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Abstract
Automating semantic matching of attributes for the

purpose of information integration is challenging, and the
dynamics of the Web further exacerbate this problem.
Believing that many facets of metadata can contribute to a
resolution, we present a framework for multifaceted
exploitation of metadata in which we gather information
about potential matches from various facets of metadata and
combine this information to generate and place confidence
values on potential attribute matches. To make the framework
apply in the highly dynamic Web environment, we base our
process on machine learning when sufficient applicable data
is available and base it otherwise on empirically observed
rules. Experiments we have conducted are encouraging,
showing that when the combination of facets converges as
expected, the results are highly reliable.

Keywords: semantic attribute matching, information
integration, exploitation of metadata.

1 Introduction
In this paper, we focus on the long-standing and

challenging problem of attribute matching [1] for the
purpose of information integration. To address this problem,
researchers have used a variety of techniques including
the use of data values [2, 3], data-dictionary information
[3], structural properties [4], ontologies [5], synonyms and
other terminological relationships found in dictionaries and
thesauri [6, 7, 8], and various combinations of these
techniques [9, 10, 11]. These are the kinds of facets of

metadata we wish to exploit, all of which may contribute to
the resolution of attribute-matching issues.

As in [12], we assume that we wish to integrate data from
multiple source schemes into a target scheme, and we
assume that all schemes are described using the same
conceptual model [13]. Source schemes may or may not have
associated populated data instance and additional metadata
beyond a basic database scheme. Typical sources we
consider include Web repositories, which we reverse
engineer into source schemes by the data-extraction
processes we have defined for semistructured and
unstructured Web pages [14], by the database reverse-
engineering process we have defined, which works for Web
tables and relational databases [15], and by the Web form
data-extraction process we are developing [16]. Moreover,
using standard representational transformations among
conceptual-model schemes, we can transform the
conceptual-model instance of any particular wrapper into a
conceptual-model instance required by our technology, and
thus we can make use of any developed wrapper technology
(e.g. [17, 18, 19] and many more — see the bibliography in
[14]). In addition to these assumptions for sources, we
assume that target schemes are augmented with a variety of
both application-independent and application-speficic-
ontological information. For this paper the augmentations
we discuss are WordNet [20, 21], which is application
independent, sample data, which is application specific, and
regular-expression recognizers, which are partly application
specific and partly application independent.

Our contribution in this paper is the following
framework, which we propose as a way to discover which
attributes in a source scheme S directly match with which
attributes in a target scheme T.1

* Supported in part by the National Science Foundation under
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1. For each individual, independent facet,2 find potential
attribute matches between the m attributes in S and the n
attributes in T. Provide confidence measures between 0
(lowest confidence) and 1 (highest confidence) for each
potential match. Section 2 explains how we generate
matching rules over independent facets.

2. Using the confidence measures from (1), combine the
measures for each potential match into a unified measure
of match confidence. The result is an m x n matrix M of
confidence measures. The last subsection of Section 2
explains how we combine confidence measures.

3. Using the matrix of combined confidence measure
from (2), apply a structural test to further refine the
confidence-measure matrix M. Section 3 explains how we
apply this test.

4. Iterate over M obtained from (3) using a best-first
match constrained by an injective assignment algorithm
until all matches whose confidence measures exceed a
predetermined threshold are settled. Section 4 explains how
we settle attribute matches.

Although we have some idea about what metadata is
most useful and in what combination and under what
circumstances we should use this metadata, we do not
know with certainty. Thus, rather than try to encode
algorithms over the metadata ourselves, we use machine
learning, where possible, to develop the algorithms. This
approach also has the advantage of being flexible in the
presence of changing dynamics, which are so common on
the Web.

We illustrate our framework using car advertisements,
which are plentiful on the Web, appearing in a variety of
unstructured and structured forms. In Section 5 we report
on the results obtained from this application.

Sometimes we are not able to make use of all facets of
metadata. Targets may not have sample data, for example,
and sometimes they may not have data descriptions.
Sometimes source schemes are known, but data has either
not yet been provided or is not available.

In these cases, even though we cannot make use of all
facets of metadata, we can still run our multifaceted attribute-
matching process by considering the facets we do have. We
discuss the case of having only two facets, namely

terminological relationships and structural properties, in
Section 6. We also give results for three additional
applications: music CDs, genealogy, and real estate.

In Section 7 we summarize, draw conclusions, and give
guidance for future work.

2 Independent Facet Matching
We have investigated three independent facets: (1)

terminological relationships (e.g. synonyms, word
senses, and hypernym groupings), (2) data-value
characteristics (e.g. average values, variances, string
lengths), and (3) target-specific, regular-expression
matches (i.e. whether expected strings appear in the data).
For each independent facet we obtain a vector of
measures for the features of interest and then apply
machine learning over this feature vector to generate a
decision rule and a measure of confidence for each
generated decision. We use C4.5 [22] as our decision-
rule and confidence-measure generator.

