
12

Configurable Data Integration
Middleware System

Abstract
This paper presents a new approach for generating

configured and flexible middleware systems for integra-
tion of heterogeneous and distributed data. The configu-
ration is based on the selection of an adequate set of data-
base services components and flexibility is achieved by
adopting framework techniques. A control model checks
the configuration, manages the communication between
components and dynamically schedules tasks. The objec-
tive is to build tailored integration middleware systems,
using a minimum number of components. In addition, the
use of framework allows for increased software quality
and reduced development effort.

Keywords: Databases systems, component-based sys-
tems, frameworks composition, interoperability,
middleware systems.

1 Introduction
Developing data integration middleware systems is not

a simple task due to the complexity of supporting multiple
data models, complex query processing strategies and trans-
action control techniques. The TecBD laboratory at PUC-
Rio developed HEROS: a Heterogeneous DataBase Man-
agement System (HDBMS) [1] [2] [3] [4] [5] during the nine-
ties. During this period, we faced, quite a few times, the
need to extend or re-write its code to adapt to new applica-
tion requirements. One of these applications is the SINPESQ
project for the fishery area conceived by the Brazilian Min-
istry of Environment. The objective of the SINPESQ project
was to integrate fish disembarkation data from all fishing
colonies spread through the Brazilian shore, lakes and riv-
ers. From a data integration point of view, that meant inte-

grating data from heterogeneous schemas, database sys-
tems and from different naming conventions.

Two aspects of the design of HEROS made its straight
adoption by the SINPESQ project difficult. Firstly, its cen-
tralized architecture posed a bureaucratic shackle for dis-
tant fishing colonies willing to publish their disembarkation
data. Secondly, the application is query based and does not
require, neither allows, for updates in local data, eliminating
the need for the complex and heavy heterogeneous trans-
action management module existent in HEROS.

Motivated by the SINPESQ project we decided to ex-
tend our experience in HDBMS systems and investigate
new approaches to system’s architectures that could pro-
duce configurable and flexible systems. In these lines, we
initially proposed the ECOHOOD Project (Environment of
Configurable Heterogeneous Object-Oriented Databases)
[6], whose objective was to build configured DBMS adapted
to specific application domains. The idea was to model sys-
tems as an Object Oriented framework. The framework tech-
nique is a software engineering technology for producing a
reusable, “semi-complete” architecture that can be special-
ized to produce custom applications [7] [8]. The reuse sup-
ported by a framework is at a larger granularity than classes,
contributing to organize large system development.

Although the adoption of the framework technique had
given us a means to provide flexibility into each of the
HDBMS modules, it made us face a new problem: the inte-
gration of the different frameworks that composed the
ECOHOOD system.

This work presents the research developed towards
benefiting from the flexibility acquired in constructing soft-
ware modules for heterogeneous data integration systems
using framework technique and proposing a solution for
the integration of different framework modules. Our ap-
proach is to view each of the HDBMS service as a software

Configurable Data Integration
Middleware System

Alvaro C. P. Barbosa
Fabio A. M. Porto

Alvaro C. P. Barbosa1

Departamento de Informática
Universidade Federal

do Espírito Santo
Av. Fernando Ferrari, s/n,

Vitória, Espírito Santo
29060-900 - Brasil

email: alvaro@inf.ufes.br

Fábio A. M. Porto1

Departamento de
Engenharia de Sistemas

Instituto Militar de Engenharia
Praça Gal. Tibúrcio, 80

Rio de Janeiro, RJ
22290-270 - Brasil

email: fporto@ime.eb.br

1 This work was partially developed while the authors were PhD
candidates at the Computer Science Department PUC-Rio, TecBD
Laboratory.

Rubens Nascimento Melo

Departamento de Informática
Pontifícia Universidade

Católica do Rio de Janeiro
R. Marquês de São Vicente, 225

Rio de Janeiro, RJ
22451-900 - Brasil

email: rubens@inf.puc-rio.br

13

component with a published interface. A special Control
module is added to the system with the responsibility of
recognizing the components used in a system configura-
tion and scheduling the execution of component services.

The proposed architecture is implemented in the
Configurable Data Integration Middleware System
(CoDIMS) which provides an environment for the genera-
tion of configured and flexible data integration middleware
systems. The environment provides for adequate and light-
weight implementation of data integration middleware sys-
tems: “what you need, is only what you get” (WYNIOWYG).

