
Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 25

Designing online help systems for reflective
users
Milene Selbach Silveira
Faculdade de Informática, PUCRS
Av.Ipiranga, 6681, Prédio 30, Bloco 4
90619-900, Porto Alegre, RS, Brazil
milene@inf.pucrs.br

Simone Diniz Junqueira Barbosa, Clarisse Sieckenius de Souza
Departamento de Informática, PUC-Rio
R.Marquês de São Vicente, 225
22453-900, Rio de Janeiro, RJ, Brazil
simone@inf.puc-rio.br, clarisse@inf.puc-rio.br

Abstract Empirical studies have revealed that most users are dissatisfied with current help systems. One

of the causes for many of the problems found in help systems is a lack of coupling between the
process for creating online help and the human-computer interaction design of the application.
In this paper, we present a method for building online help based on design models according to
a Semiotic Engineering approach. We argue that there may be important benefits to the users if
designers communicate their design vision, and we also point at the need to change current
design practices to encourage creative and intelligent use of computer applications. We show
how this proposal opens a direct communication channel from designers to users, and we hope
this will contribute to introducing this new culture.

Keywords: online help systems; Semiotic Engineering; HCI design; design models

1 Introduction

How can we help designers build online help for a
computer application? And how can we ensure that it will
adequately tell users what to do with the application,
what the application is for, why certain design decisions
were made, and so on? Typical online help systems don’t
help their users much. Although popular user interface
design guidelines point to the need for carefully provid-
ing users with adequate help content [18, 31], users are
still dissatisfied or have trouble with current help sys-
tems [6, 26]. The reasons for this inefficiency may lie in
inadequate design processes, in lack of time or planning,
in excessive confidence on the intuitiveness of a fail-
proof interface, or even in a naïve acceptance of current
standards [26].

Most help systems focus on operational information
based on task models. They present users with “how to”
information, implicitly accepting the “paradox of the
active user” [5], and embrace the vision that online help
is to be used only as a last resource when users don’t
know what else to do. The result is what is known as
“fail-proof” interfaces, in which users’ actions are con-

strained in order to avoid mistakes, and in which users
are never informed about “why” (or “why not”) the ap-
plication behaves in a certain way.

Opposite to the desire to create fail-proof user inter-
faces, we find Adler & Winograd’s views that attempt-
ing to build idiot-proof technology underestimates or
hinders the users’ intelligence and creativity to learn and
transform software according to their needs [1]. In accor-
dance with their view, we believe that the role of the
online help system is to open new possibilities and give
users resources to understand and go beyond the de-
signer’s original ideas, taking most advantage of the
technology. Users would be motivated to move from an
“active” attitude to a more “curious and creative” one. In
this view, the construction of the online help system
becomes a critical step in the design of human-computer
interaction (HCI). We want to give users access to mini-
malist and strategic information to encourage creative
and intelligent use of computer artifacts.

This work is based on Semiotic Engineering [9],
which views the user interface as a message sent from
designers to users, representing the designers’ solution to
what they believe is the users’ problems. It is through this

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 26

message that designers tell users what they have inter-
preted as being the users’ needs and preferences, what the
answer for these needs is and how they implemented their
vision as an interactive system. In Semiotic Engineering,
online help is an essential application component. This is
where designers will explicitly “speak” to the users, re-
vealing how the application was built, how it can be used
and for what purposes.

This paper describes a model-based method for online
help system design, stemming from Semiotic Engineering
and driven by two main pillars: communicability [21] and
the rhetorical layering technique used in the minimalist
approach [11]. In order to illustrate our approach, the
design of a real application’s help system is presented as
a running example.

2 A Semiotic Engineering View of
Online Help

According to the Semiotic Engineering theory, help
systems are a distinguished meta-message from designers
to users [9]. In this case, the designer is explicitly saying
what he believes are the users’ problems or tasks, what he
thinks is the best solution for them, and how he intends to
make it available for practical use. To this theory, it is
essential that users understand the designers’ message so
that they may better use and take advantage of the appli-
cation.

The help system is a privileged communication re-
source. Typically, help design focuses on designer-to-
user communication of extensive help content, including
keyword searches as the only means for users to express
their doubts. In our approach, we provide users with an
additional communicative resource: the ability to express
specific doubts situated in the immediate interaction
context. The idea is to promote a novel perspective on
online help design and usage: Users should be able to
express more precisely their doubts and needs, and de-
signers should be able to anticipate such doubts and
needs, and to organize their response accordingly.

The major problems users report with respect to exist-
ing help systems are [14]:

• help systems don't provide the specific informa-
tion desired;

• help information is not available when needed;
• help information is not accurate or is incomplete;

and
• it is difficult to switch between the help system

and the application.

When asking for help within an application, users
have specific doubts that they need to clarify. The fre-
quent users’ doubts are summarized in Table 2 [3, 30].

Types of Questions Sample Questions

Informative What kinds of things can I do with this
program?

Descriptive What is this? What does this do?

Procedural How do I do this?

Interpretive What is happening now? Why did it
happen? What does this mean?

Navigational Where am I? Where have I come from?
Where can I go to?

Choice What can I do now?

Guidance What should I do now?

History What have I done?

Motivational Why should I use this program? How
will I benefit from using it?

Investigative What else should I know? Did I miss
anything?

Table 1: Taxonomy of Users� Frequent Doubts.

A large body of research has been developed in an at-
tempt to effectively help users overcome these problems
and attain their goals, i.e., acquire the desired information
[7, 8, 12, 13, 15, 16, 17, 23, 27, 28, 33]. Our research
draws on communicability evaluation [21] and the layer-
ing technique used in minimalist documentation [11] to
build on existing research and propose a novel approach
to online help design.