In the subsections below, we explain the details about
how we generate confidence values for source-target
attribute pairs for the independent facets we have
investigated. Then, in a subsequent subsection we explain
how we combine the confidence values obtained from the
independent facets into a single combined confidence-
value matrix for each pair of source-target attributes.

2.1 Terminological Relationships

One facet of metadata that provides a clue about
which attributes to match is the meaning of the attribute
names. To match attribute names, we need a dictionary
or thesaurus. WordNet [20, 21] is a readily available
lexical reference system that organizes English nouns,
verbs, adjectives, and adverbs into synonym sets, each
representing one underlying lexical concept. Other
researchers have also suggested using WordNet to
match attributes (e.g. [7, 23]), but have given few, if any,
details.

f3 <= 0: NO (222.0/26.0)

f3 > 0

I f2 <= 2: YES (181.0/3.0)

I f2 > 2

I I f4 <= 11

I I I f2 <= 5: YES (15.0/5.0)

I I I f2 > 5: NO (14.0/6.0)

I I f4 > 11: NO (17.0/2.0)

Figure 1: Generated WordNet Rule

1 In future work we intend to expand this framework to indirect
matches in which target object and relationship sets match with
virtual source object and relationship sets formed by queries over
source model instances as set forth in [12], but we focus here only
on direct attribute matches.

2 All facets except structural facets are independent. Since structural
graph matching in the absence of guiding constraints is
exponential, we avoid this intractability by letting structural facets
depend on tentative matches found by considering non-structural
facets.
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Initially we investigated the possibility of using 27
available features of WordNet in an attempt to match an
attribute A of a source scheme with an attribute B of a
target scheme. The C4.5-generated decision tree, however,
was not intuitive.3 We therefore introduced some bias by
selecting only those features we believed would contribute
to a human’s decision to declare a potential attribute match,
namely (f0) same word (1 if A = B and 0 otherwise), (f1)
synonym (1 if “yes” and 0 if “no”), (f2) sum of the distances
of A and B to a common hypernym (“is kind of”) root (if A
and B have no common hypernym root, the distance is
defined as a maximum number in the algorithm), (f3) the
number of different common hypernym roots of A and B,
and (f4) the sum of the number of senses of A and B. For
our training data we used 222 positive and 227 negative A-
B pairs selected from attribute names found in database
schemes, which were readily available to us, along with
synonym names found in dictionaries. Figure 1 shows the
resulting decision tree. Surprisingly, neither f0 (same word)
nor f1 (synonym) became part of the decision rule. Feature
f3 dominates - when WordNet cannot find a common
hypernym root, the words are not related. After f3, f2 makes
the most difference - if two words are closely related to the
same hypernym root, they are a good potential match. (Note
that f2 covers f0 and f1 because both identical words and
direct synonyms have zero distance to a common root;
this helps mitigate the surprise about f0 and f1.) Lastly, if
the number of senses is too high (f4 > 11), a pair of words
tends to match almost randomly; thus the C4.5-generated
rule rejects these pairs and accepts fewer senses only if
pairs are reasonably close (f2 <= 5) to a common root. The
parenthetical numbers (x I y) following “YES” and “NO” for
a decision-tree leaf L give the total number of training
instances x classified for L and the number of incorrect
training instances y classified for L.

Car Year Make Model Style Payment

Car .98 .11 .11 .11 .12 .11

Year .11 .98 .11 .11 .11 .11

Make .11 .11 .98 .98 .98 .11

Model .11 .11 .98 .98 .98 .11

Mileage .11 .11 .11 .11 .11 .43

Phone .43 .11 .11 .11 .43 .11

Price .11 .11 .11 .11 .12 .98

Feature .11 .11 .67 .12 .12 .11

Figure 2: WordNet Confidence-Value Matrix

Figure 2 shows a confidence-value matrix generated by
the decision rule in Figure 1 for a sample application. The
attributes along the top are source attributes taken from a
Web table (www.swapaleas.com, November 2000).4 The
attributes on the left are target attributes taken from our
standard car-ads data-extraction ontology
(www.deg.byu.edu). For a “YES” leaf L, C4.5 computes
confidence factors by the formula (x - y) / x where x is the
total number of training instances classified for L and y is
the number of incorrect training instances classified for L.5

For a “NO” leaf, the confidence factor is 1-((x-y)= / x), which
converts “NO’s” into “YES’s” with inverted confidence
values. Observe that the confidence is high for the matches
{Car, Car}, {Year, Yearg}, {Make, Make}, and {Model,
Model}, as it should be. The confidence, however, is also
high for {Make, Model}, {Make, Style}, and {Model, Style},
which are synonyms in some contexts, although not in car
ads. Also, the confidence of {Price, Payment} is high, but
“Price” is the selling price of a car, which should not match
“Payment,” the monthly payment of the lease. As we shall
see, other facets are needed to sort out these differences.

