DBM-Tree: Trading
Helght-Balancing for Performance
In Metric Access M ethodst

MarcosR. Vieira, Caetano Traina Jr., Fabio J. T. Chino, AgmaJ. M. Traina

ICMC - Institute of Mathematics and Computer Sciences
USP — University of Sao Paulo at Sao Carlos
Avenida do Trabalhador Sao-Carlense, 400
CEP 13560-970 — Sao Carlos — SP — Brazil
{mrvieira, caetano, chino, agf@icmc.usp.br

Abstract dexing, Similarity Queries.

Metric Access Methods (MAM) are employed to ac-
celerate the processing of similarity queries, such as the
range and the:-nearest neighbor queries. Current meth-)
ods, such as the Slim-tree and the M-tree, improve thel. Introduction
query performance minimizing the number of disk ac- The volume of data managed by the Database Man-
cesses, keeping a constant height of the structures storedgement Systems (DBMS) is continually increasing.
on disks (height-balanced trees). However, the overlap-Moreover, new complex data types, such as multimedia
ping between their nodes has a very high influence ondata (image, audio, video and long text), geo-referenced
their performance. This paper presents a new dynamicinformation, time series, fingerprints, genomic data and
MAM called theDBM-tree (Density-Based Metric tree), protein sequences, among others, have been added to
which can minimize the overlap between high-densityDBMS.
nodes by relaxing the height-balancing of the structure. ~ The main technique employed to accelerate data re-
Thus, the height of the tree is larger in denser regions, intrieval in DBMS is indexing the data using Access
order to keep a tradeoff between breadth-searching andMethods (AM). The data domains used by traditional
depth-searching. An underpinning for cost estimation ondatabases, i.e. numbers and short character strings, have
tree structures is their height, so we show a non-heightthe total ordering property. Every AM used in traditional
dependable cost model that can be applied for DBM-tree.DBMS to answer both equality<(and#) and relational
Moreover, an optimization algorithm calle&ghrinkis also ~ ordering predicatesy, <, > and>), such as the B-trees,
presented, which improves the performance of an alreadyare based on this property.
built DBM-treeby reorganizing the elements among their Unfortunately, the majority of complex data domains
nodes. Experiments performed over both synthetic andlo not have the total ordering property. The lack of this
real world datasets showed that tidBBM-treeis, in av- property precludes the use of traditional AM to index
erage, 50% faster than traditional MAM and reduces the complex data. Nevertheless, these data domains allow
number of distance calculations by up to 72% and diskthe definition of similarity relations among pairs of ob-
accesses by up to 66%. After performing 8feinkalgo- jects. Similarity queries are more natural for these data
rithm, the performance improves up to 40% regarding thedomains. For a given reference object, also called the
number of disk accesses for range dndearest neigh- query center object, a similarity query returns all objects
bor queries. In addition, th®BM-tree scales up well, that meet a given similarity criteria. Traditional AM rely
exhibiting linear performance with growing number of el- on the total ordering relationship only, and are not able
ements in the database. to handle these complex data properly, neither to answer

Keywords: Metric Access Method, Metric Tree, In- similarity queries over such data. These restrictions led

to the development of a new class of AM, the Metric Ac-

*This work has been supported BRPESP (Sdo Paulo State Research cess Methods (MAM), which are well-suited to answer

Foundation) under grants 01/11987-3, 01/12536-5 and G2&1 and imilari ;
by CNPq (Brazilian National Council for Supporting Research) unde similarity quenes over complex data types.
grants 52.1685/98-6, 860.068/00-7, 50.0780/2003-0 ar@B32/94-4. A MAM such as the Slim-tree [15, 14] and the M-tree

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for
Chino, Agma J. M. Traina Performance in Metric Access Methods

[9] were developed to answer similarity queries based onDBM-tree is, in average, 50% faster than these traditional
the similarity relationships among pairs of objects. The balanced MAM, reducing up to 66% the number of disk
similarity (or dissimilarity) relationships are usuallgp- accesses and up to 72% the number of distance calcula-
resented by distance functions computed over the pairs ofions required to answer similarity queries. T8hrink
objects of the data domain. The data domain and distancalgorithm, helps to achieve improvements of up to 40%
function defines a metric space or metric domain. in number of disk accesses to answer rangekandarest

Formally, a metric space is a pair S, d() >, where neighbor queries. Moreover, the DBM-tree is scalable,
S is the data domain and() is a distance function that exhibiting linear behavior in the total processing time, th

complies with the following three properties: number of disk accesses and the number of distance cal-
culations regarding the number of indexed elements.
1. symmetry: d(s1, s2) = d(s2, $1); A preliminary version of this paper was presented at

SBBD 2004 [20]. Here, we show a new split algorithm
2. non-negativity: 0 < d(s1,s2) < oo if s1 # s;and for the DBM-tree. Additionally, this paper shows an ac-
d(s1,s1) = 0; and curate cost function for the DBM-tree using only informa-
tion easily derivable from the tree, thus providing a cost
function that does not depend upon a constant tree-height.
A cost function is fundamental to enable the DBM-tree to
,) , be employed in real DBMS. Every tree-based AM used in
Vs1, 82,83 € 5. Ametric datases C Sis asetof objects g ising DBMS uses the height of the tree as the main pa-
s; € S.currently stored ina database: Vector'lal data with o - eter to optimize a query plan. As the DBM-tree does
a L, distance function, such as Euclidean distantg(pot have a reference height, every existing theory about
are special cases of metric spaces. The two main types a1y njan optimizations are knocked out when using a
similarity queries are: DBM-tree. Therefore, the cost function presented in this
paper is a fundamental requirement to enable using DBM-
e Range query - Rq: given a query center object {reesin areal DBMS.
sq € S and a maximum query distaneg, the query The remainder of this paper is structured as follows:
Rq(sq,74) retrieves every object; € S, such that gection 2 presents the basic concepts and Section 3 sum-
d(si,54) < rq- An example is: “Select the proteins marizes the related works. The new metric access method
that are similar to the proteif’ by up to 5 purine pg-tree is presented in Section 4. Section 5 describes
bases”, which is represented Ag(P, 5); the experiments performed and the results obtained. Fi-
nally, Section 6 gives the conclusions of this paper and
e k-Nearest Neighbor query - kN N¢: given a query suggests future works.
center objects, € S and an integer valug > 1,
the queryk N N¢(sq, k) retrieves the: objects inS
that have the smallest distance from the query ob- _
ject s,, according to the distance functiaif). An 2. Basic Concepts
example is: “Select the 3 protein most similar to Access M ethods (AM) are used by DBMS to improve
the proteinP”, where k=3, which is represented as performance on retrieval operations. The use of meaning-
kNNgq(P,3). ful properties from the objects indexed is fundamental to
achieve the improvements. Using properties of the data

This paper presents a new dynamic MAM called domain, itis possible to discard large subsets of data with-
DBM-tree Density-Based Metric trdewhich can min- out comparing every stored object with the query object.
imize the overlap of nodes storing objects in high-density For example, consider the case of numeric data, where the
regions relaxing the height-balance of the structure.total ordering property holds: this property allows divid-
Therefore, the height of a DBM-tree is larger in higher- ing the stored numbers in two sets: those that are larger
density regions, in order to keep a compromise betweeraind those that are smaller than or equal to the query ref-
the number of disk accesses required to breadth-searcérence number. Hence, the fastest way to perform the
various subtrees and to depth-searching one subtree. Agearch is maintaining the numbers sorted. Thus, when
the experiments will show, the DBM-tree presents bettera search for a given number is required, comparing this
performance to answer similarity queries than the rigidly number with a stored one enables discarding further com-
balanced trees. This article also presents an algorithm t@arisons with the part of the data where the number cannot
optimize DBM-trees, calle@hrink which improves the bein.
performance of these structures reorganizing the elements An important class of AM are the hierarchical struc-
among the tree nodes. tures (trees), which enables recursive processes to index