2.1 Comunicability evaluation

In the communicability evaluation method [21], utter-
ances are used to characterize users’ reactions when a
communicative breakdown occurs during interaction. It is
argued that these breakdowns occur when the user cannot
perceive the designers’ intended affordances. A commu-
nicative breakdown is an indication that the designers
have failed in conveying their message through the appli-
cation interface.

The utterances used in communicability evaluation
are:

• Where is?
• What now?
• What�s this?
• Oops!
• I can�t do it this way.

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 27

• Where am I?
• What happened?
• Why doesn�t it?
• Looks fine to me.
• I can�t do it.
• I can do otherwise.
• Thanks, but no, thanks.
• Help!

By observing users’ behavior during interaction,

evaluators assign communicability utterances to the
breakdown situations they identify from interaction
“symptoms”. The communicability utterances were
elaborated as an attempt to evoke the users’ apparent
doubts during interaction, precisely at the moment of
breakdown. Our work aims to provide users with access
to similar expressions to represent their actual doubts
during interaction. In the approach described in this pa-
per, users can express themselves using a set of prede-
fined utterances whenever they experience a communica-
tive breakdown during interaction.

It may be argued that many applications already pro-
vide access to specific help information by means of
expressions such as What�s this?. This is typically af-
forded by specific interface elements, such as pop-up
menus, for instance. The ideas presented here extend this
approach to all levels of help content, providing relevant,
context-sensitive information at varying granularity.

2.2 Levels of affordances

In order to further help designers to organize help
content, we also examine in detail the role of affordances
in Semiotic Engineering. In de Souza, Prates & Carey
[10], we see that the designer has fostered a successful
communication with users when they can perceive the
intended application affordances. The authors classify
affordances in three levels: operational, tactical, and
strategic.

Affordances at the operational level are related to the
immediate and individual actions that users need to per-
form. They are closely related to the interactive codes
employed in the application, i.e., the concrete user inter-
face. We may consider questions such as What�s this? as
being answered at this level.

Tactic-level affordances are related to a plan, or se-
quence of actions, for executing a certain task. In general
terms, information at this level answers questions such as
How?

Finally, there are strategic-level affordances, which

are related to conceptualizations and decisions involved
in certain problem-solving processes and in the embed-
ded technology. Information at this level typically an-
swers questions of the kind of Why?

2.3 Using communicability utterances in help
design

In this section, we will analyze the relation between
each communicability utterance, the corresponding com-
municative breakdown as indicated by certain symptoms
[21], the affordance level in which it occurs, and the
kinds of help response to be designed. Our goal is to gain
insights for designing coherent help systems that provide
content at various levels, and for designing consistent
access for each piece of content.

Oops!
Oops! occurs when the user realizes he/she has just

done something wrong, and wants to reverse the previous
action(s). The help response should be either operational
or tactical, depending on the complexity of the steps to be
performed. For instance, a single Undo would be consid-
ered an operational response, whereas a sequence of
interaction steps that lead to the desired state would be
tactical.

Where is?
The problem here is that the user has an idea of what

he/she needs, but cannot find the corresponding interface
element. The help response should be, at first, opera-
tional: it should tell the user where the element is. It may
be necessary to actually show where the element is, de-
pending on the interaction steps required for accessing it.
In this case, the response is considered tactical, showing
how the user may reach the element.

It is important to note that, in the case of this utter-
ance, the user must specifically describe or identify the
element he/she is querying about, since its location is
unknown. It is possible that the user does not know the
specific name or expression the designer chose to refer to
the element, so we should be aware of this problem and
provide a variety of synonyms for the terms employed
throughout the application.

Where is? utterances can also occur from within help
content that was first accessed via other utterances. In this
case, the user was told what to do, but does not know
where to find the necessary interface element for carrying
out the instructions. For instance, let us consider some
help content related to an Oops! utterance, which tells the
user what to do to reverse the previous actions. If there is

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 28

an element the user cannot find in the interface, he/she
would further utter Where is? in order to find out the
location of (operational) and/or interaction steps required
for accessing (tactical) the element.

What now?
This utterance occurs in two different situations:

(i) when the user has carried out a few interaction
steps but does not know how to proceed with the
task at hand; or

(ii) when the user needs to perform a task that he/she
cannot even formulate in terms of the available in-
terface elements.

In the first case (i), the response should be opera-
tional, showing the user what to do (what the next step
is). If the user utters What now? again, in this context, the
response should become tactical, showing the user how to
do what is needed.

In the second case (ii), the response would be strate-
gic, presenting to the user the tasks the application was
designed to support, from a user’s perspective, i.e., using
the terms he/she should be familiarized with, according to
the corresponding domain.

What�s this?
The user utters What�s this? when he/she needs a de-

scription of an interface element or its usage. The re-
sponse should be, at first, operational, describing the
element. If the user wants further information, such as
how, where, and when the element is used, we have an-
other What�s this?, this time at a tactical level, describing
the element’s usage. In many cases, both levels can be
presented at once, saving users’ an additional interaction
step.

Another usage of What�s this? may occur when the
user has heard about some application object or function-
ality, but could not identify or locate it. In this case, the
access to the utterance would be like the one for Where
is?, in which the user is prompted for additional input.

What happened?
This utterance occurs when the user performs an ac-

tion expecting a response, and he/she gets another re-
sponse, or no response at all. The corresponding help
content should be both operational and tactical: It should
reveal what happened, and how it resulted from the pre-
vious interaction steps.

Why doesn�t it?
Why doesn�t it? occurs when a user retries an opera-

tion more than once, because he/she is convinced that
he/she is doing the right thing. The response should be
both tactical and strategic. It should show the conse-
quences of the interaction steps taken, and why they
provide those results.

