over other machine learning
(such as neural nets) is that they generate results whose
reasonableness can be validated by a human.
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Figure 2 shows a confidence-val ue matrix generated by
the decision rulein Figure 1 for asample application. The
attributes along the top are source attributes taken from a
Web table (www.swapal eas.com, November 2000).* The
attributes on the left are target attributes taken from our
standard car-ads data-extraction ontology
(www.deg.byu.edu). For a“YES’ leaf L, C4.5 computes
confidence factors by theformula(x - y) / x wherex isthe
total number of training instances classified for L andy is
the number of incorrect training instances classified for L.5
Fora“NO" ledf, the confidencefactor is 1-((x-y)=/ X), which
converts “NO’S” into “YES's” with inverted confidence
values. Observethat the confidenceishigh for thematches
{Car, Car}, {Year, Yearg}, { Make, Make}, and { Model,
Model}, asit should be. The confidence, however, is also
highfor { Make, Moddl}, { Make, Style}, and{Model, Style},
which are synonymsin some contexts, although not in car
ads. Also, the confidence of { Price, Payment} ishigh, but
“Price” isthe selling price of acar, which should not match
“Payment,” the monthly payment of the lease. Aswe shall
see, other facets are needed to sort out these differences.

2.2 Data-ValueChar acteristics

Another facet of metadata that provides a clue about
which attributes to match is whether two sets of data, in
some sense, have similar value characteristics. Previous
work in [2] shows that this facet can successfully help
match attributes by considering such characteristics as
means and variances of numerical data and string-lengths
and al phabetic/non al phabetic ratios of al phanumeric data.
We used the same features asin [2], but generated a C4.5
decision rule rather than aneural-net decision rule.

Cax Yexr Make Mode Style Payment

Ca NA NA NA NA NA NA
Year NA 98 0 0 0 0
Make NA O 97 83 0 0
Model NA O 1 1 0

Mileage NA 0 0 0 0 97
Phone NA 0 0 0 0 0
Price NA O 0 0 0 14
Feature NA O 05 R 0 0

Figure 3: Value-Characteristics Confidence-Value Matrix

4 When attribute names were abbreviations, we expanded them so
that WordNet could recognize them. We also selected nouns from
phrase names. In future work, we intend to automate abbreviation
expansion using dictionaries and noun selection using simple
natural -language-processing techniques.

5 We set the C4.5 parameter for rule-instance classication to 10 so
that leaves with too few classications would not have unsuitably
high condence factors.
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Wetrained the C4.5 decision-rule generator for our car-
ads application using data from twenty-nine different car-
ad Web sites scattered throughout the US. We generated
two decision trees, one for numeric data and one for
alphanumeric data. These decision treesaresimilar inform
tothe decisiontreein Figure 1.

Figure 3 shows the results of applying our generated
numeric- and alphanumeric- data decision trees to our
sample car-ads test case. Note that in Figure 3 the “Car”
attributeisanonlexical attribute whose valuesare OID’s,
making them inapplicablefor value analysis. Observe that
years, makes, and models, which should match al have
high confidence values. Observe, however, that the makes,
models, and featuresall tend to look alike according to the
value characteristics measured and that mileages and
payments also look alike. These need to be further sorted
out using other facets. Interestingly, prices and payments
do not have similar value characteristics; this is because
their meansare vastly different.

2.3Expected DataValues

Yet another facet of metadatathat providesaclue about
which attributes to match is the presence of expected data
values. As explained in [12], we can associate with each
attribute A in the target scheme a regular expression that
matches val ues expected to appear for a source attribute B
that potentially matches A. Then, using techniques
described in [14], we can extract data values for source
attributes and categorize them with respect to the attributes
in the target, and thus match source and target attributes.

Cax Yexr Make Mode Style Payment
Ca NA NA NA NA NA NA
Year NA 1 0 o7} 0 49
Make NA 0 1 0 0 0
Model NA 0 0 87 A3 01
Mileage NA 0 0 0 0 0
Phone NA 0 0 0 0 0
Price NA 0 0 0 0 0
Feature NA 0 0 01 9 0

Figure 4: Expected-Values Confidence-Value Matrix

Instead of using C4.5 to generate a decision rule for
expected data values, we directly generated confidence
factors as follows. We applied the regular expression for

6 These decision trees can be found in a technical report available at
www.deg.byu.edu.

each target attribute A against the set of values for each
source attribute B and found the percentage of B values
that matched (or included at least some match). Then, for
each A-B pair, we simply let this percentage value be the
confidence value.