The experiments performed over synthetic and realand search the data. In a tree, the objects are divided in
datasets show that the DBM-tree outperforms the tradi-blocks called nodes. When a search is needed, the query
tional MAM, such as the Slim-tree and the M-tree. The object is compared with one or more objects in the root

3. triangular inequality: d(s1,s2) < d(s1,s3) +
d(83,82),

38

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for
Chino, Agma J. M. Traina Performance in Metric Access Methods

node, determining which subtrees need to be traversedree balanced. As more node accesses also requires more
recursively repeating this process for each subtree that iglistance calculations, increasing the pruning ability of a
able to store answers. MAM becomes even more important. However, no pub-
Notice that whenever the total ordering property ap- lished access method took this fact into account so far.
plies, only a subtree at each tree level can hold the an- The DBM-tree presented in this paper is a dynamic
swer. If the data domain has only a partial ordering prop-MAM that relax the usual rule that imposes a rigid height-
erty, then it is possible that more than one subtree needbalancing policy, therefore trading a controlled amount of
to be analyzed in each level. As numeric domains pos-unbalancing at denser regions of the dataset for a reduced
sess the total ordering property, the trees indexing num-overlap between subtrees. As our experiments show, this
bers requires the access of only one node in each levetradeoff allows an overall increase in performance when
of the structure. On the other hand, trees storing spatiahnswering similarity queries.
coordinates, which have only a partial ordering property,
require searches in more than one subtree in each level of
the structure. This effect is known as covering, or overlap-
ping between subtrees, and occurs for example in R-treeg" Related Works
[12]. Plenty of Spatial Access Methods (SAM) were pro-
Hierarchical structures can be classified as (heightPosed for multidimensional data. A comprehensive sur-
Ybalanced or unbalanced. In the balanced structures, th¥ey showing the evolution of SAM and their main con-
height of every subtree is the same, or at most changes b§epts can be found in [11]. However, the majority of them
a fixed amount. cannot index data in metric domains, and suffer from the
The nodes of an AM used in a DBMS are stored in dimensionality curse, being efficient to index only low-
disk using fixed size registers. Storing the nodes in disk isdimensional datasets.
essential to warrant data persistence and to allow handling An unbalanced R-tree called CUR-tree (Cost-Based
any number of objects. However, as disk accesses ar/nbalanced R-tree) was proposed in [16] to optimize
slow, it is important to keep the number of disk accessesiuery executions. It uses promotion and demotion to
required to answer queries small. move data objects and subtrees around the tree taking into
Traditional DBMS build indexes only on data holding account a given query distribution and a cost model for
the total ordering property, so if a tree grows deeper, moréheir execution. The tree is shallower where the most fre-
disk accesses are required to traverse it. Therefore itis imguent queries are posed, but it needs to be reorganized ev-
portant to keep every tree the shallowest possible. Wherry time a query is executed. This technique works only
a tree is allowed to grow unbalanced, it is possible thatin SAM, making it infeasible to MAM.
it degenerates completely, making it useless. Therefore, Considering cost models, a great deal of work were
only balanced trees have been widely used in traditionallso published regarding SAM [17]. However they rely on
DBMS. data distribution in the space and other spatial properties
A metric tree divides a dataset into regions and what turns them infeasible for MAM.
chooses objects called representatives or centers to rep- The techniques of recursive partitioning of data in
resent each region. Each node stores the representativesetric domains proposed by Burkhard and Keller [5]
the objects in the covered region, and their distances tavere the starting point for the development of MAM. The
the representatives. As the stored objects can be reprdirst technique divides the dataset choosing one represen-
sentatives in other nodes, this enables the structure to btative for each subset, grouping the remaining elements
organized hierarchically, resulting in a tree. When a queryaccording to their distances to the representatives. The
is performed, the query object is first compared with the second technique divides the original set in a fixed num-
representatives of the root node. The triangular inequalit ber of subsets, selecting one representative for each sub-
is then used to prune subtrees, avoiding distance calculaset. Each representative and the biggest distance from the
tions between the query object and objects or subtrees imepresentative to all elements in the subset are stored in
the pruned subtrees. Distance calculations between conthe structure to improve nearest-neighbor queries.
plex objects can have a high computational cost. There- The MAM proposed by Uhlmann [19] and the VP-
fore, to achieve good performance in metric access methtree (Vantage-Point tree) [21] are examples based on the
ods, it is vital to minimize also the number of distance first technique, where the vantage points are the repre-
calculations in query operations. sentatives proposed by [5]. Aiming to reduce the num-
Metric access methods exhibits the node overlappingber of distance calculations to answer similarity queries
effect, so the number of disk accesses depends both on tha the VP-tree, Baeza-Yates et al. [1] proposed to use the
height of the tree and on the amount of overlapping. Insame representative for every node in the same level. The
this case, it is not worthwhile reducing the number of lev- MVP-tree (Multi-Vantage-Point tree) [2, 3] is an exten-
els at the expense of increasing the overlapping. Indeedsion of the VP-tree, allowing to seledt representatives
reducing the number of subtrees that cannot be pruned gbr each node in the tree. Using many representatives the
each node access can be more important than keep thdVP-tree requires lesser distance calculations to answer

39

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for
Chino, Agma J. M. Traina Performance in Metric Access Methods

similarity queries than the VP-tree. The GH-tree (Gener-ity to hold up toC' entries, and it stores a field. ;¢ to
alized Hyper-plane tree) [19] is another method that re-count how many entries; are effectively stored in that
cursively partitions the dataset in two groups, selectingnode. An entry can be either a single object or a sub-
two representatives and associating the remaining objectgee. A node can have subtree entries, single object en-
to the nearest representative. tries, or both. Single objects cannot be covered by any of

The GNAT (Geometric Near-Neighbor Access tree) the subtrees stored in the same node. Each node has one
[4] can be viewed as a refinement of the second tech-of its entries elected to be a representative. If a subtree is
nique presented in [5]. It stores the distances betweerelected, the representative is the center of the root node of
pairs of representatives, and the biggest distance betweelhe subtree. The representative of a node is copied to its
each stored object to each representative. The tree usésimediate parent node, unless it is already the root node.
these data to prune distance calculations using the trianEntries storing subtrees have: one representative ohject
gular inequality. that is the representative of tlig¢h subtree, the distance

All MAM for metric datasets discussed so far are between the node representative and the representative of
static, in the sense that the data structure is built at oncéhe subtreel(s,.,, s;), the link Ptr; pointing to the node
using the full dataset, and new insertions are not allowedstoring that subtree and the covering radius of the subtree
afterward. Furthermore, they only attempt to reduce theR;. Entries storing single objects have: the single object
number of distance calculations, paying no attention ons;, the identifier of this objeaD/d; and the distance be-
disk accesses. The M-tree [9] was the first MAM to over- tween the object representative and the objeet.,,, s;).
come this deficiency. The M-tree is a height-balanced treeThis structure can be represented as:
based on the second technique of [5], with the data ele-
ments stored in leaf nodes.

