Infeasible Paths in the Context of
Data Flow Based Testing Criteria:
ldentification, Classification and
Prediction

Silvia Regina Vergilio', Jos Carlos Maldonadd, Mario Jino?

!Federal University of Parén
DInf-UFPR - Curitiba, PR
CP: 19081, CEP: 81531-970, Brazil
+55 41 33613411 fax: +55 41 33613502
silvia@inf.ufpr.br

2University of S0 Paulo - USP
ICMC-USP - S0 Carlos, SP
CP:668, CEP: 13560-970, Brazil
jcmaldon@icmc.sc.usp.br

3State University of Campinas
DCA-FEEC-UNICAMP - Campinas, SP
CP: 6101, CEP: 13083-970, Brazil
jino@dca.fee.unicamp.br

Abstract cation of the Potential Uses Criteria Family. The results
Infeasible paths constitute a bottleneck for the com-and ideas presented contribute to reduce the efforts spent

plete automation of software testing, one of the most exduring the testing activity concerning infeasible paths.
pensive activities of software quality assurance. Researc ~ Keywords: software testing, data flow based criteria,
efforts have been spent on infeasible paths, basically orinfeasible paths.

three main approaches: prediction, classification and

identification of infeasibility. This work reports the rdisu

of experiments on data flow based criteria and of stud- .

ies aimed at the three approaches above. Identification1- Introduction

classification, and prediction of infeasible paths are re- Testing is one of the most traditional activity for soft-
visited in the context of data flow based criteria (Potential Ware quality assurance. Considering that software testing
Uses Criteria-PU). Additionally, these aspects are also @ms at revealing faults, a good test case is one that has
addressed in the scope of integration and object-orientec@ high probability of finding a not-yet revealed fault. In
testing. Implementation aspects of mechanisms and faother words, a good test case is one that reveals a fault if
cilities to deal with infeasibility are presented takingdn it is present.

consideration Poketool - a tool that supports the appli- To test a program with all possible input values is, in

Silvia Regina Vergilio, Jos & Carlos Maldonado, Infeasible Paths in the Context of Data Flow Based
Mario Jino Testing Criteria: Identification, Classification and
Prediction

general, impossible. To select a finite set containing theall-LCSAJs (Linear Code Sequence and Jumps) criterion.
best inputs, different testing criteria were proposedi-Tes They concluded that the greater the number of predicates
ing criteria have the goal of revealing as many faults asin a path, the greater the probability of the path being in-
possible with minimal effort and cost. A testing crite- feasible. Hedley and Hennel [11] show the main causes
rion establishes a predicate that has to be satisfied by af infeasible paths in a program and present a classifica-
given test case set T. It requires that elements of a protion for those causes. Frankl [6] introduces a heuristic
gram, such as statements or paths are exercised by the determine infeasible associations, based on data flow
test cases. It constitutes a means to assess the effectivanalysis and symbolic execution techniques.
ness of the testing activity and to provide reliability mea- Among the above mentioned works, only Frankl fo-
sures. Usually, they are classified as functional, strattur cyses infeasibility in the context of data-flow testing. Ad-
or fault-based teSting teChniqueS. The structural cateri ditiona”y7 all of them address 0n|y unit testing and nowa-
consider a particular implementation to derive the test-qays, data flow based testing criteria and tools are being
ing requirements and are classified as: Control Flow [28],applied within a broader context. For example, data-flow
Data Flow [12, 19, 23, 27, 28, 30] and Complexity Based pased criteria have been extended to integration testing
Criteria [26]. [2, 8, 10, 20], specification testing [3, 7], object-oriehte
Data flow based criteria are among the most inves-software [9, 16, 25], concurrent and parallel programs
tigated criteria for unit testing in the past few years [39, 33] and, most recently, to web applications [21, 29].
[12, 19, 23, 27, 28, 30]. It would not be unrealistic to In all these new contexts the problem of infeasible paths
say that these criteria have reached their maturity, in theemains. More recent studies with object-oriented soft-
sense that they have moved from the state of the art to thevare [25], web applications [29], concurrent programs
state of the practice. Prototype tools have been developefb] and test of specifications [13] point out the negative
[4, 6, 14] and a commercial tool is available to support the effects of the presence of infeasible paths.
application of some of these criteria [1]. Some authors Tne goal of this paper is to address these basic ap-
have been investigated strategies to allow the applicatioryroaches - classification, prediction and identificatiam - i
of structural criteria in real and large systems [18]. the context of data flow based testing, more specifically in
In spite of this popularization, a common problem as- the context of the Potential Uses Criteria Family [22], by
sociated with the use and evaluation of structural criteriacarrying out two experiments [22, 31]. These experiments
is that amongst the required elements may occur infeawere conducted using Poketool [4], a tool that supports
sible ones (paths and/or associations). A path through ahe application of the Potential Uses Criteria Family and
program is infeasible if there is no set of values for the the control flow based criteria: all-nodes and all-edges.
input and global variables and parameters of the progranDuring this experiment, we evaluate some existent depen-
that cause the path to be executed. In general, there is n@encies between units and the results obtained with both
algorithm to determine the feasibility of a path; it is an experiments can be used in the broader context of data-
undecidable question [6]. flow based testing. We illustrate this fact by addressing
Infeasible elements required by structural testing cri-the problem of infeasible paths in the integration phase
teria constitute a bottleneck to the complete automation ofand in the testing of object-oriented software.