2.2 Data-Value Characteristics

Another facet of metadata that provides a clue about
which attributes to match is whether two sets of data, in
some sense, have similar value characteristics. Previous
work in [2] shows that this facet can successfully help
match attributes by considering such characteristics as
means and variances of numerical data and string-lengths
and alphabetic/non alphabetic ratios of alphanumeric data.
We used the same features as in [2], but generated a C4.5
decision rule rather than a neural-net decision rule.

Car Year Make Model Style Payment

Car NA NA NA NA NA NA

Year NA .98 0 0 0 0

Make NA 0 .97 .83 0 0

Model NA 0 1 1 0 0

Mileage NA 0 0 0 0 .97

Phone NA 0 0 0 0 0

Price NA 0 0 0 0 .14

Feature NA 0 .05 .92 0 0

Figure 3: Value-Characteristics Confidence-Value Matrix

3 An advantage of decision-tree learners over other machine learning
(such as neural nets) is that they generate results whose
reasonableness can be validated by a human.

4 When attribute names were abbreviations, we expanded them so
that WordNet could recognize them. We also selected nouns from
phrase names. In future work, we intend to automate abbreviation
expansion using dictionaries and noun selection using simple
natural-language-processing techniques.

5 We set the C4.5 parameter for rule-instance classication to 10 so
that leaves with too few classications would not have unsuitably
high condence factors.
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We trained the C4.5 decision-rule generator for our car-
ads application using data from twenty-nine different car-
ad Web sites scattered throughout the US. We generated
two decision trees, one for numeric data and one for
alphanumeric data. These decision trees are similar in form
to the decision tree in Figure 1.6

Figure 3 shows the results of applying our generated
numeric- and alphanumeric- data decision trees to our
sample car-ads test case. Note that in Figure 3 the “Car”
attribute is a nonlexical attribute whose values are OID’s,
making them inapplicable for value analysis. Observe that
years, makes, and models, which should match all have
high confidence values. Observe, however, that the makes,
models, and features all tend to look alike according to the
value characteristics measured and that mileages and
payments also look alike. These need to be further sorted
out using other facets. Interestingly, prices and payments
do not have similar value characteristics; this is because
their means are vastly different.

2.3 Expected Data Values

Yet another facet of metadata that provides a clue about
which attributes to match is the presence of expected data
values. As explained in [12], we can associate with each
attribute A in the target scheme a regular expression that
matches values expected to appear for a source attribute B
that potentially matches A. Then, using techniques
described in [14], we can extract data values for source
attributes and categorize them with respect to the attributes
in the target, and thus match source and target attributes.

Car Year Make Model Style Payment

Car NA NA NA NA NA NA

Year NA 1 0 .04 0 .49

Make NA 0 1 0 0 0

Model NA 0 0 .87 .13 .01

Mileage NA 0 0 0 0 0

Phone NA 0 0 0 0 0

Price NA 0 0 0 0 0

Feature NA 0 0 .01 .99 0

Figure 4: Expected-Values Confidence-Value Matrix

Instead of using C4.5 to generate a decision rule for
expected data values, we directly generated confidence
factors as follows. We applied the regular expression for

each target attribute A against the set of values for each
source attribute B and found the percentage of B values
that matched (or included at least some match). Then, for
each A-B pair, we simply let this percentage value be the
confidence value.

Figure 4 shows the matrix for our sample car-ads test
case. Once again note that “Car” attribute values are
inapplicable since they are OID’s. Observe that years,
makes, and models consistently include values that are
expected. Further, observe that makes, models, and styles
do not get mixed up when we consider specific expected
values - “Ford” is a make, not a model or a style; “Cavalier”
is a model, not a make or a style; and “Sedan” is a style, not
a make or a model. Interestingly, features and styles match
- this is because features include styles in our car-ads
ontology. It is also interesting that years and payments
show some degree of match - this is because year values
and payment values overlap.

2.4 Combining Facets

Although we would like to study more sophisticated
combinations in the future, including the possibility of
using machine learning to provide an appropriate decision
rule, we currently use a simple average over the confidence
values for each applicable attribute pair. Figure 5 shows
the resulting combined matrix for our sample car-ads
application.