A cost model based only in the distance distributions
o_f the _dataset and information of the M-tree nodes is pro-|, s structure, the entry; whosed(s,c,. s;) = 0 holds
vided in [8].

The Slim-Tree [15] is an evolution from the M-
Tree, embodying the first published method to reduce th
amount of node overlapping, called t88m-Down

The use of multiple representatives called, “omni-

Node[C.ysy, array [1.Ccsy] Of | < 55, d(Srep, 5i), P,
R, >or< Sj, O|dj, d(STep, S]‘) > |]

the representative objegt.,.

.1, Building the DBM-tree
The DBM-tree is a dynamic structure, allowing to in-

foci” din 1101 & ¢ dinat sert new objects at any time after its creation. When the
oci”, was proposed in [10] to generate a coordinate syS-ppy; e s asked to insert a new object, it searches the

:)em_ %f the; Ob].eCtS in tgi&aﬁa;:;/‘l 'Il'hde co((j)rglnates 96;'},tructure for one node qualified to store it. A qualifying
€ Indexea using any ! (Indexed Sequentia node is one with at least one subtree that covers the new

Access Method), or even sequential scanning, generatingbject_ Thelnsert() algorithm is shown as Algorithm 1.

a family of mﬁm callegi t?e “?'nni%fami(ljy".lBTwo 9ood s starts searching in the root node and proceeds searching
SUrveys on car! e found in [].an [_] recursively for a node that qualifies to store the new ob-
The MAM described so far build height-balanced ;o4 The insertion of the new object can occur at any level
trees aiming to minimize the tree height at the expensey¢ ha structure. In each node, thiesert() algorithm
of little erX|b|I|t'y to. reduce node qverlap. The. DBM- | ses theC hooseSubtree() algorithm (line 1), which re-
tree proposed in this paper is the _fwst MAM which keeF_’ turns the subtree that better qualifies to have the new ob-
atradeoff between preadth-see_lrchmg and depth-sear_chlrigct stored. If there is no subtree that qualifies, the new
to allows trading height-balancing with overlap reduction object is inserted in the current node (line 9). The DBM-

to achieve better overall search performance. tree provides two policies for th€hooseSubtree() al-
gorithm:

4 The MAM DBM-tree e Minimum distance that covers the new object
(minDisf): among the subtrees that cover the new
object, choose the one that has the smallest distance
between the representative and the new object. If
there is not an entry that qualifies to insert the new
object, it is inserted in the current node;

The DBM-tree is a dynamic MAM that grows bottom-
up. The objects of the dataset are grouped into fixed size
disk pages, each page corresponding to a tree node. An
object can be stored at any level of the tree. Its main in-
tent is to organize the objects in a hierarchical structure
using a representative object as the center of each mini- e Minimum growing distance (minGDis): similar to
mum bounding region that covers the objects in a subtree. ~ minDistbut if there is no subtree that covers the new
An object can be stored in a node if the covering radius of object, it is chosen the one whose representative is
the representative covers it. the closest to the new object, increasing the covering

Unlike the Slim-tree and the M-tree, there is only one radius accordingly. Therefore, the radius of one sub-
type of node in the DBM-tree. There are no distinctions tree is increased only when no other subtree covers
between leaf and index nodes. Each node has a capac- the new object.

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for

Chino, Agma J. M. Traina Performance in Metric Access Methods
Algorithm 1 Insert() e 2-Clusters: this option tries to build at most two
Require: Ptr,: pointer to the subtree where the new objecwill be groups. These groups were built choosing objects

inserted. that minimizes the distances inside each group, or-

sn: the object to be inserted.

Ensure: Insert objects;, in the Pt¢r; subtree. 93”'_2'”9 th_em asa m'n!mal Spa””'”g tree. This Qp'
1: ChooseSubtree(Ptr, spn) tion is detailed as Algorithm 2. The first step of this
g: if]Themti(S]iSUb”ie that qualifiereen algorithm is the creation of’ groups, each one of

: nser Ti,Sn L.
4 if There is a promotiothen only one entry. The seconq stepis joining each group
5. Update the new representatives and their information. with its nearest group. This step finishes when only
6: Insert the object set not covered for node split in theemirr 2 groups remain (line 2). The next step checks if
node. . . . L
7. for Each entrys; now covered by the updatio fchere is a group with only one object then it will pe
8: Demote entry;. inserted in the upper level (line 4). A representative
9: eseif There is space in current nodRir; to inserts,, then Insert object is chosen (line 5) for each remaining group,

the new objecs,, in nodePir;.

10: dse SplitNode(Ptri, sn) and nodes are created to store their objects (line 6).

The representatives and all their information are pro-
moted to the next upper level. Figure 1 illustrates this
approach applied to a bi-dimensional vector space.
The node to be split is presented in Figure 1(a). Af-
ter building theC' groups (Figure 1(b)), the groups
are joined to form 2 groups (Figure 1(c)). Figure
1(d) presets the two resulting nodes after the split by
the2-Clustersapproach.

The policy chosen by th&€'hooseSubtree() algo-
rithm has a high impact on the resulting tree. Tii@Dist
policy tends to build trees with smaller covering radii,
but the trees can grow higher than the trees built with the
minGDistpolicy. TheminGDistpolicy tends to produce
shallower trees than those produced withritieDistpol-

icy, but with higher overlap between the subtrees. - L
Y 9 P The minimum node occupation is set when the struc-

If the node chosen by thEnsert() algorithm has no . :
. . ture is created, and this value must be between one ob-
free space to store the new object, then all the existing en:

tries together with the new object taken as a single objecfeCt and at most half of the node capactty If the

st b redsrbutd btviee aneor wo odes, depend: L PO S omnoDe e e
ing on the redistribution option set in thgplit N ode()

algorithm (line 10). TheSplitNode() algorithm deletes created by th&plit Node() algorithm. After defining the

the nodePtr, and remove its representative from its par- representative of each new node, the remaining entries are

: o inserted in the node with the closest representative. After
ent node. Its former entries are then redistributed between,.” ~. = . .
. distributing every entry, if one of the two nodes stores

one or two new nodes, and the representatives of the new . : :
X . only the representative, then this node is destroyed and

nodes together with the set of entries of the former node o S .
its sole entry is inserted in its parent node as a single ob-

Ptr, not covered by the new nodes are promoted and in- . . .

. : . ect. Based on the experiments and in the literature [9],

serted in the parent node (line 6). Notice that the set of . : oo

) splits leading to an unequal number of entries in the nodes

entries of the former node that are not covered by any . . o
can be better than splits with equal number of entries in

new node can be empty. The DBM-tree has three op- : L

: . .each node, because it tends to minimize overlap between

tions to choose the representatives of the new nodes in

. .] nodes.
the SplitNode() algorithm: If the ChooseSubTree policy is set tominDist and

the minimum occupation is set to a value lower than half
tion distributes the entries into at most two nodes. ©f the node capacity, then each node is first filled with this

allowing a possibly null set of entries not covered by minimum number of entries. After this, the remaining

these two nodes. To select the representatives of eacﬁntries will be inserted into the node only if its covering

new node, each pair of entries is considered as Can[adms does not increase the overlapping regions between

didate. For each pair, this option tries to insert eachthe two. The rest of the entries, that were not inserted into
i the two nodes, are inserted in the parent node.

e Minimum of the largest radii (minMax: this op-

remaining entry into the node having the represen-
tative closest to it. The chosen representatives will _
be those generating the pair of radii whose largest?l90rithm 2 2-Clusters()

radius is the smallest among all possible pairs. TheReauire: C entries to be redistributed in nodes. _ _
nsure: A representative seRepSetand a entry set to be inserted in

pompgtatiopal pomplexity of the' algorithm execut- the upper levelRromoSet

ing this option isO(C?), whereC' is the number of : Build C groups.

entries to be distribute between the nodes; : Try to join, one by one, thé groups, L_Jntil only 2 groups remain.
: for each group that have unique entriés.