software testing - either to generate a test setor to evaluat Section 2 presents basic terminology and the Potential
its adequacy. Data flow based criteria often require exerses Criteria. Section 3 describes the experiments. The
cising infeasible elements since most programs contairfollowing sections describe the main results obtained ac-
infeasible paths, even well-formulated correct programs.cording to the three approaches in the literature. The main
Some experiments applying the all-definition-uses(du)-causes that generate infeasible paths are described and a
paths and all-potential-du-paths criteria, have repanfed classification based on the program contexts is proposed
to 50% of the total required elements as being infeasiblein Section 4. Prediction models validating Malevris’ work
[22, 32, 35, 37]. within the context of data flow based criteria are presented
Infeasibility impacts significantly the effort, cost and in Section 5. To help in the task of determining infea-
time to apply structural testing criteria, in testing, dgbu sibility, some facilities, infeasible patterns and Fréaskl
ging and maintenance activities. Studies on infeasibleheuristic are discussed in Section 6. This section also
paths, described in the literature, address three basic agresents an extension to Poketool that incorporates these
proaches: prediction, classification and identification of facilities. Section 7 addresses the usage of knowledge and
infeasibility. Malevris et al [24] use the number of pred- information obtained from unit testing to reduce the effort
icates in a path to predict infeasibility, considering the necessary to deal with infeasibility during the integratio

74

Silvia Regina Vergilio, Jos & Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based

Testing Criteria: Identification, Classification and
Prediction

phase and in the test of object-oriented software. In Sec-
tion 8 we present the final remarks on our work and future
steps on our research.

2. Concepts and Terminology

The basic abstraction used to establish the elements
required by structural testing criteria is the control flow
graph G, also called program graph. Basically, they re-
quire the execution of components of the program under
test in terms of corresponding elements of the program
graph: nodes, edges and paths. Each block of statements
is associated to a node in the graph G. Edges are asso-
ciated to possible transfers of control between nodes and
a path is given by a sequence of nodgs,, na, ...,)
wherem > 2 and(n;,n;+1) is an edge in the graph for
i = 1.m — 1. In Figure 1, the programgetlistand its
control flow graph are shown. Examples of control flow
based criteria are: all-nodes, all-edges and all-paths.

A common characteristic of data flow based criteria
is that they require associations: the interactions batwee
variable definitions and subsequent uses of these defini-
tions [19, 27, 28, 30]. A variable is defined when a value

(i,(,k),x) is established if a variable x is defined in
a node i and there is a path from node i to j (or
edge (j,k)) that does not redefine x. The associa-
tions <3,9,line> and <3,(9,11),linel> are exam-
ples of required potential-associations for the pro-
gram getlist (Figure 1) becausénel is defined in
node 3 and there is a path in the graph from Node
3 to Node 9 and to arc (9,11) that does not redefine
linel However,<1,4line2> and <1,(3,4),line2-

are not potential-associations; all paths from node 1
to node 4 redefinéne2in node 3.