The rest of this paper is organised as follows. In Section
2 we comment the background and some related work. Sec-
tion 3 presents the CoDIMS approach and its environment
architecture. Section 4 presents a use case for a CoDIMS
configuration. Finally, Section 5 concludes.

2 Background and Related Work
Our research in data integration systems dated back to

1993 where we started the HEROS project. The HEROS sys-
tem (HEteRogeneous Object System) is an object oriented
HDBMS classified as tightly coupled [9]. The HEROS al-
lows for the integration of heterogeneous database sys-
tems into a federation so that queries and updates could be
submitted transparently to the data location, to local ac-
cess paths and any existing heterogeneity. In order to cope
with some difficulties in adapting HEROS to support new
functionality, we started to investigate techniques for build-
ing flexible systems as part of the ECOHOOD project. Ex-
tending our experience in data integration, we, later, joined
other research groups in the ECOBASE Project (Database
and Web Technologies for Environment Information Sys-
tems) [10], whose objective was to share experiences in the
integration of environmental information. One of the as-
pects explored in the project was to build standards and
infra-structure to support the interchange of software mod-
ules between the members of the group.

According to [11] and [12], database research groups
must explore extensibility and componentization in systems
development, in order to generate efficient, flexible, and
lightweight systems. In the first half of the nineties, some
important projects proposed techniques to produce exten-
sible DBMS. EXODUS [13] and GENESIS [14] were the first
projects that proposed a more general approach for DBMS
construction through DBMS generators.

Nowadays, the development of software based on com-
ponent [15] [16] has gained importance as a technique for
developing flexible systems. New application requirements
can be served by modifying existing components or by
adding new ones with compatible interfaces.

In terms of data integration systems, one can find quite

a few in literature. Some of them are specific designed to
support the creation and maintenance of Web sites, like
Araneus [17] and Strudel [18]. Others are based on media-
tion technique: TSIMMIS [19], DISCO [20] and Le Select
[21]. A third category can be classified as database ori-
ented: MIRO-Web [22], Garlic [23], and MOCHA [24]. Gen-
erally they are designed having a specific application in
mind. Supporting new application requirements may entail
quite a strong developing effort. Systems directed towards
supporting a wide spectrum of applications are commonly
large and heavy which translates into execution inefficiency
and complexity in use.

3 The CoDIMS Approach Overview
In this section, we present the CoDIMS approach over-

view. The CoDIMS is an Object-Oriented environment,
based on components and frameworks, designed to pro-
vide flexibility and configuration to data integration sys-
tems. The configuration is obtained through a Control com-
ponent that exports the interface of integrated components.
The latter are specified in the context of the Control which
provides for compatibility checking between the interfaces.
In other to flexibilize services implementation, each one is
implemented as a framework with hot-spots[7] to be instan-
tiated. Framework component modularity helps to improve
software quality by localizing the impact of design and imple-
mentation changes, reducing the effort in system mainte-
nance. Through the reuse or adaptation of framework com-
ponents the environment offers an answer for the genera-
tion of heterogeneous data integration systems tailored to
specific application requirements.

A data integration middleware system is responsible
for providing access to data that is distributed and stored
over heterogeneous data sources. Given this general defi-
nition, the CoDIMS approach for the development of data
integration systems specifies some pre-defined interfaces
corresponding to data integration middleware services
(DIMS) commonly presented in this type of systems, which
includes: Metadata Manager, Query Processing, Transac-
tion Manager, Concurrency Control, Rule Manager and
Communication (see Figure 1). For each of these inter-
faces we provide different components that may be se-
lected into a configured system. In addition, the environ-
ment offers a Control component that takes part in any
configuration.

Figure 2 shows the class diagram of the CoDIMS envi-
ronment. Some ready to use components are available for
cases where no special behavior is required. New inter-
faces, corresponding to DIMS not initially previewed, can
be added to the environment through their publication in
the Control component (see section 3.2) and by providing
its implementation.

Configurable Data Integration
Middleware System

Alvaro C. P. Barbosa
Fabio A. M. Porto

14

Figure 1 – CoDIMS: architecture overview

The flexibility obtained with these techniques can be
summarized as follows:

• DIMS components – allows for the publication of
DIMS.