1
2
3
. . . . S 4: Insert the unique entries PromoSet
e Minimum radii sum (minSun): this option is sim- 5: end for a
6
7
8

ilar to theminMax but the two representatives se- 6: Choose each representative object for each group.

lected is the pair with the smallest sum of the two 7: Create the nodes for the remaining groups.
. .. : Insert inRepsSethe generated representatives.
covering radii;

41

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T.
Chino, Agma J. M. Traina

DBM-Tree: Trading Height-Balancing for
Performance in Metric Access Methods

(@ (b) © (d)

° o< &
ce G < o C,
C
6
OC8 2
.C Cz. &

Figure 1. Exemplifying a node split using tBeClusters() algorithm: (a) before the split, (b) forming groups with
unique nodes, (c) 2 final groups, and (d) the final nodes atestl the chosen representatives.

Splittings promote the representative to the parent ThekN Nq() algorithm, described as Algorithm 4, is
node, which in turn can cause other splittings. After the similar to Rq(), but it requires a dynamic radius, to
split propagation in Algorithm 1 (promotion - line 4) or perform the pruning. In the beginning of the process, this
the update of the representative radii (line 5), it can oc-radius is set to a value that covers all the indexed objects
cur that former uncovered single object entries are now(line 1). It is adjusted when the answer set is first filled
covered by the updated subtree. In this case each of thesgith k£ objects, or when the answer set is changed there-
entries is removed from the current node and reinsertedafter (line 12). Another difference is that there is a pri-
into the subtree that covers it (demotion in lines 7 and 8).ority queue to hold the not yet checked subtrees from the
nodes. Entries are checked processing the single objects
first (line 4 to 12) and then the subtrees (line 13 to 18).
Among the subtrees, those closer to the query object that
intersect the query region are checked first (line 3). When
query (N Ngq). Their algorithms are similar to those of an iject c_Ioser than tweqlready found is Iocgted (line
the Slim-tree and the M-tree. 8), it subst_ltutes. the_ previous fart_he.st_ one (I|ne_11) and

, i . the dynamic radius is adjusted (diminished) to tight fur-

The Rq() algonth'm for th'e DBM-tree is described as hor pruning (line 12).
Algorithm 3. It receives as input parameters a tree node
Ptre, the query centes, and the query radius,. All
entries inPtr; are checked against the search condition ' - o
(line 2). The triangular inequality allows pruning subsee A SPecial algorithm to optimize loaded DBM-trees
and single objects that do not pertain to the region definedV@s created, calledhrink(). This algorithm aims at
by the query. The entries that cannot be pruned in this wayshrlnklng the nodes by exchanglng.entrles between nodes
have their distance to the query object (line 3) calculated 1© reduce the amount of overlapping between subtrees.

Each entry covered by the query (line 4) is now processedReducing overlap improves the structure, which results
If it is a subtree, it will be recursively analyzed by the In a decreased number of distance calculations, total pro-

Ry algorithm (line 5). If the entry is an object, then it is cessing time and number ofldisk accesses required to an-
added to the answer set (line 6). The end of the proces§We' Pothitg andk N N¢ queries. During the exchanging

returns the answer set including every object that satisﬁe§’f entries between nodes, some nodes can retal_n Just one
the query criteria. entry, so they are promoted and the empty node is deleted

from the structure, further improving the performance of
the search operations.

TheShrink() algorithm can be called at any time dur-
ing the evolution of a tree, as for example, after the inser-
tion of many new objects. This algorithm is described as
Algorithm 5.

4.2. Similarity Queriesin the DBM-tree
The DBM-tree can answer the two main types of simi-
larity queries: Range queryzg) andk-Nearest Neighbor

4.3. The Shrink() optimization Algorithm

Algorithm 3 Rq()

Require: Ptr; tree to be perform the search, the query objgcand
the query radius,.

Ensure: Answer setAnswerSet with all objects satisfying the query
conditions.

1: for Eachs; € Ptry do

if dist < rq + R; then

if |d(srep, Sq) — d(Srep, si)| < rq + R; then
Calculatedist = d(s;, sq)

The algorithm is applied in every node of a DBM-tree.
The input parameter is the point&tr, to the subtree to
be optimized, and the result is the optimized subtree. The

if s; is a subtre¢hen Rq(Ptr;, sq,7q)

NGO WN

else AnswerSet.Add(s;).
end if
end if

end for

stop condition (line 1) holds in two cases: when there is
no entry exchange in the previous iteration or when the
number of exchanges already done is larger than 3 times
the number of entries in the node. This latter condition

42

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for

Chino, Agma J. M. Traina Performance in Metric Access Methods

Algorithm 4 kN Ng()() Algorithm 5 Shrink()

Require: root nodePtr,oo¢, the query object, and number of ob- Require: Ptr; tree to optimize.

jectsk. Ensure: Ptr: tree optimized.

Ensure: Answer set with all objects satisfying the query conditions 1: while The number of exchanges does not exceed 3 times the num-
1 rp =00 ber of entries inP¢r; node or no exchanges occurred the previous
2: PriorityQueue.Add(Ptrroot,0) iterationdo
3: while ((Node = PriorityQueue.First()) <= ry) do 2: for Each subtree entry, in nodePtr; do
4 for eachs; € Node do 3: Set entryi from s, as the farthest from the, representative.
5: if s; is a single objecthen 4: for Each entrys;, distinct froms, in Ptr; do
6: if |d(srep, Sq) — d(Srep, si)| < 7y then 5: if The entry; of s, is covered by node; and this node
7 Calculatedist = d(s;, sq) has enough space to starthen
8 if dist < ry then 6: Remove the entryfrom s, and reinsert it ins;,.

9: AnswerSet.Add(s;). 7: end if

10: if AnswerSet.Elements() > k then 8: end for

11: AnswerSet.Cut(k). 9: if nodes, is emptythen delete node, and delete the entry

12: ri = AnswerSet. M ax Distance(). sq from Ptry.

13: end if 10: else Update the radius of entry, in Ptr.

14: end if 11: end for

15: end if 12: end while

16: end if 13: for Eachs, subtree in nodé’tr; do

17: endfor 14: Shrink(sqa).

18: for eachs; € Node do 15: if nodes, has only one entryhen Delete nodes, and update

19: if s; is a subtreeéhen the entrys,, in Ptry.

20: if |d(srep, Sq) — d(Srep, si)| < v + R; then 16: end for

21: Calculatelist = d(s;, sq)

22: if dist < ri + R; then

23: Priori VAdd(s;, dist).