All-potential-du-paths criterion (PDU): requires the
execution of paths in G that cover all potential-du-
paths in the program. A potential-du-path with re-
spect to a variable x is given by a sequence of nodes
(i,n1,n9...,ny,7) Of G such that, a variable x is
defined in node i, all the nodes in the sequence
(n1,nse...,n,) are distinct and contain no redefini-
tion of x. Forgetlistthe paths (3, 4,5, 7, 8, 2, 9, 10)
and (3, 4, 5, 7, 8, 2, 3) are potential du-paths with
respect to variablénel.

To derive the elements required by the Potential Uses

is saved in its corresponding memory position. Typical criteria we need only to associate variable definitions to
definition statements includes function side effects (pa-each node in the control flow graph. For example the
rameter by reference, global variables and member varivariabledinel, line2 andnlinesare defined in statements
ables) and involve assignments, input commands and inief the prograngetlist associated to Node 3. Determin-
tialization of variables in declarations. A use of x occurs ing every potential-association for Node 3 is determining

when a reference is made to the value associated to x.

every node to which there is a definition clear path with

The motivation for data flow based adequacy criteriarespect to each of the variables defined in Node 3. Poke-
comes from the observation that a test set, which is adtool [4] is a testing tool that supports the Potential Uses
equate with respect to control flow based adequacy critecriteria family [23] and the all-nodes and all-edges ciéer
ria, such as all-nodes or all-edges, is unable to identdy th for testing of C programs. It provides facilities to instru-

presence of some simple faults, more specifically, compu-ment the source code, to execute code and to do coverage
tation faults [38]. Data flow based adequacy criteria aimanalysis of a given set of test cases. It also provides other
at reducing these limitations. information from static and dynamic analysis of the pro-
To satisfy a structural criterion C it is necessary to ex- gram.
ercise all the required elements according to the criterion Given a path, the number of predicates is the number
in this case, we say that a 100% coverage is obtained andf components of the boolean expressions of all condi-
that the corresponding test case set T is C-adequate. tions associated to the nodes of that path. For instance,
The Potential Uses criteria do not require an explicit the path (1, 2, 3, 5, 7, 8, 2) has five predicates. The con-
use to occur, as all of data flow based criteria do; just adition in Node 3 has one component, in Node 5 has two
definition clear path from nodes where a definition occurscomponents and in Node 2 the condition is considered
to nodes in the graph where the definition could be possitwice.
bly used is enough to characterize an association, in this As stated before, a program path is infeasible if there
case, a potential-association. Two of the Potential Usess no set of values for the input variables, global variables
criteria are defined below. and parameters of the program that cause the path to be
executed. For example, the path (1, 2, 9, 11, 13, 15, 16)
¢ All-potential-uses criterion (PU): requires the execu- in the prograngetlistis infeasible. An association can be
tion of paths in G that cover all potential-associations covered by a set of distinct paths of the program. If all
in the program. A potential-association (i,j,x) or paths in this set are infeasible the association is consid-

75

Silvia Regina Vergilio, Jos & Carlos Maldonado, Infeasible Paths in the Context of Data Flow Based
Mario Jino Testing Criteria: Identification, Classification and
Prediction

stcode getlist(char =lin, int *i, stcode *status)
*

* %
-~

int num done;

line2 = 0;

nlines = 0;

done = (getone(lin,i,&um status)!=0K);
while (!done)

linel = line2;
line2 = num
nl i nes++;
if (lin[*i]==SEM COL)
curln = num
if ((lin[*i]==COMMA)||(lin[+i]==SEM CQL))
{

o= xi o+ 1;
done = (getone(lin,i,&um status)!=0K);

el se
done = 1;
}
nlines = mn(nlines,?2);
if (nlines == 0)
line2 = curln;
if (nlines <= 1)
linel = line2;
if (rstatus != ERR)
*status = OK;
return(*status);