• Framework modules – flexibilizes DIMS behavior.
• Control component – provides for the integration of

DIMS into a configured system.
• In the next sub-section we describe each of the pre-

defined DIMS offered in th CoDIMS environment.

3.1 System Components Description

The CoDIMS environment comprehends pre-defined
DIMS interfaces and components , and the Control module
for managing DIMS integration. In this section, we describe
the functionality of the pre-defined DIMS:

• The Metadata Manager component is responsible for
managing data source and global schema metadata. The
environment provides the flexibility of generating a con-

Figure 2 – CoDIMS: Class Diagram

Configurable Data Integration
Middleware System

Alvaro C. P. Barbosa
Fabio A. M. Porto

Control

DS1 DS2

Communication

Wrapper Wrapper

Metadata

Manager

Query

Processing

Rule

Manager

Concurrency

Control

Transaction

Manager

Client

Application

FacadeConcorrencyControl

lock-object()

unlock-object()

<<facade>>

FacadeTransactionManager

begin-transaction()

abort-transaction()

commit-transaction()

<<facade>>

FacadeRulesManager

define-rule()

exec-rule()

<<facade>>

FacadeMetadataManeger

define-metadata)()

get-object-MD()

<<facade>>

FacadeCommunication

exec-sub-query()

get-DS-state()

get-sub-query-state()

get-next-data()

<<facade>>

FacadeControl

define-catalog()

define-workflow()

define-metadata)()

exec-query()

exec-service()

send-message()

<<broker, facade>>

FacadeQueryProcessing

parser()

re-writer()

optimiser()

query-engine()

send-message()

<<facade>>

figured system based on a global data model adequate
to the application requirements. The access to the glo-
bal schema follows the Metadata Manager published
interface implemented according to the behavior of the
selected global data model. Obviously, the adoption of
a global data model implicates in special implementation
of some of the others DIMS, such as the Query Pro-
cessing and Concurrency Control. The Metadata Man-
ager DIMS component implements the data integration
strategy following the four abstraction levels presented in
[9], corresponding to the local data model, exported data
model, global data model and external data model. Local
data model expresses the data in the data sources. In order
to allow the metadata integration, the local data model is
transformed into the exported view in the global data model.
Finally, the global data model is produced from the integra-
tion of a set of exported views.

• The Query Processing component (QPC) is responsible for
generating a global query execution plan, for global re-
quests issued by applications, execute them and return the
result sets. The QPC DIMS accesses query objects global
metadata for query syntactic analysis and optimization. It
produces a global query execution plan made of data
sources sub-queries and global integration operations.
Next, the sub-queries are submitted to the correspondent
data sources through the Communication component. Fi-
nally, the result of each sub-query is integrated into the
final result to be returned to the client application.

15

Catalog

catalog-file

define-catalog()

check-configuration()

check-operation()

Workflow

workflow-file

define-workflow()

get-workflow-command()

Scheduler

workflow-command-file

exec-query()

update-scheduling()

get-next-service()

ControlFacade

define-catalog()

define-workflow()

define-metadata()

exec-query()

exec-service()

send-message()

<<broker, facade, extensible,static>>

Figure 3: Control Component

• The Communication component is responsible for the
physical communication between the middleware sys-
tem and each data source. A wrapper translates local
sub-queries into specific data source access method
calls, as in others mediator systems.

• The Transaction Manager component is responsible for
guaranteeing the ACID properties (Atomicity, Consistency,
Isolation, and Durability) of transactions, for applications
where modifications in the data sources data are permitted.

• The Concurrency Control component provides the
mechanisms for implementing the isolation of concur-
rent transactions.

• The Rule Manager component enriches the system with
active behavior as proposed in [26].

The DIMS components are integrated via the Control
component which is described in the following sub-section.