Figure 4 shows the matrix for our sample car-ads test
case. Once again note that “Car” attribute values are
inapplicable since they are OID’s. Observe that years,
makes, and models consistently include values that are
expected. Further, observe that makes, models, and styles
do not get mixed up when we consider specific expected
values- “Ford” isamake, not amodel or astyle; “Cavalier”
isamodel, not amakeor astyle; and “ Sedan” isastyle, not
amake or amodel. Interestingly, features and styles match
- this is because features include styles in our car-ads
ontology. It is also interesting that years and payments
show some degree of match - this is because year values
and payment values overlap.

2.4 Combining Facets

Although we would like to study more sophisticated
combinations in the future, including the possibility of
using machinelearning to provide an appropriate decision
rule, we currently use asimple average over the confidence
values for each applicable attribute pair. Figure 5 shows
the resulting combined matrix for our sample car-ads
application.

Car Year Make Model Syle Payment

Car .98 1 1 1 12 21
Year 21 0 o 05 o7} 20
Make .11 oM 98 60 33 0!
Model .11 04 66 95 37 o7}
Mileage .11 o o 073 o7} ivg
Phone .43 o o o4 14 o}
Price .11 o o 073 o 37
Feature .11 o 24 35 37 o}
Figure 5: Combined Matrix
33ructure

One more facet of metadata that provides a clue about
which attributes to match is structure. If the same
relationships among source objects are found to exist
among target objects, we have more confidence that we
have correctly matched source and target structure than
we do if we do not find matching source and target
structure.
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We can represent the structure of both source and
target schemes as graphs. Nodes of the graph are object
sets, and edges of the graph are relationship sets.” Figure
6, for example, showsatarget schemegraph (Figure 6(a)), a
source scheme graph (Figure 6(b)), and a second source
scheme graph (Figure 6(c)). In a scheme graph we denote
object sets as boxes and relationship sets as lines
connecting boxes. Dotted boxesarefor lexical object sets,
and solid boxes arefor nonlexical object sets. Car isthusa
nonlexical object setin Figure 6 and Year isalexical object
set. Lines with arrowheads denote functional relationship
sets - For each Car thereis only one Year, one Make, and
one Model. Lines without arrowheads denote
nonfunctional relationship sets - for each Car in Figure
6(a) there are many Features (e.g., A/C, Automatic

Make
Year 1 Model
Feature Car i Mileage
Price
Phone o—i Extension

_Make
Year Model
Car —{ Body Style
SMRP / \
Number of Extension
Doors

(b) Source Scheme

7 Most relationship sets are binary, and thus connect two object
sets, but n-ary relationship sets which connect three or more
object sets are possible. Scheme graphs are thus actually

hypergraphs.
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| Make |
| Year | _Model |
Car \ Body Style |
(0]
| Extension |
---------------------- Number of|  |Extension,
SMRP Doors

(c) Second Source Scheme
Figure 6: Scheme Graphs for Target and Source (a,b,c)

Transmission, ...), each of which may be applicablefor many
cars, and there may be more than one Phone for contacting
the seller, who in turn may be selling many cars. An “O”
near a connection between an object set and arelationship
set denotes that objects in the object set may participate
optionally in the relationship set. Thus, in Figure 6(b) a
BodyStyle may or may not have an Extension.

Asan example of how structure hel psresolve attribute
matching, consider Extension in Figure 6. In the target
(Figure6(a)), Extension representsthe extension for aphone
number, whereasin thefirst source (Figure 6(b)), Extension
represents the extended length of a cab for atruck or the
extended length of the body for asport utility vehicle (SUV).
Observe that by checking the facets we have discussed so
far, wewould likely consider Extensioninthetwo schemes
tobeamatch. (1) Thenameisidentica, sotheterminological -
relationship test would declare high confidencefor amatch.
(2) The datavalues may be closeto the same (e.g. extension
24 for a phone and a 24-inch extension for an SUV), so
tests for both the data-value characteristics and the
expected valueswould likely declare high confidencein a
match. However, we can see by the structure of the graph,
that they should not match. Extension for Phone should
only match Extension for Body Syle if Phone matches
Body Style, which should have extremely low confidence.
In the second source, Extension appears twice, once for
Phone and once for Body Style. Here we should be ableto
sort out which Extension matches and which does not
match by astructural comparison.