-
COODNNNDONNAWRWWWN P BB

PR
N e

-
w

X H % % K E % K E F X E % X £ F % K F % E F X X 2 X X %
-
N

R S

B
o n

Figure 1. Program Getlist

ered infeasible and it is not possible to obtain a 100% cov-the relevance of infeasible paths for the application of
erage for the criteria. The tester is responsible for dgalin these criteria.
with this situation since determining feasibility of a path Both experiments were conducted using Poketool,
is, in general, undecidable. considering the all-potential-uses criterion (PU), and
Data-flow based criteria were first used in the con-the all-potential-du-paths criterion (PDU). The programs
text of unit testing, which has the goal of testing a mod- were selected from [17], also used in an experiment by
ule separately. Extensions to these criteria have been apAleyuker [36]. These programs, originally written in Pas-
plied at the integration testing level [2, 8, 10, 15, 20, 34]. cal, were translated to C, as Poketool does not support
These criteria aim at revealing interface faults. They aretesting of Pascal programs.
based on call graphs and inter-procedural flows. Inter- Drivers were built to be as general as possible to avoid
procedural associations and paths are the required elenaking feasible paths into infeasible ones, since restric-
ments in integration testing. tions in the input provided by the driver to a program may
When we consider object-oriented software, there aranhibit the execution of feasible paths. The experiment
three levels of testing [9]: a) Intra-method testing, that used complete programs instead of stubs, since all the
tests methods individually; b) Inter-method testing, that programs were available. Using stubs instead of complete
tests public methods together, with other methods in itsprograms may generate a higher degree of infeasibility,
class; and c) Intra-class testing, that tests interactidns due to the usually limited functionality of stubs compared
public methods, as they are called in various sequencedo that of complete programs. The steps carried out in
The first level is equivalent to unit testing and the sec-both experiments were basically the same:
ond and third ones correspond to the integration testing
of procedural programs. 1. Initial "ad-hoc” test set generation considering only
functional aspects of the programs;

L . 2. Test set adequacy analysis with respect to the data
3. Description of the Experiments flow criteria PU and PDU:

This section describes two experiments with data flow
based criteria that provided data and results pointing out 3. Manual identification of infeasible elements;

76

Silvia Regina Vergilio, Jos & Carlos Maldonado, Infeasible Paths in the Context of Data Flow Based
Mario Jino Testing Criteria: Identification, Classification and
Prediction

4. Generation of test cases to cover the remaining re- Table 1. Experiment 1 - Main Results

quired elements; and Coverage:
. . . Executed Elem. / Total of Required .Elem.
5. Execution of new test cases until adequacy is Unit PU PDU
achieved. archive 17/17 17/17
append | 38/49 20/43
T . change | 37/38 24/27
_ The main differences between the two experiments are | ckgiob | 34/35 20/27
discussed next. cmp 10/13 9/12
command | 44/47 42/61
compare | 38/38 34/64
. compress| 36/39 24/34
3.1. Experiment|[22, 32] dodash | 33/33 21/21
Experiment | is referred to as “Unit testing”. The set of eot“tb é%%é% ggﬁgﬁ
: . f enta
27 programs listed in Table 1 was used. A driver and expand | 25/39 15/25
an initial test set for each unit have been used. Table 1 | getemd | 119/119 119/119
presents the final coverage for each criterion, number of get(:ef igﬁg iggg
. . . getfn
executed/required elements. Th_e infeasible elements have getfns | 37/44 25/34
been manually determined. For instance, for the program getlist | 58/82 38/102
append the PU criterion requires 49 associations, but getnum 8/? 7/1/2
only 38 were executed because 11 are infeasible; the PDU ggetté’xqe gg/gg igé?
criterion requires 43 potential-du-paths, but only 23 are makepat | 134/207 95/253
feasible. Notice that only three of the 27 programs do not Omtatcth %ﬁg é?zf‘lﬁ
: . . optpa
have _|nfea5|ble elementgrchlve dodasr.andgetcmd spread | 54/61 33/47
With the goal of replicating Malevris’ work for data subst | 176/219 87/322
flow based criteria, the number of predicates of the translit | 133/139 126/333
potential-du-paths required for all programs in Table 1 | Unvowte | 80/94 41/70
Total 1469/1749 1033/2371