Car Year Make Model Style Payment

Car  .98 .11 .11 .11 .12 .11

Year .11 .99 .04 .05 .04 .20

Make .11 .04 .98 .60 .33 .04

Model .11 .04 .66 .95 .37 .04

Mileage .11 .04 .04 .04 .04 .47

Phone .43 .04 .04 .04 .14 .04

Price .11 .04 .04 .04 .04 .37

Feature .11 .04 .24 .35 .37 .04

Figure 5: Combined Matrix

3 Structure
One more facet of metadata that provides a clue about

which attributes to match is structure. If the same
relationships among source objects are found to exist
among target objects, we have more confidence that we
have correctly matched source and target structure than
we do if we do not find matching source and target
structure.

6 These decision trees can be found in a technical report available at
www.deg.byu.edu.
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We can represent the structure of both source and
target schemes as graphs. Nodes of the graph are object
sets, and edges of the graph are relationship sets.7 Figure
6, for example, shows a target scheme graph (Figure 6(a)), a
source scheme graph (Figure 6(b)), and a second source
scheme graph (Figure 6(c)). In a scheme graph we denote
object sets as boxes and relationship sets as lines
connecting boxes. Dotted boxes are for lexical object sets,
and solid boxes are for nonlexical object sets. Car is thus a
nonlexical object set in Figure 6 and Year is a lexical object
set. Lines with arrowheads denote functional relationship
sets - For each Car there is only one Year, one Make, and
one Model. Lines without arrowheads denote
nonfunctional relationship sets - for each Car in Figure
6(a) there are many Features (e.g., A/C, Automatic

Transmission, ...), each of which may be applicable for many
cars, and there may be more than one Phone for contacting
the seller, who in turn may be selling many cars. An “O”
near a connection between an object set and a relationship
set denotes that objects in the object set may participate
optionally in the relationship set. Thus, in Figure 6(b) a
BodyStyle may or may not have an Extension.

As an example of how structure helps resolve attribute
matching, consider Extension in Figure 6. In the target
(Figure 6(a)), Extension represents the extension for a phone
number, whereas in the first source (Figure 6(b)), Extension
represents the extended length of a cab for a truck or the
extended length of the body for a sport utility vehicle (SUV).
Observe that by checking the facets we have discussed so
far, we would likely consider Extension in the two schemes
to be a match. (1) The name is identical, so the terminological-
relationship test would declare high confidence for a match.
(2) The data values may be close to the same (e.g. extension
24 for a phone and a 24-inch extension for an SUV), so
tests for both the data-value characteristics and the
expected values would likely declare high confidence in a
match. However, we can see by the structure of the graph,
that they should not match. Extension for Phone should
only match Extension for Body Style if Phone matches
Body Style, which should have extremely low confidence.
In the second source, Extension appears twice, once for
Phone and once for Body Style. Here we should be able to
sort out which Extension matches and which does not
match by a structural comparison.

With this in mind, we defined our structure test as
follows. We identified a list of structure-related features
we could measure for a potential match between a target
object set T and a source object set S. Most of these
structure-related features involve an object set T’ in the
target adjacent to T. For the relationship set linking T and
T’, we use these structure-related features to find the best
corresponding relationship set or chain of relationship sets
forming a path in the source. To do so, we consider each

7 Most relationship sets are binary, and thus connect two object
sets, but n-ary relationship sets which connect three or more
object sets are possible. Scheme graphs are thus actually
hypergraphs.

Year

Make

Model

MileageFeature

Price

Phone Extension

Car

(a) Target Scheme
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Number of
Doors

Extension

Car

(b) Source Scheme
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Make
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Figure 6: Scheme Graphs for Target and Source (a,b,c)
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object set S’ in the source that has a potential match with T’
and compute a score by taking the product of all the
measures of the structure-related features. We then select
the highest score as the best corresponding path for the T-
T’ relationship set. After finding this highest score for every
adjacent object set T’ of T, we take the average of these
highest scores as the structural confidence measure for
the match between T and S.

We now list the structure-related features we used. We
describe each feature generically and then provide,
parenthetically, our way of obtaining a measure for the
feature. As part of explaining our way of obtaining a
measure, we give as an example the measure for matching
Extension in the target in Figure 6(a) with Extension in the
source in Figure 6(b). Observe that the only adjacent object
set to Extension in the target is Phone. Thus, in the
computation, we match Phone in Figure 6(a) with each
object set in the source in Figure 6(b) and compute the
structure score. As it turns out, the highest of these scores
is obtained when Phone matches with Car. Thus, in our
examples we let T be Extension in the target, T’ be Phone in
the target, S be Extension in the source, and S’ be Car in
the source.