3.2 The Control Component

The Control component is the essence of the CoDIMS
environment. The Control stores, manages, validates, and
verifies both Physical and Logical Configuration. Physical
configuration corresponds to the selection of DIMS com-
ponents, their customization according to application re-
quirements, and registration in the catalog. The selection of
DIMS components is subject to restrictions. The restric-
tions are specified as a set of offered and required opera-
tions. By matching restrictions between selected DIMS in a
configuration, the Control component validates it. The idea
of the Logical Configuration is to extract from the system

the integration logic modeled by components interaction.
The CoDIMS approach achieves a complete adaptability in
terms of services to be executed in a configured system,
modeling their interaction through a workflow [27] of DIMS
invocation. Although a pre-defined workflow exists cover-
ing the operations over known DIMS, new functionality
may be added to the system requiring the specification of a
workflow to be evaluated in the event of the new stimulat-
ing operation. The adoption of a workflow model brings
flexibility in adapting to new query languages, besides pro-
viding for detaching of DIMS components. During execu-
tion, the Control component automatically responds to cli-
ent requests by scheduling DIMS services, based on its
workflow, and proceeding with DIMS invocation.

The Control component acts as a broker to requests gen-
erated between components. The communication between
the Control component and the other components is held
through their interfaces. The use of a broker diminishes the
number of interdependencies between DIMS allowing for
increased flexibility and facility in the selection, substitution,
modification, and in the relationship between components of
the configured system. Differently than CORBA based sys-
tems where the control and schedule of services invocation
is left to the application, in any CoDIMS generated system,
the Control component plays automatically this role.

Figure 3 shows the Control component class model, its
facade and its three main modules. In the diagram, some
specific notation expresses the facade class as extensible,
symbolizing its implementation as an OO framework and
static, meaning that the module is not re-configurable dur-
ing execution.

Configurable Data Integration
Middleware System

Alvaro C. P. Barbosa
Fabio A. M. Porto

16

The Catalog specifies the physical configuration, which
registers each DIMS component present in a configuration,
including its name and the offered and requested opera-
tions. The Workflow module is responsible for the logical
configuration, which register the mapping between DIMS
components operations for each global command request.
The Scheduler module consults the workflow in order to
schedule the respective operations in execution time.

The user of the CoDIMS environment generates a con-
figuration through a process that we present the next sub-
section.

3.3 – The Configuration Process

The Control, Communication, Query Processing, and
Metadata Manager components must exist in all configura-
tions. According to the application requirements, other com-
ponents may be included. The range of possible configura-
tions of CoDIMS can vary from a midlleware with the func-
tionality of a simple wrapper to a complex HDBMS. In the
case where a full HDBMS functionality is required the
middleware system could incorporate the Transaction Man-
ager and Concurrency Control components.

The process of generating a specific configured system
comprehends the following phases:

a) Design: the system designer selects the necessary
DIMS components. In this phase, new DIMS compo-
nents may be projected or existent ones may need
adaptation, customizing semi-complete service imple-
mentation;

b) Configuration: the system configurator registers the
physical and logical configuration in the Control com-
ponent. For this, it is necessary to provide two script

files to be executed by specific operations: define-
configuration and define-workflow;

c) Load Metadata: the application designer (database
administrator) defines local, external, and global
metadata through three scripts files to be processed
by the define-metadata operation. The specific
metadata type to be defined is passed by a parameter
when this operation is invoked.

During the Configuration step, the check-configuration
method of the Catalog module in Control component veri-
fies if all the required services are being offered by the
component interfaces that participates in the configuration.
In a similar way, the check-operation method verifies if all
operations defined in the workflow are being offered by the
specific component. After all these phases, the system is
configured and ready for client requests.

4 A Use Case for a CoDIMS Configuration
In this section we illustrate the configuration process

within the CoDIMS environment. We refer to the SINPESQ
application and one of its integration queries which analy-
ses the predatory fishing activity. The query correlates dis-
embarkation data with species reproduction period. The
former is obtained by accessing a data source in the form of
an XML file, whereas the latter is stored in a relational data-
base. The disembarkation file, although in XML format, is a
flat file with no sub-elements, making its transformation to
the relational model, the global data model chosen for the
integration system, through a wrapper a rather straight for-
ward one.

To attend this query based application we must config-
ure CoDIMS properly.

Figure 4: A Configured System Example

Configurable Data Integration
Middleware System

Alvaro C. P. Barbosa
Fabio A. M. Porto

3

XML

1
7

65

42

Control

W

Metadata
Manager QP-Parser QP-Re

QP-Query- EngineQP- Optimizer

Client
Application

17

Figure 4 presents the configured system components:
Control, Metadata Manager, Query Processing, and Com-
munication. The Query Processing component is shown
split into four modules: Parser, Re-writer, Optimizer, and
Query-Engine. It is important to present the system execu-
tion in a better way, as we show later. In this particular
configuration, Transaction Manager, Concurrency Control,
and Rule Manager components are not required following
the query nature of the application.