With this in mind, we defined our structure test as
follows. We identified a list of structure-related features
we could measure for a potential match between a target
object set T and a source object set S. Most of these
structure-related features involve an object set T' in the
target adjacent to T. For the relationship set linking T and
T, we use these structure-related features to find the best
corresponding relationship set or chain of relationship sets
forming a path in the source. To do so, we consider each
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object set S inthe sourcethat hasapotential matchwith T’
and compute a score by taking the product of all the
measures of the structure-related features. We then select
the highest score as the best corresponding path for the T-
T relationship set. After finding this highest scorefor every
adjacent object set T' of T, we take the average of these
highest scores as the structural confidence measure for
the match between T and S.

We now list the structure-rel ated features we used. We
describe each feature generically and then provide,
parenthetically, our way of obtaining a measure for the
feature. As part of explaining our way of obtaining a
measure, we give as an example the measure for matching
Extensioninthetarget in Figure 6(a) with Extensioninthe
sourcein Figure 6(b). Observethat the only adjacent object
set to Extension in the target is Phone. Thus, in the
computation, we match Phone in Figure 6(a) with each
object set in the source in Figure 6(b) and compute the
structure score. Asit turns out, the highest of these scores
is obtained when Phone matches with Car. Thus, in our
exampleswelet T be Extensioninthetarget, T" be Phonein
the target, S be Extension in the source, and S be Car in
the source.

Importance Feature Object sets with more incident
relationship sets are considered to be moreimportant
than object setswith fewer incident relationship sets.
Target object set T and source object set Sare more
likely tomatch if their importance factor isabout the
same. (For either atarget or source object set X, let
the importance factor |, (X) be # incident / Max #
incident, where # incident is the number of incident
relationship sets on X and Max # incident is the
largest number of incident relationship sets in the
entire scheme graph for X. Then, compute the
Importance Featureas1- |1, (T)-1 (S |. Thisvalueis
higher when T and Shave similar importancein their
respective scheme graphs. For our example, sincethe
source in Figure 6(a) has a maximum of 7 incident
relationship sets on any of its object sets and since
Extension has one incident relationship set, the
importancefactor for T, I, (T),is1/7=.14. Similarly, I,
(9 is1/5=.20. Thus, the value for the importance
featureis1-1.14-.20|=.94.)

Match Score This is the confidence value of a match
between target object set T and source object set S
based on all independent facets. (We compute this
score as the average of the confidence values for all
theindependent facetsfor T and S. For our example,
we assume that the Extension-Extension score is
computed to be .98. Thisvalueis consistent with the
highest valuesin Figure5.)

Match Score of Adjacent Object SetsThisistheconfidence
value of a match between target object set T' and

source object set S based on all independent facets.
(We compute this score as the average of the
confidence values for all the independent facets for
T and S. For our example, we assumethat the Phone-
Car scoreiscomputed to be .43, the value for Phone-
Car inFigure5.)

Distance Feature If the number of relationship-set edges
along corresponding paths in the target and source
are the same, our confidence should increase. (For
givenobject setsT, T', S, and S, we compute thisas
(MAX_DIST - min(distance - 1;MAX_DIST)) /
MAX_DIST, where the “1” represents the one
relationship set connecting T and T', distanceis the
number of relationship sets along the shortest path
connecting Sand T' in the source scheme graph, and
MAX DIST is a user supplied threshold specifying
the maximum distancewewill consider before saying
that two source object sets are not close enough to
be of interest for this measurement. For our
experiments, welet MAX_DIST =5. For our example
distance = 2, since there are two relationship sets
along the path from Extension to Car in the source.
Hence, wehave (5- min(2- 1; 5)) /5=.80.)

Function Feature If the functional characteristics along
corresponding paths in the target and source are the
same, our confidence should increase. (We compare
the functional characteristics of the relationship set
connecting Tand T' withthefunctional characteristics
of the relationship sets along a path connecting S
and S. If the functional characteristics of the T-T'
relationship set are the same as the functional
characteristics of apath, we scorethe path as 1.0 and
otherwise score the path as F, auser-supplied value,
whichwe set at 0.8 for our experiments. If more than
one path exists in the source, we compute the score
for each and take the highest. For our example, the
relationship set Phone-Extension in the target has
no function in either direction. Inthe source, however,
thereisafunction from Car to Body Style and from
Body Styleto Extension and thus, inthejoin, thereis
afunction from Car to Extension. Sincethefunctional
characteristics do not match, the value for this
measureis0.8.)