Importance Feature Object sets with more incident
relationship sets are considered to be more important
than object sets with fewer incident relationship sets.
Target object set T and source object set S are more
likely to match if their importance factor is about the
same. (For either a target or source object set X, let
the importance factor If (X) be # incident / Max #
incident, where # incident is the number of incident
relationship sets on X and Max # incident is the
largest number of incident relationship sets in the
entire scheme graph for X. Then, compute the
Importance Feature as 1 - I If (T)-If (S) I. This value is
higher when T and S have similar importance in their
respective scheme graphs. For our example, since the
source in Figure 6(a) has a maximum of 7 incident
relationship sets on any of its object sets and since
Extension has one incident relationship set, the
importance factor for T, If (T), is 1I 7 = .14. Similarly, If

(S) is 1I 5 = .20. Thus, the value for the importance
feature is 1 - I .14 - .20 I = .94.)

Match Score This is the confidence value of a match
between target object set T and source object set S
based on all independent facets. (We compute this
score as the average of the confidence values for all
the independent facets for T and S. For our example,
we assume that the Extension-Extension score is
computed to be .98. This value is consistent with the
highest values in Figure 5.)

Match Score of Adjacent Object Sets This is the confidence
value of a match between target object set T’ and

source object set S’ based on all independent facets.
(We compute this score as the average of the
confidence values for all the independent facets for
T’ and S’. For our example, we assume that the Phone-
Car score is computed to be .43, the value for Phone-
Car in Figure 5.)

Distance Feature If the number of relationship-set edges
along corresponding paths in the target and source
are the same, our confidence should increase. (For
given object sets T, T’, S, and S’, we compute this as
(MAX_DIST - min(distance - 1;MAX_DIST)) I
MAX_DIST, where the “1” represents the one
relationship set connecting T and T’, distance is the
number of relationship sets along the shortest path
connecting S and T’ in the source scheme graph, and
MAX_DIST is a user supplied threshold specifying
the maximum distance we will consider before saying
that two source object sets are not close enough to
be of interest for this measurement. For our
experiments, we let MAX_DIST = 5. For our example
distance = 2, since there are two relationship sets
along the path from Extension to Car in the source.
Hence, we have (5 - min(2 - 1; 5)) I 5 = .80.)

Function Feature If the functional characteristics along
corresponding paths in the target and source are the
same, our confidence should increase. (We compare
the functional characteristics of the relationship set
connecting T and T’ with the functional characteristics
of the relationship sets along a path connecting S
and S’. If the functional characteristics of the T-T’
relationship set are the same as the functional
characteristics of a path, we score the path as 1.0 and
otherwise score the path as F, a user-supplied value,
which we set at 0.8 for our experiments. If more than
one path exists in the source, we compute the score
for each and take the highest. For our example, the
relationship set Phone-Extension in the target has
no function in either direction. In the source, however,
there is a function from Car to Body Style and from
Body Style to Extension and thus, in the join, there is
a function from Car to Extension. Since the functional
characteristics do not match, the value for this
measure is 0.8.)

Optional Feature If the optionality characteristics along
corresponding paths in the target and source are the
same, our confidence should increase. (Similar to the
functional feature, we compare the optionality
characteristics of the relationship set connecting T
and T’ with the optionality characteristics of the
relationship sets along a path connecting S and S’. If
the optionality characteristics of the T-T’ relationship
set are the same as the optionality characteristics of
a path, we score the path as 1.0 and otherwise score
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the path as O, a user-supplied value, which we set at
0.8 for our experiments. If more than one path exists
in the source, we compute the score for each and
take the highest. For our example, Phone is optional
for the relationship set Phone-Extension in the target.
In the source since Body Style is optional in the
relationship between Body Style and Extension, Car
is optional in the join of the relationships from Car to
Body Style and from Body Style to Extension. Thus,
the optionality characteristics are the same, and
hence, the value for this measure is 1.0.)

Leaf-Node Feature If corresponding object sets of
corresponding paths in the target and source are
either both leaf nodes or both nonleaf nodes in the
scheme graph, our confidence should increase. (For
this measure, we determine whether T’ and S’ are
either both leaf nodes — have one incident
relationship-set edge, or are both nonleaf  nodes —
have more than one incident relationship-set edge. If
so, the score is 1.0, and otherwise is N, a user-
supplied value, which we set at 0.3 for our
experiments. Since neither Phone nor Car is a leaf
node in our example, the score is 1.0.)

Lexical Feature If corresponding object sets of
corresponding paths in the target and source are
either both lexical or both nonlexical,  our
confidence should increase. (For this measure, we
determine whether T’ and S’ are either both lexical
or both nonlexical. If so, the score is 1.0, and
otherwise is L, a user supplied value, which we set
at 0.2 for our experiments. Since Phone is lexical
and Car is nonlexical in our example, the score is
0.2.)