In order to obtain a configured system for this applica-
tion, we begin by customizing the selected components.
This could be as easy as choosing black-box modules or as
hard as coding a specific component from scratch. Once
this is done, we must inform to the Control about the com-
ponents taking part in the configuration, as well as, their
order of invocation from an external request. This task, that
we call Physical and Logical configuration, is submitted to
the Control component, from script files with the needed
definitions, and stored in the Control catalog.

In the physical configuration each component presented
in the configured system is defined with its both offered
and requested operations.

On the left side of figure 5 we present the definition of
the Query Processing component with its offered and re-
quested operations, including their parameters. The other
components are defined similarly.

Figure 5: Physical and Logical Configuration Example

In the logical configuration we provide a workflow that
defines DIMS schedule. Considering that the application
requires read-only access to data, the workflow maps only
the “Select” SQL command. On the right side of figure 5 we
present a definition of Select command workflow. Finally,
once the system is configured, we need to load the Metadata
component with export and global metadata. This is achieved
by issuing SQL commands Create Table and Create View,
respectively.

We turn now to describe the execution of the global
query in the configured system, as illustrated in Figure 4.
The Control component receives the query from the client
application – number 1 in the Figure 4. The Scheduler mod-
ule of Control creates an instance of the execution workflow
for the SQL Select statement and schedules the execution
of DIMSs according to the precedence specified in the
workflow – numbers 2, 4, 5, 6 in Figure 4. The execution
processes as follows: first of all, the Scheduler calls the
Parser (2). The Parser executes the lexical and syntactic
analysis, consults the global metadata (3) and produces a
global query-graph. Next, the Re-writer is called (4) and it
groups the information to be supplied for each data source.
It transforms the query-graph in an operation tree that con-
tains the sub-queries for submission to each data source
based on the global query-graph and on each local export
metadata. Then, the Optimizer is called (5) and it generates
a global optimized execution plan based on global metadata
and export metadata, including the temporary results pro-
duced by sub-queries. Finally, The Query-Engine (6) re-
ceives and manages the execution of the global optimized
execution plan. Each sub-query is sent to specific data
source through Communication component (7) and the re-
sult of each sub-query is integrated in the final result to be
return to the client application.

The Control module also receives messages coming from
invocation of services requested by a component. These
messages are not part of the workflow processing and are
re-directed to the adequate DIMS component by the Con-
trol.

A system prototype for this use case was implemented
in the TecBD laboratory at PUC-Rio, using an Oracle DBMS
and a XML file. It is written in Java language in order to
allow portability. The DIMS components have been devel-

Configurable Data Integration
Middleware System

Alvaro C. P. Barbosa
Fabio A. M. Porto

Define Component QueryProceessing
Offered-Operations

parser(int id, string q-graph, int RC)
re-writer(int id, string q-graph, string op-tree, int RC)
optimizer(int id, string op-tree, string exec-tree, string result, int RC)

Requested-Operations
meta-data, get-object-MD (int id, string MD-type, string object-name, string o
Communication, exec-subquery (int id, string DS-name, string subquery, st
Communication, get-next-data (int id, string DS-name, string data, int RC)

End-Component

Define Workflow Select
Operations

QueryProcessing (parser);
QueryProcessing (re-writer);
QueryProcessing (optimizer);
QueryProcessing(query-engine);

End-Operations

18

oped and compiled separatedly. The communication be-
tween them was implemented using RMI (Remote Method
Invocation) which allows for accessing remote components
already available.

5 Conclusions and Future Work
Nowadays, there is an increasing demand for accessing

and integrating heterogeneous and distributed information
such as those available on the Web. Applications built on
the top of integrated data vary from read-only to full trans-
actional and ruled-based. Deploying a data integration
middleware system capable of coping with such a variety of
requirements over a complex heterogeneous environment
is a great challenge.

This work presents CoDIMS, a flexible environment for
the Configuration of Data Integration Middleware Systems.
We develop a component-based architecture integrated
through a Control module. A configuration mechanism,
based on physical and logical configuration, allows for the
selection and integration of a variable set of adequate com-
ponents. The Control maps client requests into data inte-
gration middleware system services and provides for their
execution based on workflow precedence. Each individual
service component is built as a framework providing for
increased flexibility.