Optional Feature If the optionality characteristics along
corresponding paths in the target and source are the
same, our confidence should increase. (Similar tothe
functional feature, we compare the optionality
characteristics of the relationship set connecting T
and T' with the optionality characteristics of the
relationship setsalong apath connecting Sand S . If
the optionality characteristics of the T-T relationship
set are the same as the optionality characteristics of
apath, we score the path as 1.0 and otherwise score
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the path as O, auser-supplied value, which we set at
0.8 for our experiments. If more than one path exists
in the source, we compute the score for each and
take the highest. For our example, Phoneis optional
for therel ationship set Phone-Extension in thetarget.
In the source since Body Style is optional in the
relationship between Body Style and Extension, Car
isoptional inthejoin of therelationshipsfrom Car to
Body Style and from Body Style to Extension. Thus,
the optionality characteristics are the same, and
hence, the value for this measureis 1.0.)

L eaf-Node Feature If corresponding object sets of
corresponding paths in the target and source are
either both leaf nodes or both nonleaf nodes in the
scheme graph, our confidence should increase. (For
this measure, we determine whether T' and S are
either both leaf nodes — have one incident
relationship-set edge, or are both nonleaf nodes —
have morethan oneincident rel ationship-set edge. If
so, the score is 1.0, and otherwise is N, a user-
supplied value, which we set at 0.3 for our
experiments. Since neither Phone nor Car is a leaf
nodein our example, the scoreis1.0.)

Lexical Feature If corresponding object sets of
corresponding paths in the target and source are
either both lexical or both nonlexical, our
confidence should increase. (For this measure, we
determinewhether T' and S are either both lexical
or both nonlexical. If so, the score is 1.0, and
otherwiseisL, auser supplied value, which we set
at 0.2 for our experiments. Since Phoneis |exical
and Car isnonlexical in our example, the scoreis
0.2)

Finishing our example, we take the product of all the
scores: Importance (.94) x Match (.98) x Adjacent Match
(.43) x Distance (.80) x Functional (.80) x Optional (1.00)
x Leaf-Node (1.00) x Lexical (.20) =.05. Sincethereareno
other object sets besides Phone for Extension in the
target, we take this score as the (degenerate) average
score for the structure match between Extension in the
target schemein Figure 6(a) and Extension in the source
schemein Figure 6(b). By way of comparison, the structure
score for the match between Extension in the target
(Figure 6(a)) and Extension attached to Phone in the
second source scheme (Figure 6(¢)) is.93 (= Importance
(1-11/7-1/6/=.97)x Match (.98) x Adjacent Match (.98)
x Distance ((5- min (1-1,5)) /5= 1.00) x Functional (1.00) x
Optiona (1.00) x Leaf-Node(1.00) x Lexica (1.00)). Further,
by way of comparison, for the match between Extension
in thetarget (Figure 6(a)) and Extension attached to Body
Style in the second source scheme (Figure 6(c)), the best
structure score arises from the Phone-Phone match for
the adjacent object set instead of the Phone-Car match.
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This scoreis .56 (= Importance (1- /1 /7-1/6/=.97) x
Match (.98) x Adjacent Match (.98) x Distance ((5- min(3
-1,5)) /5=.60) x Functional (1.00) x Optimal (1.00) x Leaf-
Node (1.00) x Lexical (1.00)). These scores correspond to
our intuitive notion of “structural goodness.” Figure 7
shows the results of applying the structural rule for our
car-ads application.

4 Settling Attribute M atches

Before settling matching pairs, we produce one more
matrix, whichisthe average over al the confidence values.
Figure 8 showsthismatrix.

We settle matching pairs by the algorithm in Figure 9,
whichisgreedy (selectsthe highest confidence valuefirst)
and is an injective assignment algorithm (allows at most
one match for any row or column). When we run this
algorithm onthe matrix in Figure 5 with athreshold value of
0.5, we obtain the final matrix in Figure 10. Observe that
even though “Make-Model” pairs have values exceeding
thethreshold, theinjective assignment constraint eliminates
these matches because they are precluded by the “Make-
Make” and “Model-Model” matches. Thus, the final
matching pairsare{ Car, Car}, { Year, Year}, { Make, Make},
and {Model, Model}, as they should be.