I can�t do it.
I can�t do it. could be accessed from a piece of help

content, whenever the user fails in following procedural
instructions. The response should be presented at a tacti-
cal level, guiding the user through the preconditions
necessary for that task to be performed. It may also pre-
sent operational instructions, at a finer level of interaction
detail.

Help!
This utterance gives access to a traditional facet of the

help system, when uttered within the application inter-
face. Moreover, it can also be uttered within the help
system itself, and in this case, it should provide informa-
tion about all kinds of help that are available to users. In
this context, it can be used again to ask when and how to
access the various portions of the help system.

Unused communicability utterances

Some of the existing communicability utterances are
inadequate for accessing help information. For instance,
the user would never utter I can�t do it., but rather ask
How do I do this?. The utterances I can do otherwise
(missing of affordance) and Thanks, but no, thanks. (dec-
lination of affordance) wouldn’t probably be uttered
either, because the user would have successfully com-
pleted his/her task.

Additional help utterances

In addition to the communicability utterances selected
for accessing help content, we need new utterances to
convey the users’ frequent doubts that are not addressed
by communicability, like procedural and motivational
doubts.

Due to the fact that user interfaces have become in-
creasingly more flexible, we also need some information
to convey more than one way to achieve a single goal,
e.g. how different user interface elements may be used to
achieve a goal. We do so by providing a response to the
question Is there another way to do this?.

In order to address a procedural doubt, a new utter-
ance is proposed: How do I do this? In addition, we pro-

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 29

pose a few other utterances: Where was I? Why should I
do this? What is this for? Who is affected by this? On
whom does this depend? Who can do this? Following is a
description of the breakdowns they intend to solve, and
the levels at which they function.

Where was I?
This breakdown occurs when the user needs to retrace

his/her previous steps in order to understand the state in
which he/she currently is. The response should be at both
the operational level, with an identification and a descrip-
tion of the previous steps, and at the tactical level, with
an identification of larger tasks that may comprise these
steps.

Why should I do this? What is this for?
These utterances could be accessed from a piece of

help content, whenever the user doesn’t understand the
reasons underlying certain instructions or the utility of a
certain task. The response — for both of them — should
be presented at a strategic level, revealing the designer’s
perspective on that topic.

These utterances are particularly important to Semi-
otic Engineering, because the designer can use them to
explicitly state his/her rationale of the application.

For instance, Why should I do this? could be used
from within a piece of help content previously accessed
via a tactical What�s this?. In this situation, the user
would want to know not only what a task is and how to
perform it, but also its importance within the application
as a whole.

Who is affected by this? On whom does this depend?
Who can do this?

These utterances may occur when work processes and
roles are modeled, and roles are responsible for interde-
pendent tasks. The response may be considered opera-
tional, listing the roles affected by the selected task.

How do I do this?
When the user does not know how to perform a cer-

tain task in an application, he/she may utter How do I do
this? and provide additional input in order to obtain the
corresponding help information. The response should be
presented at a tactical level, describing how he/she should
proceed. Typically, it consists of step-by-step instruc-
tions.

Within this help context, users may utter How do I do
this? again, in case an instruction isn’t clear. If, on the
other hand, he/she tries to perform the operation and

doesn’t succeed, it is a case of I can�t do it.

Is there another way to do this?
This utterance comprises both I can do otherwise and

Thanks, but no, thanks. In this case, the response is both
tactical and strategic. For each alternative path of interac-
tion, it should present the steps required to perform the
task (tactical), and the motivation for following that path
(strategic).

This utterance is also characteristic of our Semiotic
Engineering approach, since it allows the designer to
explicitly convey his/her design decisions and intentions.

As presented earlier, some utterances can be accessed
immediately from the user interface, such as What�s this?
and What happened?. Others, however, require additional
input, such as Where is? and How do I do this?. More-
over, some utterances may occur from within the help
system itself, such as Why should I do this?, for example.

Table 2 presents the whole set of utterances we will
use for designing our help system.

Existing Communicability Utterances

I can�t do it.

Oops!

Where is?

What now?

What�s this?

What happened?

Why doesn�t it?

Help!

Help-Specific Utterances

How do I do this?

What is this for?

Why should I do this?

Whom does this affect?

On whom does this depend?

Who can do this?

Where was I?

Is there another way to do this?

Table 2: Final set of utterances for accessing help content.

Both users and designers benefit from using these ex-
pressions: users have a greater chance of getting a rele-

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 30

vant help response, and designers have an organizing
principle directly driven by the communicative break-
downs they intend to circumvent or solve.

2.4 Minimalism and the layering technique

Because the proposed help expressions allow users to
focus on a specific doubt, designers need now to elabo-
rate help content to address each one of these doubts.
This allows for shorter, more focused help responses.
This idea is in line with the minimalist approach to in-
structional material [4].

Inspired by the layering technique [11], we allow us-
ers to access minimal pieces of help content about a cer-
tain user interface element or task. From this help con-
tent, users may, depending on their needs, access further
help material and then on to as much further information
as required.

A simple example illustrating minimalist responses
and the recurring use of expressions upon these is shown
in Figure 1. This is a fictitious example, based on some
help content found in Microsoft Word®, as a response to
help requests about ‘tracking changes’.

To review a text, access the Track
changes option under the Tools menu.

 What now?

 How do I do this?
How do I do this?
To track changes, from the Tools menu,
select the Track changes option. If you
want to turn on-off the reviewing mode,
select the Highlight changes... subitem.
If you would like to accept or reject each
one of the revisions, select Accept or
Reject Changes... Finally, if you would
like to compare two documents, select
Compare Documents...

 IIs there another way to do this?

Figure 1: Help responses and their recurrence.