Finishing our example, we take the product of all the
scores: Importance (.94) x Match (.98) x Adjacent Match
(.43)  x Distance (.80)  x Functional (.80)  x Optional (1.00)
x Leaf-Node (1.00)  x Lexical (.20) = .05.  Since there are no
other object sets besides Phone for Extension in the
target, we take this score as the (degenerate) average
score for the structure match between Extension in the
target scheme in Figure 6(a) and Extension in the source
scheme in Figure 6(b). By way of comparison, the structure
score for the match between Extension in the target
(Figure 6(a)) and Extension attached to Phone in the
second source scheme (Figure 6(c)) is .93 (= Importance
(1 -  I 1I 7 - 1I  6 I = .97) x Match (.98)  x Adjacent Match (.98)
x Distance ((5 - min (1-1,5))I 5 = 1.00) x Functional (1.00) x
Optional (1.00) x  Leaf-Node (1.00)  x Lexical (1.00)). Further,
by way of comparison, for the match between Extension
in the target (Figure 6(a)) and Extension attached to Body
Style in the second source scheme (Figure 6(c)), the best
structure score arises from the Phone-Phone match for
the adjacent object set instead of the Phone-Car match.

This score is .56 (= Importance (1 - I1 I 7- 1 I 6I = .97)  x
Match (.98)  x Adjacent Match (.98)  x Distance ((5 - min(3
- 1, 5)) I 5 = .60)  x Functional (1.00)  x Optimal (1.00)  x Leaf-
Node (1.00)  x Lexical (1.00)). These scores correspond to
our intuitive notion of “structural goodness.” Figure 7
shows the results of applying the structural rule for our
car-ads application.

4 Settling Attribute Matches
Before settling matching pairs, we produce one more

matrix, which is the average over all the confidence values.
Figure 8 shows this matrix.

We settle matching pairs by the algorithm in Figure 9,
which is greedy (selects the highest confidence value first)
and is an injective assignment algorithm (allows at most
one match for any row or column). When we run this
algorithm on the matrix in Figure 5 with a threshold value of
0.5, we obtain the final matrix in Figure 10. Observe that
even though “Make-Model” pairs have values exceeding
the threshold, the injective assignment constraint eliminates
these matches because they are precluded by the “Make-
Make” and “Model-Model” matches. Thus, the final
matching pairs are {Car, Car}, {Year, Year}, {Make, Make},
and {Model, Model}, as they should be.

Car Year Make  Model Style Payment

Car .19 .00 .00 .00 .00 .00

Year .00 .46 .02 .02 .02 .09

Make .00 .01 .46 .28 .15 .02

Model .00 .01 .09 .45 .17 .02

Mileage .00 .01 .01 .01 .02 .22

Phone .00 .01 .01 .01 .07 .01

Price .00 .01 .01 .01 .01 .05

Feature .00 .00 .03 .04 .04 .04

Figure 7: Matrix for Structure

Car Year Make Model Style Payment

Car .59 .06 .06 .06 .06 .06

Year .06 .86 .03 .04 .03 .17

Make .06 .03 .85 .52 .29 .03

Model .06 .03 .52 .82 .32 .04

Mileage .06 .03 .03 .03 .03 .40

Phone .22 .03 .03 .03 .12 .03

Price .06 .03 .03 .03 .03 .29

Feature .06 .03 .19 .27 .29 .03

Figure 8: Final Confidence Matrix
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5 Experimental Results
In addition to our sample application presented here,

we applied our method to six other car-ads sites found on
the Web and obtained similar results. Over all test cases,
the process correctly matched 31 of 32 of the direct matches,
for a recall value of 97%. The one false negative was the
pair Mileage-Miles. WordNet does not recognize these
words as being synonyms; it converts the plural Miles into
the singular Mile and then attempts to match Mileage with
Mile, which are not related. The expected-value measure
also runs into trouble because the format in which the values
appear was not anticipated by the regular expressions for
mileage.

Car Year Make Model Style Payment

Car 1 0 0 0 0 0

Year 0 1 0 0 0 0

Make 0 0 1 0 0 0

Model 0 0 0 1 0 0

Mileage 0 0 0 0 .03 .40

Phone 0 0 0 0 .12 .03

Price 0 0 0 0 .03 .29

Feature 0 0 0 0 .29 .03

Figure 10: Final Matrix

There were 2 false matches among a potential of 376
false matches, resulting in a precision value of 31I (31+2) =
94%. In one test case Feature matched Color, and in
another Feature matched Body Type. In our car-ads
ontology, both colors and body types are special kinds of
features, and thus the match was not entirely wrong - just
not exact. In future work we intend to resolve partial matches
such as these. To do so, we will need to recognize the
possibility of a partial match, and thus these false matches
will potentially become very useful.

By way of comparison, we ran each individual
independent-facet matrix alone through the settling

algorithm. In these tests, the settling process found only
72 of the 82 direct matches (29 of 32 for WordNet, 21 of 25
applicable matches for value characteristics, and 22 of 25
applicable matches for expected values). This reduces the
overall recall from 97% to 88%. The settling process also
found 19 false matches (4 for WordNet, 9 for value
characteristics, and 6 for expected values.) This reduces
the overall precision from 94% to 79%. The structure facet
is not independent, but it too suffers a degradation (as we
show in the next section) when we use it with only one of
the other facets as opposed to all of them together. These
results suggest that the multifaceted approach proposed
here is likely to be better than any single-faceted approach.