The CoDIMS provides for software adaptability through
the combination of three techniques: firstly, the selection
and integration of adequate components through the physi-
cal configuration. Secondly, the customization of each com-
ponent through the instantiation of an OO framework. And
thirdly, the logical configuration that allows for the schedul-
ing of services according to requests of client applications.

The flexibility obtained allows for generating data inte-
gration systems supporting specific services and function-
ality like: an adequate global data model, specific optimiza-
tion strategies and support for different models and data
types. In addition, it allows for the reuse of components or
services already available, including remote ones, like: wrap-
pers, parsers, optimizers etc. Moreover, it facilitates the re-
use of component substitution and modification in a spe-
cific component.

The contribution of this work is an approach for the
generation of configurable and flexible middleware system
for the integration of heterogeneous and distributed data
using components modeled as frameworks.

The CoDIMS is an ongoing project and was the subject
of a PhD thesis[28]. At the moment we are complementing
the implementation, mainly the Transaction Manager,
Concurrency Control, and Rule Manager components. We
are also investigating the semantic integration of the com-
ponents as well as the communication mechanism between

them. As future work, we aim to investigate the possibility
of dynamically modifying the workflow of mapped
middleware services based on the characteristic of a re-
quest. As an example, in a global query, if the required data
is located in only one data source, the Scheduler module
could dynamically re-generate a workflow comprising only
of the Parser service and the Query-Engine. The functional-
ity of the Optimizer and that of the Re-writer could be left
out, although being defined in the workflow.

References:
[1] Duarte, C.H.C.; Pacitti, E.; Silva, S.D. & Melo, R.N.

“HEROS: A Heterogeneous Object-Oriented Database
System”. Proceedings of the VIII Brazilian Symposium
on Databases, Paraíba, Brasil, 1993, pp. 383-394. (In Por-
tuguese).

[2] Uchôa, E.M.A.; Lifschitz, S. & Melo, R.N. “HEROS: A
Heterogeneous Object-Oriented Database System”.
DEXA Conference and Workshop Programme. Vienna,
Austria, 1998.

[3] Uchôa, E.M.A & Melo, R. N.. “HEROSfw: a Framework for
Heterogeneous Database Systems Integration”. DEXA
Conference and Workshop Programme. Italy, 1999.

[4] Barbosa, A.C.P. and Melo, R. “Using HDBMS to Access
and Dispose Web Information”. Technical Report
(PUC-Rio.Inf.MCC 29/99), PUC-Rio, Brazil, 29p. (In Por-
tuguese).

[5] Barbosa, A.C.P. and Tanaka, A.K. “Using HDBMS as an
Heterogeneous Environmental Information Integrator”.
Technical Report (PUC-Rio.Inf.MCC 30/99), PUC-Rio,
Brazil, 39p. (In Portuguese).

[6] Melo, R.N.; Porto, F.; Lima, F. & Barbosa, A.C.P.
“ECOHOOD: Constructing Configured DBMSs based
on Frameworks”. Proceedings of the XIII Brazilian Sym-
posium on Databases, Paraná, Brazil, 1998, pp. 39-51.

[7] Fayad, M.E.; Schmidt, D.C. & Johnson, R.E. “Building
Application Frameworks – Object-Oriented Foundations
of Frameworks”. John Wiley & Sons, Inc. 1999.

[8] Barbosa, A.C.P. and Lucena, C.J.P. “Integration of Soft-
ware Frameworks”. Technical Report (PUC-
Rio.Inf.MCC 02/00), PUC-Rio, Brazil, 25p. (In Portu-
guese).

[9] Shet, A.P. & Larson, J.A. “Federated Database Systems
for Managing Distributed, Heterogeneous and Autono-
mous Databases”. ACM Computing Surveys, Vol. 22,
No. 3, September 1990, pp. 183-236.

[10] Tanaka, A.; Valduriez, P. and the Ecobase Project mem-
bers. “The Ecobase Project: Database and Web Tech-
nologies for Environmental Information Systems”.
SIGMOD Record, Vol. 30, No. 3, September 2001.