Car Year Make Model Syle Payment
Car 19 .00 .00 .00 00 .00
Year 0] 46 (0% 02 02 09
Make 00 01 46 28 A5 02
Model 00 01 09 45 A7 02
Mileage .00 01 01 o1 02 2
Phone 00 01 01 o1 07 o1
Price 00 01 01 o1 o1
Feature .00 .00 a3 0! 0}

Figure 7: Matrix for Structure

Car Year Make Model Style Payment
Car 59 .06 06 06 06 06
Year 06 .86 03 o4 03 A7
Make 06 a3 85 52 29 03
Model 06 03 52 R27J 2 o4
Mileage .06 03 03 03 03 40
Phone 22 03 a3 03 12 03
Price .06 03 03 03 03 29
Feature .06 03 19 27 29 03

Figure 8: Fina Confidence Matrix
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5 Experimental Results

In addition to our sample application presented here,
we applied our method to six other car-ads sites found on
the Web and obtained similar results. Over all test cases,
the process correctly matched 31 of 32 of thedirect matches,
for arecall value of 97%. The one false negative was the
pair Mileage-Miles. WordNet does not recognize these
words as being synonyms; it convertsthe plural Milesinto
the singular Mile and then attemptsto match Mileage with
Mile, which are not related. The expected-value measure
aso runsinto trouble because the format in which the values
appear was not anticipated by the regular expressions for

mileage.

algorithm. In these tests, the settling process found only
72 of the 82 direct matches (29 of 32 for WordNet, 21 of 25
applicable matches for value characteristics, and 22 of 25
applicable matches for expected values). Thisreducesthe
overall recall from 97% to 88%. The settling process also
found 19 false matches (4 for WordNet, 9 for value
characteristics, and 6 for expected values.) This reduces
the overal precision from 94% to 79%. The structure facet
is not independent, but it too suffers a degradation (aswe
show in the next section) when we useit with only one of
the other facets as opposed to all of them together. These
results suggest that the multifaceted approach proposed
hereislikely to be better than any single-faceted approach.

Input: a matrix M of confidence values, and a threshold T.
Output: a set of matching attribute pairs.

While there is an unsettled confidence value in M greater than T
Find the largest unsettled confidence value V in M;

Settle V by setting it to 1;
Mark V as being settled;

For each unsettled confidence value W in the rows and columns of V

Settle W by setting it to O;
Mark W as being settled;

Output the settled attribute pairs whose value is 1;

Figure 9: Attribute-Match Settling Algorithm

Car Year Make Model Style Payment

Car 1 0 0 0 0 0
Year 0 1 0 0 0

Make 0 0 1 0 0 0
Model 0 0 0 1 0 0
Mileage O 0 0 0 03 40
Phone 0 0 0 0 12 03
Price 0 0 0 0 03 29
Feature O 0 0 0 29 03

Figure 10: Final Matrix

There were 2 false matches among a potential of 376
false matches, resultingin aprecision value of 31/(31+2) =
94%. In one test case Feature matched Color, and in
another Feature matched Body Type. In our car-ads
ontology, both colors and body types are specia kinds of
features, and thus the match was not entirely wrong - just
not exact. In futurework weintend to resolve partia matches
such as these. To do so, we will need to recognize the
possibility of apartial match, and thusthese false matches
will potentially becomevery useful.

By way of comparison, we ran each individual
independent-facet matrix alone through the settling

6Limited Facets

To further test the approach we propose here, we
considered three additional applications - music CDs,
genealogy, and real estate. We found Web sites for these
applications and faithfully converted the information for
each siteinto aschemegraph. By “faithfully” we mean that
we preserved the original vocabulary of the siteaswell as
the implied constraints and structure. Altogether, we
obtained 4 scheme graphsfor music CDs, 4 for geneal ogy,
and 5 for real estate. As an example, Figure 11 shows the
four scheme graphs for music CDs.

For these applications, we only applied our
terminological and structural facets. We did not extract
values, and we did not develop recognition expressions
for expected values for each of the object sets. Although
this limitation prevents us from testing for data-value
characteristics and for expected values, we were still able
to apply our technique. This situation is typical of many
real-world situationswherewe may havelimited information.

For testing these applications, we decided to let any
one of the scheme graphs for an application be the target
and let any other scheme graph be the source. Because our
tests are nearly symmetrical, we decided not to test any
target-source pair also as a source-target pair, with the
chosen target as the source and the chosen source as the
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target. We also decided not to test any single scheme
graph as both the target and the source. For the music
CD schemes in Figure 11, for example, we tested the
following target-source pairs: AlIMusic-Amazon,
AllMusic-CDNow, AllMusic-MovieMusic, CDNow-
Amazon, MovieM usic-Amazon, MovieMusic-CDNow.