were determined. Table 2 shows the number of infeasi-
ble and feasible potential-du-paths witpredicates, with
0 < ¢ < 18. For example, there are 47 potential-du-paths
with 13 predicates, 31 of them infeasible and 16 feasible. The task of generating test cases to satisfy a criterion
is more difficult when the unit is inside a cluster. Semantic
3.2. Experiment Il [32] aspects of different programs make difficult to determine
This experiment is referred to as “Cluster Testing”. test cases that cause the execution of a particular path in a
A cluster includes two or more units from Experiment I. unit inside a cluster. Moreover, notice that the number of
Such clusters are listed in Table 3. Notice that some unitgnfeasible paths is very high for both experiments: 1338 in
from Experiment | were not used in Experiment Il. An a total of 2371 (56.4%) in Experiment | and 411 in a total
initial “ad-hoc” test case set was generated for a cluster ofof 880 (46,7%) in Experiment I1. If we consider, in Exper-
units. iment | only the programs used in Experiment Il, the per-
For the first unit of each cluster, Experiment Il used centage of infeasible elements found in Experiment Il is
the driver used in Experiment I. For the other units inside greater than that of Experiment |, as some elements could
a cluster, we used complete programs, that is, we did nohot be exercised due to the restrictions imposed by the
use stubs nor drivers. Some programs used in Experimentalling programs. The final coverages obtained for both
I were selected to study the influence of other contexts orexperiments are different. In the next section, we discuss
unit testing. Notice that the progradodashis called in these results and present a classification for infeasibilit
two different contexts and belongs to two different clus- intrinsic and extrinsic.
ters (see Table 3).
During Step 4, additional test cases were generated to
cover the remaining elements of every unitin each cluster.
Table 3 presents the final coverage obtained. Observe that. Classification
the number of required elements wiakepatand getfns The infeasibility of a path is related to semantic as-
inside a cluster is greater due some potential associationpects of the program. In the experiments described in the
with respect to global variables that are not required whenlast section, the infeasible elements were manually de-
the unit is tested alone. termined — a costly, fault-prone and tedious task! This

I

Silvia Regina Vergilio, Jos & Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and
Prediction

Table 2. Number of Predicates in Potential-du-paths of Erpent |

nprd. 0 1 2 3 4 5 6 7 8 9 10 11
infeas. [0 19 40 37 83 109 190 228 105 109 130 111
feas. 19 104 104 101 115 106 117 96 50 44 61 33
Total 19 123 144 138 198 215 307 324 155 153 191 144

npred 12 13 14 15 16 17 18| Total

infeas. | 57 31 24 40 14 5 6 | 1338

feas. 25 16 10 17 8 5 2 | 1033

Total 82 47 34 57 22 10 8| 2371

Table 3. Experiment Il - Main Results

b2. The predicate is in alfi or casestatement. The pa-

Coverage: rameterj in the prograndodash(Figure 3) is defined in
Executed Elem. / Total of Required Elem. makesetvith value 0. Sub-path (1, 2, 3, 5, 7, 9) is infea-
Cluster | PU PDU sible, as there is a redefinition pthrough the sequence
archive | 17/17 17717 o 7
getins | 37/45 25/34 (1,..,7) and the predicatg > 0), associated to the edge
command| 44747 42761 (7,9), can not be satisfied.
getcemd | 119/119 119/119
optpat | 12/13 8/21 c. Combinations of the causes from categories
rgﬁzzgﬁt égggog iggi:” above The following example illustrates this category.
translit | 133/139 126/333 The sub-path given by the sequence (3, 5, 7, 8, 9, 10,
dodash | 33/33 18/21 11) in the progranoptpat (Figure 4) is infeasible due
Total | 562/655 469/880