6 Limited Facets
To further test the approach we propose here, we

considered three additional applications - music CDs,
genealogy, and real estate. We found Web sites for these
applications and faithfully converted the information for
each site into a scheme graph. By “faithfully” we mean that
we preserved the original vocabulary of the site as well as
the implied constraints and structure. Altogether, we
obtained 4 scheme graphs for music CDs, 4 for genealogy,
and 5 for real estate. As an example, Figure 11 shows the
four scheme graphs for music CDs.

For these applications, we only applied our
terminological and structural facets. We did not extract
values, and we did not develop recognition expressions
for expected values for each of the object sets. Although
this limitation prevents us from testing for data-value
characteristics and for expected values, we were still able
to apply our technique. This situation is typical of many
real-world situations where we may have limited information.

For testing these applications, we decided to let any
one of the scheme graphs for an application be the target
and let any other scheme graph be the source. Because our
tests are nearly symmetrical, we decided not to test any
target-source pair also as a source-target pair, with the
chosen target as the source and the chosen source as the

Input: a matrix M of confidence values, and a threshold T.
Output: a set of matching attribute pairs.

While there is an unsettled confidence value in M greater than T
Find the largest unsettled confidence value V in M;
Settle V by setting it to 1;
Mark V as being settled;
For each unsettled confidence value W in the rows and columns of V

Settle W by setting it to 0;
Mark W as being settled;

Output the settled attribute pairs whose value is 1;

Figure 9: Attribute-Match Settling Algorithm
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target. We also decided not to test any single scheme
graph as both the target and the source. For the music
CD schemes in Figure 11, for example, we tested the
following target-source pairs: AllMusic-Amazon,
AllMusic-CDNow, AllMusic-MovieMusic, CDNow-
Amazon, MovieMusic-Amazon, MovieMusic-CDNow.

For comparison, we also retested our car-ads
applications using only terminological and structural
facets. For these tests, we used the same single target
we had already chosen for each of the seven sources.
Altogether we ran 29 tests (7 for car-ads, 6 for music
CDs, 6 for genealogy, and 10 for real estate).

(a) AllMusic Scheme

Death Date
Death PlaceBirth Place

Birth Date

Real Name

Name

Genre

Style

Instrument

Biography

Author

Text

Artist

Role

Album

Album Title

Date of Release

Rating
Genre

Style

Time

Review

Text

Author

Track

Composer

TimeTitle

Label

Medium

Year

Catalog Number

Release

Figure 11: Scheme Graphs for Music CDs

(b) Amazon Scheme

List Price
Artist

Title

Our Price

Number of Discs

Average Customer Review

Number of Reviews

Availability

Release Date

Original Release Date
Audio CD

Sample

Track

Track Name

Rating

Title

Reviewer

Date

Text

Customer Review
Editorial Review

Company

Author

Text

(c) CDNow Scheme

List Price

All Music Guide Pick(Price)

DateAlbum

Length

Label

Genre

Category

Artist

Image

CD

Production Credit

RoleName

Performer

PartName

Title

Composer

Time

Sample

Track

(d) Movie Music Scheme

Genre
Year

Composer

Title

Image

Label

Rating

Track

Sample

Title

Favorate Track

Review Text

Date

Reviewer

Rating

Sound Track

Review
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For each test, we used the WordNet rule in Figure 1, the
structure rule described in Section 3 (with the same user-
supplied values), and the same threshold value, 0.5. Table 1
shows the results - giving for each application and over all
applications together (1) the number of matches N
determined by a human expert, (2) the number of correct
matches C selected by the process described in this paper,
(3) the number of incorrect I matches selected by our process,
(4) the recall ratio, R = C I N, which we express as a
percentage, (5) the precision ratio, P = C I (C + I), which we
express as a percentage, and the F-measure, 2 I (1 I R + 1 I P
), a standard measure for recall and precision together [24],
which we also express as a percentage. Over all these test
cases, the process correctly matched 210 of the 268 direct
matches, for a recall ratio of 210/268 = 78%. There were 121
false matches among a potential of 13,347 false matches,
resulting in a precision ratio of 210I (210+121) = 63%.

Generally, we observed that limiting the facets to just
terminological relationships (based on WordNet) and
structure, the results are not as good as the results using
all the facets. In particular, we observed that the recall for
car-ads dropped from 97% to 91% and that the precision
dropped from 94% to 88%. We also observed that both
recall and precision were lower for the other applications
when compared to the car-ads application. In the following
paragraphs we specically discuss the problems that arose
and suggest some possible solutions.