Combining the layering technique and the communi-
cability utterances for accessing help content allows de-
signers to solve many context-sensitive doubts, i.e.,
doubts regarding their immediate and contextual needs.
However, this approach is somewhat limited when users
have major gaps in understanding the application. In this
case, we need a more traditional standalone help module.

In the standalone help module, it is possible to find
related information about the domain and the application
as a whole, as well as usage scenarios. It is through the
standalone help module that designers may convey their
global design vision in a consistent way, and address
general understanding issues, such as the application
domain, advantages and disadvantages of using the apli-
cation, and provide content from a tutorial perspective.
Because most research on help systems addresses some
of the major design issues of standalone help modules, in

this paper we will focus only on the local (contextual-
ized) help.

3 Building online help systems from
HCI design models

In our approach for designing online help [32], we
propose that the designer’s vision — to be sent to users
through the help system — be captured during the design
and development processes. This knowledge elicitation
(capturing the designers’ knowledge about the applica-
tion designed and developed by themselves) is based on
questions for the designers, classified into three major
topics. From the designers� point-of-view:

• What are the users� problems/needs?
• What is the best solution for these problems?

And what are the alternatives?
• How was this made available for operational

use?
These questions summarize our conclusions after re-

lating the aforementioned users’ most frequent doubts,
research about available technical literature (taxonomies
for online help systems [29], context-sensitive help [16,
33], help for the web [7, 23, 28], and user-system dia-
logues [8, 12, 13, 15, 17, 27]) and practice in the design
and development of online help systems for groupware
applications on the web.

Each topic can be extended into subtopics, whose an-
swers constitute the semantic dimension of the message
from designers to users about the application. These are:

1. What are the users� problems and needs?

• What is the application domain?
• What is the nature of work in this domain?
• Who are the actors?
• What role do they carry out?
• What tasks do they do?

2. What are the best solutions for these problems and
needs?

• What is the application?
• How will this technology affect the domain?
• What is possible to do with it (What are the sup-

ported users� goals)?
• What is the application useful for?
• What are the advantages of the application?

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 31

Regarding the technology

• What computational environment is presumed
for the full operation of the application?

• What does the user need to know in order to use
this application?

Regarding the supported activities

• What activities (tasks) can be carried out in the
application environment?

• What are the available options in the current ver-
sion?

3. How can all of this be put to operational use?

Regarding the HCI Analogy

• What is the basic computer�human interaction
analogy used?

Regarding the tasks

• What does each task mean?
• How can/must users do that? When?
• Where in the application can users do this task?
• How can users do and undo (parts of) tasks?
• Why is it necessary to do this or that task?

• Examples of performing the task (scenarios)
• Who is or isn�t affected by a task or part of a

task?
• What do we do after finishing a task? Until when

can we do that?
• How do we know if we have (successfully) fin-

ished the task?

Given an actual context of interaction, the user must
be able to answer:

• What can I do now?
• Where am I?
• Where can I go?
• Where did I come from?
• What happened?

We can analyze these questions from four different

perspectives: Domain, Tasks, Agent (inspired by [34])
and Application. These perspectives are used to define
our help model (Figure 2). The expressions in boldface
represent the corresponding help information. In paren-
theses, we present the questions for the designers, whose
answers will be used to build the actual content of the
help topics.

Domain

Agent

Application

Task

domain (What is the application domain?)
description (What is the nature of work in this domain?)

agents (Who are the actors there, what role...?)
role (Who are the actors there, what roles...?)
basic knowledge (What does the user need to know...?)

application (What is the application (technology x domain)?)
utility (What is possible to do with it?)
advantages (What are its advantages?)
platform (Which computational environment is assumed...?)
activities (Which activities may be carried out in this environment?)
options (What are the available options in the current version?)
analogy (What is the basic computer-human interaction analogy?)

name
description (What does each task mean?)
users_actions (How can/must users do that?

In which part of the application should
users work?)

revocation (How to do/undo (parts of) tasks?)
motivation (Why should users do this or that?)
example (Examples of performing the task.)
next step (What do we do after finishing a task?)
influence (Who is or isn't affected...?)
context (Where am I?

 Where can I go?
 Where did I come from?
 What happened?)

based upon

belongs to

use composed of

performs

affects

subtasks

Figure 2: Perspectives for representing information in help systems.

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 32

In this model, we find the answers to the described
questions. The entities’ attributes become the answers to
the preceding questions, which are listed under each
corresponding entity. The questions of a contextual na-
ture are generated at execution time, according to the task
and the actual application state.

After comparing the proposed help model with exist-
ing HCI design models, we realized that some of the
information necessary for developing help systems is
already present in well-known design models. As such,
instead of building a distinct model specifically for help
design, we propose to use the HCI design models as a
starting point, and extend them with additional informa-
tion that we deem valuable for help design.

In HCI design processes, many designers use models
to represent interactive solutions in such a way as to
support their reflection and decision-making process.
Perhaps the most widely used models are the task mod-
els, but we also find references to user, domain, presenta-
tion, and dialogue models, among others [20, 22, 24, 25].

Puerta [24] remarks that from the design models we
may derive answers to several questions, which would
guide the design team throughout the development proc-
ess. Among these questions, we cite:

• Who are the users of the user interface?
• Which tasks do users perform using the inter-

face?
• To which domain objects does the interface need

to give access?
• How the user interface components are presented

to each user?

• Which commands and actions can the user exe-
cute in the interface?

Although this information is essential for the applica-
tion design, we claim that they are not enough for design-
ing the online help system. In addition to these functional
issues, we need to provide information about the de-
signer’s vision of the application, as described earlier in
this section. In particular, we need resources to answer:

• What is the nature of work in the application
domain?

• How will this technology affect the domain?
• Why is it necessary to do this task or perform

that action? Whom will it affect? On whom does
it depend?