22: o ifw ityQueue. Add(s;, dist) expressed as:

25: end if

26: end if

27. endfor P(Ptry) = P(Rpir, + 74 > d(Srep, 3q)) (1)

28: end while

We assume that every object has a distribution of dis-
tances to the other objects in the dataset, in average, sim-

assures that no cyclic exchanges can lead to a dead loofl2" t0 the distribution of the other objects. Thus, For-

It was experimentally verified that a larger number of ex- Mula (1) can be approximated by a normalized histogram
changes does not improve the results. For each epiry stt() of the distance dlstrl_buuon instead of computing
nodePtr, (line 2), the farthest entry from the node repre- the distance of the query object to the node representative.
sentative is set as(line 3). Then search another entyy 1 herefore

in Ptr, that can store the entriy(line 5). If such a node .

exists, remove from s, and reinsert it in nods,, (line P(Ptry) ~ Hist(Rpir, +14) 2)

6). If the exchange makes nodg empty, it is deleted, whereHist() is an equi-width histogram of the distances
as well as its entry in nOdBtT‘t (line 7) If this does not among pairs of Objects of the dataset.

generate an empty node, it is only needed to update the The histogram can be computed calculating the av-
reduced covering radius of entsy in nodePtr; (line8). erage number of distances falling at the range defined at
This process is recursively applied over all nodes of theeach histogram bin, for every object in the dataset, or only
tree (line 9 and 10). After every entry ifitr, has been for a small unbiased sample of the dataset. Thereafter, to
verified, the nodes holding only one entry are deleted anct|culate the expected number of disk accesses)(for

its single entry replaces the nodeftr; (line 11). any Ry, it is sufficient to sum the above probabilities over
all N nodes of a DBM-tree, as:
4.4. A Cost Model for DBM-tree N
Cost models for search operations in trees usually rely DA(Rq(sq,74)) = Z Hist(Rpir, +1q) (3)
on the tree height. Such cost models does not apply for the i=1

DBM-tree. However, an AM requires a cost model in or- The cost to keep the histogram is low and requires a

derto be used in a DBMS. Therefore, W? o!eveloped aCoSkmall amount of main memory to maintain the histogram.
model for the DBM-tree, based on statistics of each tre€y;q aqver, if it is calculated over a fixed size sample of

node. The proposed approach does not rely on the datg,e jatapase, it is linear on the database size, making it
distribution, but rather on the distance distribution agion scalable for the database size.

objects. The cost model developed assumes that the ex-

pected probabilityP() of a nodePtr; to be accessed is

equal to the probability of the node radiR$,,, plus the))

query radius-, be greater or equal to the distance of the 5. Experimental Evaluation of the DBM-tree
node representative..,, of Ptr, to the query objecs,,. The performance evaluation of the DBM-tree was
The probability of Ptr; to be accessed can therefore be done with a large assortment of real and synthetic

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for
Chino, Agma J. M. Traina Performance in Metric Access Methods

datasets, with varying properties that affects the behavfollows the queries expected to be posed by a real appli-
ior of a MAM. Among these properties are the embed- cation. Each dataset was used to build one tree of each
ded dimensionality of the dataset, the dataset size antlype, creating a total of thirty trees. Each tree was built in
the distribution of the data in the metric space. Tableserting one object at a time, counting the average number
1 presents some illustrative datasets used to evaluate th&f distance calculations, the average number of disk ac-
DBM-tree performance. The dataset name is indicatedcesses and measuring the total building time (in seconds).
with its total number of objects (# Objs.), the embed- In the graphs showing results from the query evaluations,
ding dimensionality of the dataseE), the page size in each point corresponds to performing 500 queries with
KBytes (Pg), and the composition and source description the same parameters but varying query centers. The num-
of each dataset. The multidimensional datasets uses thieer & for the kN N ¢ queries varied from 2 to 20 for each
Euclidean distancé,, and theMedHistodataset uses the measurement, and the radius varied from 0.01% to 10% of
metric-histogram\/;,; s, distance [18]. the largest distance between pairs of objects in the dataset
The DBM-tree was compared with Slim-tree and M- because they are the most meaningful range of radii asked
tree, that are the most known and used dynamics MAM.when performing similarity queries. Theg graphics are
The Slim-tree and the M-tree were configured using theirin log scale for the radius abscissa, to emphasize the most
best recommended setup. They amminDist for the relevant part of the graph.
ChooseSubtre() algorithm, minMax for the split algo-
rithm and the minimal occupation set to 25% of node ca-) o
pacity. The results for the Slim-tree were measured afteP-1- Evaluating thetreebuilding process
the execution of th&lim — Down() optimization algo- The building time and the maximum height were mea-
rithm. sured for every tree. The building time of the 6 trees were
We tested the DBM-tree considering four distinct con- similar for each dataset. It is interesting to compare the

figurations, to evaluate its available options. The testedM@ximum height of the various DBM-tree options and the
configurations are the following: balanced trees, so they are summarized in Table 2.

The maximum height for thBBM-MM and theDBM-

e DBM-MM: minDistfor the ChooseSubtree() algo- MS trees were bigger than the balanced trees in every
rithm, minMax for the Split Node() algorithm and dataset. The biggest difference was in telorHisto,
minimal occupation set to 30% of node capacity; with achieved a height of 10 levels as compared to only 4

levels for the Slim-tree and the M-tree. However, as the

other experiments show, this higher height does not in-
creases the number of disk accesses. In fact, those DBM-

e DBM-GMM: minGDistfor ChooseSubtree(), min- trees did, in average, less disk accesses than the Slim-tree
Max for SplitNode(); and M-tree, as is shown in the next subsection.

It is worth to note that, although tH2BM-GMM trees
do not force the height-balance, the maximum height in
these trees were equal or very close to those of the Slim-
ftree and the M-tree. This fact is an interesting result that
corroborates our claim that the height-balance is not as
important for MAM as it is for the overlap-free structures.

e DBM-MS equal toDBM-MM, except using the op-
tion minSurrfor the Split N ode() algorithm;

e DBM-2CL minGDist for ChooseSubtree(), 2-
Clustersfor Split Node().

All measurements were performed after the execution o
the Shrink() algorithm.

The computer used for the experiments was an Intel
Pentium Il 800MHz processor with 512 MB of RAM and The data distribution in the levels of a DBM-tree is
80 GB of disk space, running the Linux operating system.shown using theCities dataset. This visualization was
The DBM-tree, the Slim-tree and the M-tree MAM were generated using titdAMViewsystem [6]. TheIAMView
implemented using the C++ language into the Arbore-system is a tool to visualize similarity queries and MAM
tum MAM library (www.gbdi.icmc.usp.br/arboretum), all behavior, making it possible to explore metric trees. This
with the same code optimization, to obtain a fair compar-is possible because this dataset is in a bi-dimensional Eu-
ison. clidean space. Figure 2 shows the indexed objects in the

From each dataset it was extracted 500 objects to bédBM-MM with each color representing objects at differ-
used as query centers. They were chosen randomly fronent levels. Darker colors indicate objects in deeper levels
the dataset, and half of them (250) were removed fromFigure 3(a) shows the objects and the covering radius of
the dataset before creating the trees. The other half wereach node, and Figure 2(b) shows only the objects. The
copied to the query set, but maintained in the set of ob-figure shows that the depth of the tree is larger in higher
jects inserted in the trees. Hence, half of the query setdensity regions and that objects are stored in every level
belongs to the indexed dataset by the MAM and the otherof the structure, as is expected. This figure shows visually
half does not, allowing to evaluate queries with centersthat the depth of the tree is smaller in low density regions.
indexed or not. However, as the query centers are in factt also shows that the number of objects in the deepest
objects of the original dataset, the set of queries closelylevels is small, even in high-density regions.

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for
Chino, Agma J. M. Traina Performance in Metric Access Methods

Table 1. Description of the synthetic and real-world datassed in the experiments.