to causes from categories and b2. The string pat
is a global variable initially defined with ENDSTR. If
makepat called in Node 7, defingsat, the edge (10,11)
in optpatis not executed. The loop headed by Node
section reports the main causes of infeasibility and their2 in makepatis executed at least once, when (1,3,5,7)
dependences. Based on Hedley and Hennel, the causés executed imoptpat This is because the predicate of
found are classified into three categories: that loop is dependent on the predicates of edges (3,5)
and (5,7) inoptpat When these edges are executed the
a. Dependence among predicates in a pattA path loop is also executed, since there is a correspondence be-
can include two or more predicates which are the same ofweenlin[i + 1] and argl[i], and betweeriin[xi] and
are opposite; the evaluation of one implies the evaluationdelim. The programaddstradds topat a character dif-
of the other. For example, in the prograyetlist (Figure ferent from ENDSTR whei < MAXPAT. Asj =0
1), the predicates of Nodes 9 and 11 are dependent. Thandj < MAX PAT whenmakepatbegins, in the first
sub-path given by the sequence (9, 10, 11, 13) is infeasipath through the loop headed by Node 2, Node 13 must
ble. If edge (9, 10) is executed, the sequence (9, 10, 11he executed to avoid callingddstr But in this first time
12, 13) is also executed. 1 = start and the condition of Node 11 is false. Thus,
there is no way to avoid definirmgatin makepatnd, con-
b. Inconsistent values of variables in a predicate ~ Sequently, to execute edge (10,11pjptpat
A variable in a predicate is defined with a value different ~ An infeasible sequence such as (9, 10, 11, 13), found
from that which causes the path to be executed. Thes# getlist is called “infeasible pattern” [32]. If a path in-
paths are classified into two groups: cludes an infeasible pattern it is infeasible. Determining
infeasible patterns helps the task of determining infeasi-
bl. The predicate is in while or repeatstatement. In ble elements; a large number of infeasible elements can
this case the variable controls a loop. The varialgeein be identified using a pattern. Infeasible patterns can be
the programmakepaiFigure 2) controls the loop headed classified into the same categories used to classify infea-
by Node 2. Sub-path (13, 15, 17, 18, 19, 20, 21, 23, 2, 3)sible paths.
is infeasible. At Node 13 the value dbneis 1. There are Another classification for infeasibility concerns the
no definitions ofdonethrough (15, ..., 2); hence, the loop context of programs. For example, the number of infeasi-
is exited. ble paths found imlodashis different in both experiments.

78

Silvia Regina Vergilio, Jos & Carlos Maldonado, Infeasible Paths in the Context of Data Flow Based
Mario Jino Testing Criteria: Identification, Classification and
Prediction

In Experiment |, all the required elementsdodashare ~ were not considered. The study was accomplished us-
exercised when using the driver. The driver is the maining Table 5, which is different from Table 2, to avoid the
program in Figure 3. The same does not happen in Exinfluence of particular characteristics of those three pro-
periment Il. The number of infeasible elements dependsgrams. The first two columns (0 and 1 predicate) were
on the cluster to whickdodashbelongs and on its calling merged. The values of Table 5 are depicted in Figure 5.
context. Figure 5 shows the influence of the number of predicates
Differently of the classification proposed by Hedley on the number of infeasible paths. The greater the num-
and Hennel, we are also interested in the interdependerber of predicates the greater the percentage of infeasible
cies among the units being tested. The results of Experipaths found in the experiment for< ¢ < 12. These re-
ment Il leads to the classification of infeasibility of a path sults, however, should be further investigated in a broader
or pattern as intrinsic or extrinsidntrinsic Infeasibil- selection of programs.
ity exists independently of the context. It is caused by Malevris et al used paths generated to cover LCSAJ
internal features. The example used in Catego(Pe- testing [24]. Our study used potential-du-paths, required
pendence among predicates in a path) is an intrinsic inby the all-potential-du-paths criterion. The first stem-si
feasibility of getlist Extrinsic Infeasibility is imposed ilarly to Malevris’, is to explore the hypothesig],, of
by the testing context. Infeasibility may be dependent onthe existence of equal proportions of feasible paths for
the calling program context. The example used in Cate-all ¢, whereq is the number of predicatesl, true means
goryb2is an extrinsic infeasibility oflodashwith respect that there is no relation between number of predicates and
to the calling progranmakeset Infeasibility can also be feasibility. A x2 test on data from Table 2 resulted in
dependent on the called program context. The example:2(0.005) = 35.718 andv = 17, wherev is the number
used to illustrate Categonyis an extrinsic infeasibility of of degrees of freedom. There is a standgfdable and
optpatimposed by the called programakepat a valuex?(«) such that ify* > x?(«) the hypothesis
Table 4 presents a summary of the number of infea-H, can be rejected with probability. From the standard
sible paths and infeasible patterns found in Experimenttablex?,(0.005) = 35.718 and H, can be confidently re-
Il. For example, in the first cluster, there are 9 infeasible jected meaning that there is a relation between the number
paths and 4 patterns, all getfns They belong to Cate- of predicates of a path and its feasibility.
goryaand are infeasible due to intrinsic characteristics. It |n the second step, a least squares fitting process of the
is possible for a path or pattern to be classified into morefynction f = ke gives the modep = 0.965¢0-160¢,
than one category. The result presented concerns the firgiith 2 = 94.4, wherep is the probability that a path
cause identified. The most common category of infeasi-with ¢ predicates is feasible. For further details see [31].
ble paths is Categorg (231 of 411 (56%)) and most of This model validates Malevris’ results within the con-