• Why this or that interaction path is preferred?

Because we want to reuse available design informa-
tion, we have studied existing design models to assess
what kinds of information were represented, and which
ones we would have to add to the models. First, we re-
fined the help module presented in Figure 2. To better
represent tasks in the necessary level of detail, we in-
cluded the components Actions and Interface Elements.
The set of design models we chose is composed of do-
main, application, task, user, interaction and interface
models (Figure 3). Note that there is no specific help
model. Instead, we extended each design model to be
able to represent specific help information that was miss-
ing.

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 33

Domain
model

Application
model

User
model

Interaction
model

Interface
model

Task
model

Agents

Application

based on

composed of

Actions

operationalized via

operated on

Domain

Tasks

Interface elements

belongs
to

use

perform

Figure 3: Help model and the corresponding design models.

Most of these models —domain, task, and user mod-
els, as well as part of the interaction model— are inde-
pendent of the specific technology in which the system
will be developed. The user interface model and the part
of the interaction model that represent the operationaliza-
tion of the tasks, however, will depend on both the user
interface style and implementation platform.

Designers build these models during diverse phases of
the HCI design process. Figure 4 illustrates a generic
schema of the design lifecycle, and in which phase(s)
each model is built.

Analysis and early
design

Interaction design User interface
specification

Domain
model

Application
model

User
model

Interaction
model

Interface
model

Task
model

Figure 4: Design models used during the each phase of the design
process.

The distinction between the domain, application, user
and task models is clear cut. But the distinction between
the interaction and the interface model needs further

clarification. It is possible to model tasks by means of
their realization in the user interface (“to do X, click on
the Y button”). But what if the technology or the user
interface style changes? Although many important deci-
sions regarding interaction were made, designers will
have to elaborate everything again to address the new
technological environment. This work assumes that the
technology-separable aspects of the interaction will be
represented in the interaction model [2], whereas the
concrete realization of the user interface is left to the
interface model.

An interesting question may be raised from the dia-
gram in Figure 4: Does the moment at which each model
is built affect the online help system design? One might
think not, as long as the information is available when
necessary. However, good HCI design somewhat presup-
poses such an order, otherwise misconceptions may arise.
For instance, is it possible to capture domain information
only when the task model is being built? In principle, yes,
but a global knowledge of the domain is essential before
starting to model tasks — even if this knowledge needs to
be refined later. Otherwise, how would designers elabo-
rate the technology to support tasks before understanding
how the tasks are currently performed in the users’ work
environment? How would they identify the need for new
tasks? And how would they be able to assess how the
technology will impact the daily work of users, in order

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 34

to minimize undesirable effects?

In projects that do not follow a sound model-based
development process, help designers must face additional
problems: The information necessary for building help is
not captured when it is first available, and the help sys-
tem is built only at the end of the process. That way, not
only do help designers lack time to elaborate the help
content, but also they are not told the rationale underlying
design decisions that may affect how they should tell
users how to use the system.

We now describe the information comprised in each
model, highlighting (in boldface) the information that is
essentially driven towards help system construction.

Domain model

This model contains information related to the appli-
cation domain, focused on its description, the nature of
work performed, and the information elements (domain
signs1) that belong to it.

Application model

This model represents the application being designed.
The focus here lies in the application description, its
utility, advantages, supported activities, alternative
courses of action, and the application signs. Besides, it
encompasses the roles users may play in this application,
and for each role, the tasks related to it, and the necessary
basic knowledge.

Task model

This model comprises information related to the tasks
users may perform. For each possible task, we represent
its description, utility, reason why it should be per-
formed (from the designer�s point of view), its parent task
(considering a hierarchical task decomposition), the op-
erator2 that connects it to the following task, which estab-
lishes in which way it should be executed, the task�s pre-
conditions, and the related domain and application signs.

User model

In this model, we represent information related to the
targeted application users. For each user we represent his
name, the roles he may play, and his profile, which indi-

1 A sign is a technical semiotic term that is usually taken to mean
“something that stands for something else for someone”. In this sense,
every piece of data represented in a computer application is a sign to
the designer, and every user interface element is a sign both to the
designer and to the user(s).
2 The operators considered in this version are those proposed in [20].

cates the way in which he would like to interact with the
application.

Interaction model

This model represents the possible forms of interac-
tion with the application, that is, how to effectively per-
form a certain task in the application. For the execution of
each task there may be alternative courses of actions. For
each alternative, there is the reason why it should be
executed (from the designer�s point of view), its precondi-
tion(s), the indication whether it is the preferred alterna-
tive (from the designer�s point of view) and the actions
necessary for its execution. For each action, there is the
default value, as well as the way to undo it, besides the
operator that connects it to the next action.

Interface model

This model is composed of information about the in-
terface elements of the application. For each element, we
represent its type, the values it may assume, its default
value, its location at the user interface, and the related
domain and application signs.

4 A method for developing online help

In this section we describe the steps in designing an
online help system in a model-based design:

(i) HCI design model construction, taking into ac-
count specific help issues;

(ii) automatic generation of draft help content;
(iii) content refinement and recurrence specification;
(iv) standalone help module construction;
(v) connection of help access points to the interface

elements;
(vi) preliminary testing and usage analysis during

communicability evaluation; and
(vii) help content refinement or redesign.

This method is illustrated in Figure 5.

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 35

3
Application

Model + help User
Model + help

Interaction
Model + help

Interface
Model + help

Task
Model + help

Model-based design

Layering and refining
help

Help
draft

Help
draft

Help draft Local help +
recurrences

Creation of standalone
help module

Help draft Standalone
help module

Domain
Model + help

Help content
refinement and

redesign

Help content generation

Connection to interface
elements

Analysis and user testing

Figure 5: Steps used to build online help systems.