Name [# Objs| E | Pg |Description

Cities | 5,507| 2 | 1 |Geographical coordinates of the Brazilian cities (wwwakgpv.br).
ColorHisto| 68,040 32 | 8 |Color image histograms from the KDD repository of the Univigrsf
California at Irvine (http://kdd.ics.uci.edu). The metraturns the distance
between two objects in a 32-d Euclidean space.
MedHisto| 4,247 | - | 4 [Metric histograms of medical gray-level images. This datasatimensional
and was generated at GBDI-ICMC-USP. For more details on this
dataset and the metric used see [18].
Syntl6D | 10,000 16 | 8 [Synthetic clustered datasets consisting of 16-dimensigwbrs normally-distributed
(with 0=0.1) in 10 clusters over the unit hypercube. The processiemgte this
dataset is described in [9].
Synt256D| 20,000| 256| 128| Similar toSynt16D but it is with 20 clusters (witkm=0.001) in a 2564 hypercube.

Table 2. Maximum height of the tree for each dataset tested.

Name Cities | ColorHisto | MedHisto | Synt16D | Synt256D
M-tree 4 4 4 3 3
Slim-tree 4 4 4 3 3
DBM-MM 7 10 9 6 7
DBM-MS 7 10 11 6 6
DBM-GMM 4 4 5 3 3
DBM-2CL 4 4 5 3 4
5.2. Performance of query execution Slim-tree. It is important to note that the Slim-tree is

We present the results obtained comparing the DBM-the MAM that in general requires the lowest number of
tree with the best setup of the Slim-tree and the M-tree.disk accesses between every previous published MAM.
In this paper we present the results from four meaningfulThese measurements were taken after the execution of the
datasetsQolorHisto MedHistg Synt16DandSynt2561D), Slim — Down() algorithm of the Slim-tree. When com-
which are or high-dimensional or non-dimensional (met- pared to the M-tree, the gain is even larger, increasing to
ric) datasets, and gives a fair sample of what happenedup to 54% forRq (graph (h)) and up to 66% fdtN Ng
The main motivation in these experiments is evaluating(graph (k)).

the DBM-tree performance with its best competitors with thg regyits are better when the dimensionality and the
respect to the 2 main similarity query types: rafgeand nmper of clusters of the datasets increase (as shown for

k-nearest neighborisN Ng. the Synt16Dand Synt256Ddatasets). The main reason

Figure 4 shows the measurements to ansitgand is that traditional MAM produces high overlapping areas
kN Nq on these 4 datasets. The graphs on the first colWwith these datasets due both to the high dimension and the

umn (Figures 4(a), (d), (g) and (j)) show the average num-need to fit the objects in the inter-cluster regions together
ber of distance calculations. It is possible to note in thewith the objects in the clusters. The DBM-tree achieves a
graphs that every DBM-tree executed in average a smalle¥ery good performance in high dimensional datasets and
number of distance calculations than Slim-tree and M-in datasets with non-uniform distribution (a common sit-
tree. Among all, theDBM-MS presented the best result uation in real world datasets).

for almost every dataset. No DBM-tree executed more An important observation is that the immediate result
distance calculations than the Slim-tree or the M-tree, forof reducing the overlap between nodes is a reduced num-
any dataset. The graphs also show that the DBM-tree reper of distance calculations. However, the number of disk
duces the average number of distance calculations up teccesses in a MAM is also related to the overlapping be-
67% for Rq (graph (g)) and up to 37% farNNg (graph tween subtrees. An immediate consequence of this fact
(1), when compared to the Slim-tree. When comparedis that decreasing the overlap reduces both the number of
to the M-tree, the DBM-tree reduced up to 72% 84 distance calculations and of disk accesses, to answer both
(graph (g)) and up to 41% fdrN Ng (graph (j)). types of similarity queries. These two benefits sums up to

The graphs of the second column (Figures 4(b), (e),reduce the total processing time of queries.
(h) and (k)) show the average number of disk accesses The graphs of the third column (Figures 4(c), (f), (i)
for both Rq and kN N¢ queries. In every measurement and (I)) show the total processing time (in seconds). As
the DBM-trees clearly outperformed the Slim-tree and thethe four DBM-trees performed lesser distance calcula-
M-tree, with respect to the number of disk accesses. Theions and disk accesses than both Slim-tree and M-tree,
graphs show that the DBM-tree reduces the average nunthey are naturally faster to answer badfly and kN Ng.
ber of disk accesses up to 43% fBy (graph (h)) and The importance of comparing query time is that it reflects
up to 53% fork N Nq (graph (k)), when compared to the the total complexity of the algorithms besides the number

45

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for
Chino, Agma J. M. Traina Performance in Metric Access Methods

(@)

level 2
level 3
level 4
® level 5
® level 6
o level 7

Figure 2. Visualization of th®BM-MM structure for theCities dataset. (a) with the covering radius of the nodes; and
(b) only the objects. It is possible to verify that the sturetis deeper (darker objects) in high-density regions, and
shallower (lighter objects) in low-density regions.

)

level 2
e level 3
level 4

Figure 3. Visualization of th&lim-treestructure for theCitiesdataset. (a) with the covering radius of the nodes; and (b)
only the objects. It is possible to verify that the structhes the same level in high-density regions and in low-dgnsit
regions (level 4).

of distance calculations and the number of disk accessesfter the execution of th8hrink() algorithm forDBM-
The graphs show that the DBM-tree is up to 44% faster toMM, DBM-MS DBM-GMM and DBM-2CL for both Rq
answerRq andkN Nq (graphs (i) and (1)) than Slim-tree. andkN Nq. Every graph shows that th#hrink() algo-
When compared to the M-tree, the reducion in total queryrithm improves the final trees. The most expressive result
time is even larger, with the DBM-tree being up to 50% occurs in theDBM-GMM indexing theSynt256D which
faster forRq andkN N ¢ queries (graphs (i) and (1)). achieved up to 40% lesser disk accesses:f¥tVg and

Rq as compared with the same structure not optimized.

5.3. Experimentsregarding the Shrink() Algorithm

The experiments to evaluate the improvement5.4. Cost of Disk Accessesin the DBM-tree
achieved by the&shrink() algorithm were performed on This experiment evaluates the cost model to estimate
the four DBM-trees over all datasets shown in Table 1.the number of disk accesses of query operations. Only
As the results of all the datasets were similar, in Figure10% of the dataset objects were employed to build the
5 we show only the results for the number of disk ac- histogramsHist, as a larger number of objects slightly
cesses with th€olorHisto (Figures 5(a) forRqg and (b) improves the estimation.
for kN Nq) and Synt256Ddataset (Figures 5(c) fafq Figure 6 shows the predicted values obtained from the

and (d) fork N.Ng). formula 3, and the real measurements obtained executing
Figure 5 compares the query performance before andhe query on the tree. Here we show only experiments

46

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for

Chino, Agma J. M. Traina Performance in Metric Access Methods
12000 Avg Number of Distance Calculation ; Avg Number of Disk Access 20000 Total Time (s)
1000 18000
O 10000 o o
_"5 "@‘ 900 *@- 16000
:E 8000],E 800 { 14000
i) 2 o
<] S 700 S 12000
QO 6000 O o
. .. 600 -, 10000
<3 s =
X 4000 X s @ s000
= YY) O
ZUOD; 3
pe 3008 4000
0 200 2000
0.01 0.1 1.0 10.0 0.01 0.1 1.0 10.0 0.01 0.1 1.0 10.0
% radius % radius % radius
Avg Number of Distance Calculation Avg Number of Disk Access Total Time (s)