Configurable Data Integration
Middleware System

Alvaro C. P. Barbosa
Fabio A. M. Porto

19

 [11] Bernstein, P., Brodie, M., Ceri, S. et al. “The Asilomar
Report on Database Research”. SIGMOD Record, Vol.
27, No. 4, December, 1998.

[12] Silberschatz, A. & Zdonic, S. “Database Systems –
Breaking Out the Box”. SIGMOD Record, Vol. 26, No.
3, September 1997.

[13] Carey, M.J., DeWitt, D.J., Graefe, G., Haight, D.M.,
Richardson, J.E., Schuh, D.T., Shekita, E.J., and
Vandenberg, S.L. “The EXODUS Extensible DBMS
Project: an Overview”, in Maier, D., and Zdonik, S.
(editors), Readings on Object-Oriented Database Sys-
tems, Morgan-Kaufmann, 1990.

[14] Batory, D.S., Barnett, J.R., Garza, J.F., Smith, K.P.,
Tsukuda, K., Twichell, B.C., and Wise, T.E. “GENESIS:
An Extensible Database Management System”, in
Maier, D., and Zdonik, S. (editors), Readings on Ob-
ject-Oriented Database Systems, Morgan-Kaufmann,
1990.

[15] Nierstrasz, O. & Dami, L. “Component-Oriented Soft-
ware Technology”, In Object-Oriented Software Com-
position, Chapter 1, edited by Nierstrasz, O &
Tsichritzis, D. - Prentice-Hall Inc., 1995.

[16] Pree, W. “Component-Based Software Development -
A New Paradigm in Software Engineering?”. Software-
Concepts and Tools (18), Springer-Verlag, 1997.

[17] Mecca, G.; Atzeni, P.; Masci, A.; Merialdo & P. Sindoni,G.
“The Araneus Web-Base Management System”. ACM
SIGMOD International Conference on Management
of Data , Seattle, USA, May,1998.

[18] Fernandez, M.; Florescu, D.; Kang, Jaewoo et al. “STRU-
DEL: A Web-site Management System”. ACM
SIGMOD International Conference on Management
of Data, Arizona, USA, May 1997.

[19] Molina, H. G.; Hammer, J.; Ireland, K. et al. “Integrating
and Accessing Heterogeneous Information Sources
in TSIMMIS”. Journal of Intelligent Information Sys-
tems, Vo. 8, No. 2, pp. 177-232, March, 1997.

[20] Tomasic, A.; Raschid, L. & Valduriez, P. “Scaling Ac-
cess to Heterogeneous Data Source with DISCO”. IEEE
Transactions on Knowledge and Data Engineering,
Vol. 10, No. 5, pp. 808-823, September, 1998.

[21] “LE SELECT: a Middleware System for Publishing Au-
tonomous and Heterogeneous Information Sources”.
INRIA, English, 1999.

(http://www-caravel.inria.fr/~xhumari/LeSelect/)

[22] Fankhauser, P.; Gardarin, G.; Lopez, M. et al. “Experi-
ences in Federated Databases: From IRO-DB to MIRO-
Web”. Proceedings of the 24th VLDB Conference,
USA, 1998.

[23] “The Garlic Project”. http://www.almaden.ibm.com/cs/
garlicl – 16/04/2000.

[24] Martinez, M.R. & Roussopoulos, N. “MOCHA: A Self-
Extensible Database Middleware System for Distrib-
uted Data Sources”. ACM SIGMOD International
Conference on Management of Data, Dallas, USA,
2000.

[25] Gamma, E.; Helm, R.; Johnson, R. & Vlissides, J. “De-
sign Patterns – Elements of Reusable Object-Oriented
Software”. Addison-Wesley professional computing
series, 1995.

[26] Widom, J., and Ceri, S., editors. Active Database Sys-
tems - Triggers and Rules For Advanced Database
Processing. Morgan-Kaufmann, 1996.

[27] Jablonski, S. & Bussler, C. “Workflow Management –
Modeling Concepts, Architecture and Implementa-
tion”. International Thomson Computer Press, 1996.

[28] Barbosa, A.C.P.. “Middleware Para Integração de Dados
Heterogêneos Baseado em Composição de Frame-
works”. PhD theses, PUC-Rio, Brazil, may 2001 (In Por-
tuguese).

Configurable Data Integration
Middleware System

Alvaro C. P. Barbosa
Fabio A. M. Porto