The false matches are those our process matched that
should not have been matched. They generally fall into
three categories: (1) matches that would probably have
been avoided if we had been able to consider values (51%),
(2) those that are actually correct but which we counted as
being incorrect because they only partially match (26%),
and (3) those that would need enhancements to the process
to be properly eliminated (23%).

- Examples of matches that would probably have been
avoided if we had been able to consider values include
Year-Time from music CDs, Title-Given_Name from
genealogy, and Number_of_Floors-Floor_Size from real
estate. In all cases regular expressions looking for

expected values would have been able to distinguish
values for these pairs, and further consideration of
value characteristics would likely only enhance the
differences.

 - An example of a partial match is Author-Reviewer in the
music-CD application. The problem here is that in AllMusic
(Figure 11(a)) there is only one type of reviewer, whereas
in Amazon (Figure 11(b)) there are two types of reviewers
- customer reviewers and editorial reviewers. Thus, there
is really no direct match, so we declared Author-Reviewer
as an incorrect match. What is really needed, however, is
to accept the partial match Author-Reviewer and the partial
match Reviewer-Reviewer and then realize that we actually
need a virtual object set computed as the union of Author
and Reviewer in Figure 11(b) to match with Reviewer in
Figure 11(a). This is an example of an indirect match, which
we leave for future work.

- An example of the additional kinds of information needed
is terminological understanding of phrases — WordNet
does not do well with the various kinds of dates, such as
christening dates, burial dates, and marriage dates, found
in the genealogy application. Another example is
terminological understanding of contextual relationships
— Date attached to CD in Figure 11(c) should not match
Date attached to Review in Figure 11(d).

The missed matches are those our process should have
matched, but failed to match. They generally fall into three
categories: (1) matches that require specialized or jargon
vocabulary (43%), (2) those that are actually correct but
were missed because they were precluded by other correct
matches (40%), and (3) those that would need
enhancements to the process to be properly accepted
(17%).

- Examples of synonyms that should have been recognized,
but were not because they are only synonyms in a
special application include Property and Listing in the
real estate application and Title and Album in the music-
CD application. Achronyms and abbreviations also fall
into this category. We are likely to need specialized
dictionaries to resolve these difficulties.

Application Number of Number Number Recall Precision F-Measure
Matches Correct Incorrect % % %

Car Advertisements 32 29 4 91% 88% 89%

Music CDs 67 52 35 78% 60% 68%

Genealogy 47 42 12 89% 78% 83%

Real Estate 122 87 70 71% 55% 62%

All Applications 268 210 121 78% 63% 70%

Table 1: Results
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- Partial matches can preclude declared direct matches. What
we really want, however, is to be able to recognize and
sort out all the partial matches so that we can obtain
virtual object sets containing all the correct objects and
only the correct objects. This problem is nontrivial,
sometimes even for human experts, and we may have to
accept subsets and supersets in our results.

- An example of the additional kinds of information needed
is terminological understanding about how to
disambiguate relationship-set names — Place in one of
the genealogical schemes could only be distinguished
by its connecting relationship — set names: birth,
christening, death, and burial. Another example is text
analysis for classification of descriptive paragraphs—
Text in one of the real-estate schemes should have
matched with Description in another.

7 Conclusion
We presented a framework for discovering direct

matches between sets of source and target attributes. In
our framework, multiple facets each contribute in a
combined way to produce a final set of matches. Facets
considered include terminological relationships such as
synonyms and hypernyms, data-value characteristics such
as variances and string lengths, expected values as
declared by target regular-expression recognizers, and
structural characteristics based on scheme graphs.

The results are encouraging and show that the
multifaceted approach to exploiting metadata for attribute
matching has promise. When we used all four facets for
our car-ads tests we obtained recall and precision results
above 90%. Recall and precision dropped off when we
reduced the number of facets to either single independent
facets or to our terminological facet followed by our
structural test.

Analyzing false matches and missed matches led to a
number of ideas for future work. (1) We should recognize
and resolve partial matches by generating virtual object
sets and virtual relationship sets in the source that directly
match object and relationship sets in the target. (2) We
should consider ways to better do terminological
relationship matching so that we can do phrases in the
context of relationship sets and adjacent object sets. (3)
We should expand our multifaceted approach to include
classification of text, both to match paragraphs of text that
are values of target and source attributes and to add an
additional facet that considers descriptive dictionary
information. (4) We should gather sufficient training data
so that we can apply machine learning to generate rules for
structure and for determining thresholds. (5) We should
gather more test cases for our current applications, and we
should investigate a broader array of applications.

Although we have accomplished much, as is usually
the case in these types of scientic investigations, there is
much more to be done.
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