[N

(e) kNNq: medHisto

(f) kNNq: medHisto

Avg Number of Disk Access Total Time (s)
45 900
v
40 800 A
% % Q 700
- - 3 ©
E. ‘E = 600
> > 30 §
(_,)_ U) 0 s00
o T 25 =
@ x S w0
= = wl s
9 5 300
15 2009
1
0.01 01 10 100 001 0.1 1.0 100 %01 04 10 100
% radius % radius % radius
2600 Avg Number of Distance Calculation Avg Number of Disk Access Total Time (s)
140 30000
A . 1
Q 240 Q Q "
© fg 120 © 26000, o>
QT NI 2
N 2200 = N 24000
N S, 100) <
> & >N 22000
9 2000 U) 90 @
g g B0 e e o~ 20000 MM
E 1800 5 70 = ume':‘:'cs_*_._._'_'
A_M_HM —_—
= ae00F— Xx 60 = 16000
50 14000 M
———— [r———————— 7
1400 40 12000

4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

k
M-tree —SgfF— Slim-tree —f— DBM-MM —&— DBM-MS —}— DBM-GMM —— DBM-2CL —3¢—

Figure 4. Comparison of the average number of distance lediloos (first column), average number of disk accesses
(second column) and total processing time in seconds (tahadmn) of DBM-tree, Slim-tree and M-tree, fdtq and
kN N q queries for theColorHisto((a), (b) and (c) -Rq), MedHisto((d), (e) and (f) -« N N¢), Synt16D((g), (h) and (i)

- Rq) andSynt2560X(j), (k) and () - kN N ¢) datasets.

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for
Chino, Agma J. M. Traina Performance in Metric Access Methods

(a) Rq: ColorHisto (b) kNNq: ColorHisto

o
=)

Access
o
o
o

©
=]
=)

Avg Number of Disk

N\

Avg Number of Disk Access

0.01 0.1 1.0 . 100
% radius k

(c) Rg: Synt256D (d) KNNg: Synt256D
120 W

Avg Number of Disk Access
B (2}
Avg Number of Disk Access

0.01 0.1 1.0 10.0 2 4 6 8 10 12 14 16 18 20
% radius K

DBM-MM —— DBM-GMM —%— DBM-MS —v— DBM-2CL —e—

DBM-MM: Shrink —é— DBM-GMM: Shrink =8— DBM-MS: Shrink DBM-2CL: Shrink —¢—

Figure 5. Average number of disk accesses to perf@grand kN Nq queries in the DBM-tree before and after the
execution of theShrink() algorithm: (a)Rq on ColorHisto, (b) kN Ng on ColorHisto, (c) Rqg on Synt256D (d) kN Ng
on Synt256D

for the DBM-MM on MedHistoFigure 6(a) DBM-MSon accesses fot N N¢ (c) and forRq (d), and the total pro-
Synt16DFigure 6(b),DBM-GMM on ColorHisto Figure cessing time folk N N¢q (e) and forRq (f). As it can be

6(c) andDBM-2CL on Synt256Ddataset Figure 6(d), as seen, the DBM-trees exhibit linear behavior as the num-
the others are similar. The real measurements are the aber of indexed elements, what makes the method adequate
erage of 500 queries as before, and the error bars indito index very large datasets, in any of its configurations.
cate the standard deviation of each measure. It can be

seen that the proposed formula is very accurate, showing

errors within 1% of the real measurement for hBM-)

GMM, and within 20% for théBM-MS The estimations 6. Conclusions and Future Works

is always within the range of the standard deviation. This paper presents a new dynamic MAM called
DBM-tree (Density-Based Metric trgethat, in a con-
5.5. Scalability of the DBM-tree trolled way, relax the height-balancing requirement of ac-

This experiment evaluated the behavior of the DBM- cess methods, trading a controlled amount of unbalanc-
tree with respect to the number of elements stored in thang at denser regions of the dataset for a reduced overlap
dataset. For the experiment, we generated 20 datasetsetween subtrees. This is the first dynamic MAM that
similar to theSynt16D each one with 50,000 elements. makes possible to reduce the overlap between nodes re-
We inserted all 20 datasets in the same tree, totalindaxing the rigid balancing of the structure. The height of
1,000,000 elements. After inserting each dataset we rurihe tree is higher in denser regions, in order to keep a
the Shrink() algorithm and asked the same sets of 500tradeoff between breadth-searching and depth-searching.
similarity queries for each point in the graph, as before. The options to define how to construct a tree and the opti-
The behavior was equivalent for different values:aind mization possibilities in DBM-tree are larger than in rigid
radius, thus we present only the results fo1l5 and ra- balanced trees, because it is possible to adjust the tree ac-
dius=0.1%. cording to the data distributions at different regions &f th

Figure 7 presents the behavior of the four DBM-tree data space. Therefore, this paper also presented a new
considering the average number of distance calculation®ptimization algorithm, calledhrink which improves
for kN Nq (a) and forRq (b), the average number of disk the performance in trees reorganizing the elements among

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. DBM-Tree: Trading Height-Balancing for
Chino, Agma J. M. Traina Performance in Metric Access Methods

(a) Cost of Rq: MedHisto (b) Cost of Rq: Synt16D

Avg Number of Disk Accesses
Avg Number of Disk Accesses

1 i 3
o 1 1 T
0 5 ‘
0.01 0.1 1.0 o radius 10-0 0.01 0.1 1.0 % radius10-0
. (c) Cost of Rq: ColorHisto w (d) Cost of Rq: Synt256D
75 k
1] 1]
1200 2 70
8 3
81000 g 65
< <
j é 60
oo Q5
o o
8 600 g%
g g 45
P4 P4
el]]
35
w | 1 1 1
30
0 25
0.01 0.1 1.0 10.0 0.01 0.1 1.0 10.!
% radius % radius
DBM-MM: Measured —¢— DBM-MS: Measured DBM-GMM: Measured —&— DBM-2CL: Measured —*—

DBM-MM: Estimated —=— DBM-MS: Estimated —%— DBM-GMM: Estimated —s— DBM-2CL: Estimated —e—

Figure 6. Comparation of the real and the estimated numbdiskfaccesses faRq in the (a)MedHistodataset using a
DBM-MM tree, (b)Synt16Dusing aDBM-MS (c) ColorHistousing aDBM-GMM and (d)Synt256Dusing aDBM-2CL

their nodes. as removed, without releasing the space occupied. More-

The experiments performed over synthetic and realover, they remain being used in the comparisons required
datasets showed that tBBM-treeoutperforms the main in the search operations. The organizational structure of
balanced structures existing so far: the Slim-tree and théahe DBM-tree enables the effective deletion of objects,
M-tree. In average, it is up to 50% faster than the tra- making it a completely dynamic MAM.
ditional MAM and reduces the number of required dis-
tance calculations in up to 72% when answering similar-
ity queries. The DBM-tree spends fewer disk accesses
than the the Slim-tree, that until now was the most effi-
cient MAM with respect to disk access. The DBM-tree
requires up to 66% fewer disk accesses than the balanced
trees. After applying thé&hrink() algorithm, the perfor-
mance achieves improvements up to 40% for range and
k-nearest neighbor queries considering disk accesses. It
was also shown that the DBM-tree scales up very well
with respect to the number of indexed elements, present-
ing linear behavior, which makes it well-suited to very
large datasets.