.
To illustrate our approach, we will describe portions

of an application we designed and developed for support-
ing the volunteer work in a nongovernmental organiza-
tion [19]. The module we have chosen for illustration is
the Bulletin Board, in which volunteers and employees of
this organization may post and verify announcements
related to their work or to the organization as a whole.
These announcements may be classified according to
different topics or divisions within the organization, such
as: Administration, Events, Meetings, and so on.

Figure 6 illustrates a usage scenario in the actual ap-
plication, in which a member of the organization has
looked for help about a section marker.

Figure 6: Help request and response.

4.1 Representing help content in HCI design
models

As mentioned before, we derive the information nec-
essary for the construction of both local help responses
and the standalone help module from HCI models built
during the design process.

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 36

As an example, consider a piece of the domain model
illustrating a couple of domain signs in our case study:

DOMAIN SIGN Marker indicating cur-
rent section {

DESCRIPTION (This marker indi-
cates which is the current sec-
tion (for instance, Highlights,
Events, and so on.))
PURPOSE (To quickly indicate the
current section.)

}
DOMAIN SIGN section {

DESCRIPTION (A section is where
the announcements are grouped
according to a common topic.)
PURPOSE (To classify the an-
nouncements that have common
characteristics, making it eas-
ier to locate them. For in-
stance, announcements about up-
coming events are located in the
“Events” section, about dona-
tions in the “How to help” sec-
tion, and so on.)

}
and a piece of the task model:

TASK Provide the required informa-
tion {

TASK PARENT(Create an announce-
ment)
OPERATOR (sequence)
SEQUENCE (1)
…

}
TASK Confirm the operation {

TASK PARENT(Create an announce-
ment)
OPERATOR (sequence)
SEQUENCE (2)
…

}

4.2 Generating draft help text using tem-
plates

For each element–expression combination, a minimal-
ist response is designed. In order to generate a draft of
this response, we have created a help content template
associated to each expression. This template is instanti-
ated with information from the different HCI design
models. For instance, for the What�s this? expression, the
content comes directly from the description of the related
(domain or application) sign, which is represented in the
corresponding (domain or application) model (Figure 7).

Response: description(<sign>)
What�s this?

Figure 7: Schema for generating a response for the question What�s
this? about a domain or application sign.

The expression How do I do this? requires a more
elaborate template, related to the procedure(s) for per-
forming task (Figure 8).

 should
Response: In order to <parent_task>, you
 can

<task1>,
�
and
<taskn>.

<task1>,
�
or
<taskn>.

The choice of connecting
words depends on the task
sequence and operators

[, in whichever
order you wish].

The algorithm searches,
in the task model, the
tasks that are children of
the indicated task.

How do I do this?

Figure 8: Schema for generating a response for the question How do I
do this? about a task.

From the information contained in the models and
these templates, a draft of the candidate help responses is
generated for each pair expression–element (where ele-
ment may be a sign, task, alternative courses of actions,
and actions). The help designer then selects which re-
sponses she will actually include in the application.

Let us consider the marker next to the name of the
current section (“Highlights”). A sample response gener-
ated from the database is obtained as follows:

(i) What kind of element is this? This marker is a
domain sign.

(ii) What are the expressions related to this kind of
element? The expressions related to (domain)
signs are: What�s this?, What is this for?, and
Where is�?

Taking as an example the expression What�s this?,
and using the aforementioned template, the descrip-
tion element was retrieved from the domain sign com-
ponent, resulting in the following draft answer:

This marker indicates which one
is the current section (for in-
stance, Highlights, Events, and
so on).

Considering now an example using the task model,
the response for the expression How do I do this? related
to the task Create an announcement, would be:

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 37

In order to create an announce-
ment you should provide the re-
quired information and confirm
the operation.

4.3 Layering and refining help and creation
of standalone help module

Based on the interviews with users, domain analysis,
and so on, the designer selects those elements about
which she believes users may have doubts or which she
would especially like to explain or describe to users, and
the expressions that will be used to access the corre-
sponding help content.

As soon as these element–expression pairs are se-
lected, the generated draft responses undergo a refine-
ment process, in which technical communication special-
ists shape the text to better communicate the designer’s
message to users. Having done that, each help response is
analyzed by the designer to verify the possible recurrence
points it may comprise. These points indicate the ele-
ments in the response to which further help expressions
and content may be associated. This content may, in turn,
contain additional recurrence points, and so on, deepen-
ing the help content about certain interrelated topics.

In our example, the draft text of the selected re-
sponses was refined and analyzed with the purpose of
finding possible recurrence points. For instance, in the
response to the expression What�s this?:

This marker indicates which is
the current section (for in-
stance, Highlights, Events, and
so on.)

the designer verified a reference to another domain
sign, in this case section. She selected this word as a
recurrence point within the response, and associated the
expressions What�s this? and What is this for? to it.

The template for What�s this? of a domain sign is:
description(<sign>); and the template for the
expression What is this for? is: purpose(<sign>).
Thus, the response to What�s this? is:

A section is where the announce-
ments are grouped according to a
common topic.

And the response to What is this for?:

To classify the announcements
that have common characteris-
tics, making it easier to locate
them. For instance, announce-
ments about upcoming events are
located in the “Events” section,
about donations in the “How to

help” section, and so on.

It is important to note that, whenever possible, help
responses are generated and refined beforehand and em-
bedded in the application as static information, instead of
being dynamically generated. This solution avoids execu-
tion delays in processing the possible expressions and
responses for each element, and makes it possible to
manually refine the generated draft responses, so that the
manner of speech will seem natural and the communica-
tion will be more efficient.