Biography

For comparison, we also retested our car-ads
applications using only terminological and structural
facets. For these tests, we used the same single target
we had already chosen for each of the seven sources.
Altogether we ran 29 tests (7 for car-ads, 6 for music
CDs, 6 for genealogy, and 10 for real estate).

(a) AllMusic Scheme

Name Part

(c) CDNow Scheme

Audio CD

(b) Amazon Scheme

(d) Movie Music Scheme

Figure 11: Scheme Graphs for Music CDs
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Application Number of Number Number Recdl Precision F-Measure
Matches Correct Incorrect % % %

Car Advertisements % 2 4 91% 88% 8%

Music CDs 67 52 b 78% 60% 68%

Genealogy 47 Vi) 1 8% 78% 83%

Real Estate 12 87 0 71% 55% 62%

All Applications 268 210 bl 8% 63% 0%

Table 1: Results

For each test, we used theWordNet rulein Figure 1, the
structure rule described in Section 3 (with the same user-
supplied values), and the samethreshold value, 0.5. Table 1
shows the results - giving for each application and over all
applications together (1) the number of matches N
determined by a human expert, (2) the number of correct
matches C selected by the process described in this paper,
(3) thenumber of incorrect | matches selected by our process,
(4) the recall ratio, R = C /N, which we express as a
percentage, (5) theprecisionratio, P=C /(C+1), whichwe
express asa percentage, and the F-measure, 2 /(1 /R+1 /P
), astandard measure for recall and precision together [24],
which we also express as a percentage. Over al these test
cases, the process correctly matched 210 of the 268 direct
matches, for arecall ratio of 210/268 = 78%. Therewere 121
false matches among a potential of 13,347 false matches,
resultinginaprecision ratio of 210/(210+121) = 63%.

Generally, we observed that limiting the facets to just
terminological relationships (based on WordNet) and
structure, the results are not as good as the results using
all the facets. In particular, we observed that the recall for
car-ads dropped from 97% to 91% and that the precision
dropped from 94% to 88%. We also observed that both
recall and precision were lower for the other applications
when compared to the car-ads application. In thefollowing
paragraphs we specically discuss the problems that arose
and suggest some possible solutions.

The false matches are those our process matched that
should not have been matched. They generally fall into
three categories: (1) matches that would probably have
been avoided if we had been ableto consider values (51%),
(2) those that are actually correct but which we counted as
being incorrect because they only partially match (26%),
and (3) those that would need enhancementsto the process
to beproperly eliminated (23%).

- Examples of matches that would probably have been
avoided if we had been ableto consider valuesinclude
Year-Time from music CDs, Title-Given_Name from
genealogy, and Number_of Floors-Floor_Szefromreal
estate. In all cases regular expressions looking for

expected values would have been able to distinguish
values for these pairs, and further consideration of
value characteristics would likely only enhance the
differences.

An example of apartia match is Author-Reviewer in the
music-CD gpplication. Theproblem hereisthat inAlIMusic
(Figure 11(a)) thereisonly onetype of reviewer, whereas
inAmazon (Figure 11(b)) there aretwo types of reviewers
- customer reviewersand editorial reviewers. Thus, there
isrealy nodirect match, so wedeclared Author-Reviewer
asan incorrect match. What isreally needed, however, is
to accept the partial match Author-Reviewer and the partial
match Reviewer-Reviewer and then realize that we actually
need avirtual object set computed as the union of Author
and Reviewer in Figure 11(b) to match with Reviewer in
Figure11(a). Thisisan exampleof anindirect match, which
weleavefor futurework.

- An exampl e of the additional kinds of information needed
isterminological understanding of phrases — WordNet
does not do well with the various kinds of dates, such as
christening dates, burial dates, and marriage dates, found
in the genealogy application. Another example is
terminol ogical understanding of contextual relationships
— Dateattached to CD in Figure 11(c) should not match
Date attached to Review in Figure 11(d).

The missed matches are those our process should have
matched, but failed to match. They generally fall into three
categories: (1) matchesthat require specialized or jargon
vocabulary (43%), (2) those that are actually correct but
were missed because they were precluded by other correct
matches (40%), and (3) those that would need
enhancements to the process to be properly accepted
(17%).

- Examp