Among the future works, we intend to develop a bulk-
loading algorithm for the DBM-tree. As the construction
possibilities of the DBM-tree is larger than those of the

balanced structures, a bulk-loading algorithm can employ [3] Tolga Bozkaya and Meral zsoyoglu. Indexing
strategies that can achieve better performance thanis pos- |arge metric spaces for similarity search queries.

sible in other trees. Other future work is to develop an ACM Transactions on Database Systems (TQDS)
object-deletion algorithm that can really remove objects 24(3):361-404, sep 1999.

from the tree. All existing rigidly balanced MAM such as

the Slim-tree and the M-tree, cannot effectively delete ob- [4] Sergey Brin. Near neighbor search in large metric
jects being used as representatives, so they are just marked spaces. IfProceedings of the International Confer-

References
[1] Ricardo A. Baeza-Yates, Walter Cunto, Udi Man-
ber, and Sun Wu. Proximity matching using fixed-
queries trees. IBth Annual Symposium on Com-
binatorial Pattern Matching (CPM)volume 807
of LNCS pages 198-212, Asilomar, USA, 1994.
Springer Verlag.

[2] Tolga Bozkaya and Meral zsoyoglu. Distance-based
indexing for high-dimensional metric spaces. In
Proceedings of the ACM International Conference
on Management of Data (SIGMODpages 357—
368, 1997.

49

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T.
Chino, Agma J. M. Traina

DBM-Tree: Trading Height-Balancing for
Performance in Metric Access Methods

120000
.
S
2 o0
3
®
© 80000
8
B qooo

40000

imber of Distance Calct

Z 20000
=3

Av

0

__(c) KNNQ: Synt16D - k=15

(a) KNNQ: Synt16D - k=15

(b) RQ: Synt16D - radius=0.1%
5000 o

8 10 12

2 4 6 8 10, 12 14 2 4 s 14 16 18 20
of dataset elements (x50K)

16 1820
of dataset elements (x50K)

, 8000
8
3 7000
8
£ 6000
k]
3 5000
2 4000
g
2
£ 3000

z
‘> 2000
2
z

1000 [2

(d) RQ: Synt16D - radius=0.1%

Number, of Disk Acgesses,

Avg

2 4 & 8 10 2 4 6 8 10 12 14 1

2 14 6 18 20 4 16 18 20
of dataset elements (x50K) # of dataset elements (x50K)

(e) kKNNQ: Synt16D - k=15

60000
50000

40000

Total Time (s

20000

10000

3000

(f) RQ: Synt16D - radius=0.1%

2500

2000

(

1500

Total Time

1000

500 [A7

0
8 10 12 14 16 18 20 2 4 6
of dataset elements (x50K)

DBM-MM —&— DBM-MS

2 4 6 8 10 12 14
#

6 18 20
of dataset elements (x50K)

DBM-GMM —B— DBM-2CL —%—

Figure 7. Scalability of DBM-tree regarding the dataset
size executinge N Nq queries ((a), (c) and (e)) anBq

queries ((b), (d) and (f)), measuring the average number
of distance calculations ((a) and (b)), the average number
of disk accesses ((c) and (d)) and the total processing time

((e)

and (f)). The indexed dataset was Bynt16Dwith

1,000,000 objects.

[5]

[6]

[7]

(8]

[9]

ence on Very Large Data Bases (VLDBages 574—
584, Zurich, Switzerland, 1995. Morgan Kaufmann.

W. A. Burkhard and R. M. Keller. Some approaches
to best-match file searchin@ommunications of the
ACM, 16(4):230-236, apr 1973.

Fabio J. T. Chino, Marcos R. Vieira, Agma J. M.
Traina, and Caetano Traina Jr. Mamview: A visual
tool for exploring and understanding metric access
methods. InProceedings of the 20th Annual ACM
Symposium on Applied Computing (SAgage 6p,
Santa Fe, New Mexico, USA, 2005. ACM Press.

Edgar Chvez, Gonzalo Navarro, Ricardo Baeza-
Yates, and Jos Luis Marroqun. Searching in met-
ric spaces. ACM Computing Surveys (CSUR)
33(3):273-321, sep 2001.

P. Ciaccia, M. Patella, and P. Zezula. A cost model
for similarity queries in metric spaces. ACM Sym-
posium on Principles of Database Systems (PQDS)
pages 59-68, 1998.

Paolo Ciaccia, Marco Patella, and Pavel Zezula.
M-tree: An efficient access method for similarity

50

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

search in metric spaces. IRroceedings of In-
ternational Conference on Very Large Data Bases
(VLDB), pages 426-435, Athens, Greece, 1997.
Morgan Kaufmann.

Roberto F. Santos Filho, Agma J. M. Traina, Cae-
tano Traina Jr., and Christos Faloutsos. Similar-
ity search without tears: The OMNI family of all-
purpose access methods. IBEE International
Conference on Data Engineering (ICDEpages
623-630, Heidelberg, Germany, 2001.

\olker Gaede and Oliver Gnther. Multidimensional
access methodACM Computing Surveys (CSUR)
30(2):170-231, 1998.

A. Guttman. R-tree : A dynamic index structure
for spatial searching. IACM International Confer-
ence on Data Management (SIGMQIpgges 47—
57, Boston, USA, 1984.

Gisli R. Hjaltason and Hanan Samet. Index-driven
similarity search in metric spacesACM Transac-
tions on Database Systems (TOD&g(4):517-580,
dec 2003.

Caetano Traina Jr., Agma J. M. Traina, Christos
Faloutsos, and Bernhard Seeger. Fast indexing
and visualization of metric datasets using slim-trees.
IEEE Transactions on Knowledge and Data Engi-

neering (TKDE) 14(2):244-260, 2002.

Caetano Traina Jr., Agma J. M. Traina, Bernhard
Seeger, and Christos Faloutsos. Slim-trees: High
performance metric trees minimizing overlap be-
tween nodes. Innternational Conference on Ex-
tending Database Technology (EDB¥)lume 1777

of LNCS pages 51-65, Konstanz, Germany, 2000.
Springer.

K. A. Ross, I. Sitzmann, and P. J. Stuckey. Cost-
based unbalanced R-trees. IEBEE International
Conference on Scientific and Statistical Database
Management (SSDBIMpages 203-212, 2001.

Y. Theodoridis, E. Stefanakis, and T. K. Sellis. Ef-

ficient cost models for spatial queries using R-trees.
IEEE Transactions on Knowledge and Data Engi-

neering (TKDE) 12(1):19-32, 2000.

Agma J. M. Traina, Caetano Traina Jr., Josiane M.
Bueno, and Paulo M. de A. Marques. The met-
ric histogram: A new and efficient approach for
content-based image retrieval. 8ixth IFIP Work-
ing Conference on Visual Database Systems (VDB)
Brisbane, Australia, 2002.

Jeffrey K. Uhlmann. Satisfying general proxim-
ity/similarity queries with metric treednformation
Processing Lettergt0(4):175-179, 1991.

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T.
Chino, Agma J. M. Traina

DBM-Tree: Trading Height-Balancing for
Performance in Metric Access Methods

(20]

[21]

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T.
Chino, and Agma J. M. Traina. DBM-tree: A dy-
namic metric access method sensitive to local den-
sity data. InXIX Brazilian Symposium on Databases
(SBBD) pages 163-177, Bridis, Brazil, 2004.

Peter N. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
Proceedings of the ACM-SIAM Symposium on Dis-
crete Algorithms (SODA)pages 311-321, Austin,
USA, 1993.

51