Jointly with the layering and refinement of the help
messages, the standalone help module may be created. In
its most basic form, this module should contain help
information about the domain and the application, as well
as an explanation about how different kinds of help work
(standalone and local). The domain and application por-
tions of this module may be built and refined pari passu
the construction and refinement of local help content.
Afterwards, part of the local help content may also be
included in the standalone module.

4.4 Connection to interface elements

Having refined the local help content, the expressions
and their corresponding responses may be made available
through the user interface, associated to the elements
which, according to the help designer, may raise some
kind of user doubt. This is achieved by adding a trigger
or link to the corresponding help expressions and content.
In our case study, the graphics designer created a symbol
to function as a link to local help requests. The chosen
symbol was an interrogation mark within a square, such
as ?, placed next to the user interface element associated
to the help expression.

4.5 Analysis and user testing

Having built the application prototype, the local help
system and the standalone help module, the design team
should carry out some preliminary testing in order to
verify whether the expressions and the corresponding
responses are consistent, as well as the general help in-
formation. Every connection to help should be tested, as
well as every recurrent point within the responses.

Once the application is implemented, it is ready for
real user testing. We use the communicability evaluation
method [21] to verify if the interface is conveying the
designer’s message and to investigate which problems
might occur during interaction. In our case study, we set
up a few sessions of communicability evaluation with six
users with varying degrees of computer literacy. These
users were selected specifically because they represented
the majority of the targeted user population, as indicated

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 38

by the analysis interviews.

To better observe interaction during testing and to be
able to capture the problems that may occur in help us-
age, it is interesting that the help designer be present
during observations, so that she may focus specifically on
help issues. She may not only observe problems in ac-
cessing help expressions and in understanding their re-
sponses, but also find out user difficulties that hadn’t
been anticipated (and therefore had no associated help),
or whose responses did not address the user’s current
problem. In our case study, this step made it possible to
determine problems in the help content and in accessing
help. These problems were grouped into three classes:
help content, “declining” help, and help culture.

Help Content. During testing, the help designer ob-
served users having problems in situations unanticipated
by her, which meant that the corresponding help was
inadequate or altogether missing.

�Declining� Help. When a user, after many fruitless
attempts to use the searching mechanism, made a local
help request, she read the explanation, spontaneously said
she understood it, but even so she decided to do some-
thing different from what was said in the help content,
which made it impossible to carry out the task defined in
the test scenario.

Help Culture. Most users didn’t access help, inde-
pendently of their experience with the application or in
using computers. There isn’t a culture of asking for
online help when you are in trouble. Few were those who
asked for help and, when they did, some of them closed
the help window before there was time for them to have
read the help information. Only one user actually read the
help text and followed what the explanation suggested.

5 Conclusion

In this paper, we have shown why, in Semiotic Engi-
neering, online help system is an essential part of an
application. It is through help that the designer can di-
rectly communicate with the application users, revealing
the reasons underlying her design and how users may
make better use of it. In this approach, model-based de-
sign is of utmost importance, for it makes it possible to
maintain the consistency between the design products
built at each phase. This allows the designer to create and
convey a cohesive message to users, in order to increase
their chances of making sense of her message.

The users may also express their doubts more directly
using one of the available local help expressions during
interaction. The response will be a fragment of the de-

signer’s point of view and rationale when designing the
application. Moreover, users may delve deeper into the
help content from the recurrence points available at each
help response, in an indefinitely long chain of associa-
tions driven by their local needs. This process is associ-
ated to some fundamental concepts in semiotic theory,
namely semiosis and abduction.

In addition to all technical and theoretical efforts, we
should also pay attention to introducing changes in the
way users perceive help. As a rule, users access help only
as a last resort [5]. They may have had frustrating experi-
ences in the past, or not even understand what help is for.
We have argued that this perception is motivated by the
attempt to design fail-proof interfaces, instead of convey-
ing to users strategic information to encourage creative
and intelligent use of computer artifacts. By adopting a
Semiotic Engineering perspective for designing user
interfaces and help systems, and thus opening a direct
communication channel from designers to users, we be-
lieve our approach is a first step towards the introduction
of a new culture for using help systems and computer
artifacts.

By following a model-based approach, the cost of ex-
tending current design practices to design help according
to our view is reduced. In order to further increase the
benefits of our work, our students at PUCRS and PUC-
Rio are working on software tools for aiding the design
of online help.

Acknowledgements

The authors would like to thank PUCRS, PUC-Rio,
and CNPq for supporting their research. They also thank
the Semiotic Engineering Research Group at PUC-Rio
for invaluable discussions that have contributed to this
work.

References

[1] P. Adler, T. Winograd. Usability: Turning tech-
nologies into tools. Oxford University Press,
1992.

[2] S.D.J. Barbosa, C.S. de Souza, M.G. de Paula,
M.S. Silveira. Modelo de Interação como Ponte
entre o Modelo de Tarefas e a Especificação da
Interface. In Simpósio Brasileiro de Fatores
Humanos em Sistemas Computacionais, Fortale-
za, 2002. pp.27-39.

[3] R.M. Baecker et al. Readings in Human-

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 39

Computer Interaction: toward the year 2000.
Morgan Kaufmann Publishers, Inc, San Francis-
co, 1995.

[4] J.M. Carroll (ed.) Minimalism Beyond the Nurn-
berg Funnel. The MIT Press, Cambridge, 1998.

[5] J.M. Carroll, M.B. Rosson. Paradox of the Ac-
tive User. In: J. Carroll Interfacing Though:
Cognitive Aspects of Human-Computer Interac-
tion. Cambridge, MA: The MIT Press, 1987.
pp.80�111.

[6] I. Ceaparu, J. Lazar, K. Bessiere, J. Robinson, B.
Shneiderman. Determining Causes and Severity
of End-User Frustration. Technical Report,
HCIL-2002-11, CS-TR-4371, UMIACS-TR-
2002-51, 2002.

[ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-
Bibliography/2002-11html/2002-11.pdf, visited
in March, 2004]

[7] L. Chamberland. Componentization of HTML-
Based Online Help. In Proceedings of the Seven-
teenth Annual International Conference on
Computer Documentation, ACM Press, pp.165-
168. 1999.

[8] J. Chu-Carrol, S. Carberry. Collaborative Re-
sponse Generation in Planning Dialogues. Com-
putational Linguistics, 3, 1998. pp.355-400.

[9] C.S. de Souza. The Semiotic Engineering of
Human-Computer Interaction. The MIT Press,
Cambridge, 2005.

[10] C.S. de Souza, R. Prates, T. Carey, T. Missing
and Declining Affordances: are these appropriate
concepts?. Journal of the Brazilian Computer
Society, Number 1, Volume 7, July 2000. pp.26-
33.

[11] D.K. Farkas. Layering as a Safety Net for Mini-
malist Documentation. In J.M. Carroll (ed.)
Minimalism Beyond the Nurnberg Funnel. The
MIT Press, Cambridge, 1998. pp.247-274.

[12] B. Hansen, D. G. Novick, S. Sutton.Systematic
Design of Spoken Prompts. In Proceedings of
CHI´96, ACM Press, 1996. pp.157-164.

[13] W. L. Johnson, A. Erdem,. An Interactive Expla-
nation of Software Systems. Automated Software
Engineering, 4, 1997. pp.53-75.

[14] G. Kearsley. Online Help Systems: design and
implementation. Norwood: Ablex Publishing
Corporation. 1988.

[15] S. Kedar, C. Baudin, L. Birnbaum, R. Osgood,

R. Bareiss. Ask How it Works: An Interactive
Intelligent Manual for Devices. In Proceedings
of the INTERACT�93 and CHI�93, ACM Press,
1993. pp.171-172.

[16] M. Marx, C. Schmandt. MailCall: Message Pres-
entation and a Navigation in a Nonvisual Envi-
ronment. In Proceedings of CHI´96, ACM Press,
1996. pp.165-172.

[17] V. O. Mittal, J. D. Moore. Dynamic Generation
of Follow on Question Menus: Facilitating Inter-
active Natural Language Dialogues. In Proceed-
ings of CHI´95, ACM Press, 1995. pp.90-97.

[18] Nielsen, J. Usability Engineering. Cambridge,
MA: Academic Press. 1993.

[19] ORÉ, Projeto. In: http://serg.inf.puc-rio.br/ore,
2002.

[20] F. Paternò. Model-Based Design of Interactive
Applications. Springer-Verlag, Londres, 1998.

[21] R.O. Prates, C.S. de Souza, S.D.J. Barbosa. A
Method for Evaluating the Communicability of
User Interfaces. ACM Interactions, Jan-Feb
2000. pp.31�38.

[22] J. Preece, Y. Rogers, E. Sharp, D. Benyon, S.
Holland, T.Carey. Human-Computer Interaction.
Addison-Wesley, Reading, 1994.

[23] M. Priestley. Task Oriented or Task Disoriented:
Designing a Usable Help Web. In Proceedings
of SIGDOC 98, ACM Press, 1998. pp.194-199.

[24] A. Puerta. The Mecano Project: Comprehensive
and Integrated Support for Model-Based Inter-
face Development. In J. Vanderdonckt (ed)
Computer-Aided Design of User Interfaces.
Presses Universitaires de Namur, Namur, 1996.
pp.19-25.

[25] A. Puerta. A Model-Based Interface Develop-
ment Environment. IEEE Software, 14(4),
July/August, 1997. pp.41-47.

[26] H. Purchase, J. Worrill. An empirical study of
on-line help design: features and principals.
International Journal of Human-Computer Stud-
ies 56, 2002. pp.539-567.

[27] B. Raskutti, I. Zukerman. Generating Queries
and Replies during Information-Seeking Interac-
tions. International Journal of Human-Computer
Studies, 47, 1997. pp.689-734.

[28] L. Rintjema, K. Warburton. Creating an HTML
Help System for Web-based Products. In Pro-
ceedings of the Sixteenth Annual International

Milene Silveira, Simone Barbosa, Designing online help systems
and Clarisse de Souza for reflective users

 40

Conference on Computer Documentation, ACM
Press, 1998. pp.23-28.

[29] A. W. Roesler, S. G. McLellan. What Help Do
Users Need? Taxonomies for On-line Informa-
tion Needs & Access Methods. In Proceedings
of CHI´95, ACM Press, 1995. pp.437-441.

[30] A. Sellen, A. Nicol. Building User-Centered On-
line Help. In B. Laurel. The Art of Human-
Computer Interface Design. Addison-Wesley,
Reading, 1990. pp.143-153.

[31] B. Shneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Inter-
action, 3rd edition. Reading, MA: Addison-
Wesley, 1998.

[32] M.S. Silveira, S.D.J. Barbosa, C.S. de Souza.
Augmenting the Affordance of Online Help

Content. In Proceedings of IHM-HCI 2001,
Springer-Verlag, Lille, 2001. pp.279-296.

[33] M. E. Sleeter. OpenDoc - Building Online Help
for a Component-Oriented Architecture. In Pro-
ceedings of SIGDOC 96, 1996. pp.87-94.

[34] G. C. van der Veer, M. van Welie. Groupware
Task Analysis. Tutorial Notes for the CHI99
workshop "Task Analysis Meets Prototyping:
Towards seamless UI Development", May 1999,
Pittsburgh PA, USA. Retrieved February 26,
2004, from http://www.cs.vu.nl/~martijn/gta/.