them were generated by intrinsic features of the unit (348eyt of data flow based criteria and shows that the number
of 411 (85%)). of predicates in a path can be used as a metric for predict-

ing its infeasibility. The greater the number of predicates
in a path, the greater the probability of the path be infea-
5. Prediction sible.
As expected, in the experiments described previously, The relation between the number of infeasible
it was more difficult to generate test cases to execute gotential-du-paths and other characteristics of the pro-
path with a large number of predicates and to determinegram being tested has also been studied. These character-
its infeasibility. The greater the number of predicates in istics are: number of nodes, number of variables and num-
a path the greater the difficulty of satisfying the combina- ber of variable definitions. The obtained models show that
tion of these predicates and executing the path. This facall these characteristics influence the number of infeasibl
motivated a study, based on Malevris’ work, to check the potential-du-paths. These models are described by Mal-
influence of the number of predicates on the infeasibility donado [22].
of a path. In spite of being intuitive, the influence mustbe This kind of information is relevant for establishing
validated statistically. strategies to generate data-flow adequate test case sets,
To study this influence, polynomial and exponential specifically for selecting complete paths associated to a
models were explored considering the intervak ¢ < data-flow required testing element. For instance, a given
12. (Recall thaty is the number of predicates in a path). strategy may assign a higher priority to paths with a lower
Given that only three programs have potential-du-pathsnumber of predicates, as they have a higher probability
with ¢ > 12, all the potential-du-paths of these programs of being feasible, given by the model. To illustrate this

79

Silvia Regina Vergilio, Jos & Carlos Maldonado,

Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and
Prediction

int getccl(char *arg, int =i, char =pat, int xj)}

{

}
int
/%
I
I
I
I
I
I
I
I
I
I
I
I
I
I

| *
| *
| *
/%
5
/%
/%
/%
/%
/%
| *
| *
| *
| *
15
/%
/%
/%
/%
/%
/%
| *
| *
| *

int k,jstart;
*io= x4 1
if (arg[+i]==NEGATE)

addst r (NCCL, pat, j , MAXPAT) ;
*io= xi o+ 1;

}

el se
addstr (CCL, pat, j , MAXPAT) ;

jstart = *j;

addstr (' 0", pat,j, MAXPAT) ;

dodash(CCLEND, ar g, i, pat, j , MAXPAT) ;

k = *j-jstart-1;

pat[jstart] = k;

return(arg[+i] == CCLEND);

makepat (char *arg, int start, int delim char *pat)

1« {int i,j,lastj,lj,done;

1 %/ j =0; i =start; lastj = 0; done = 0;

2 «/ while((!done)&&(arg[i]!=delin & arg[i]!=ENDSTR))

3«/ {1j =j;

3 x/ if (arg[i]==ANY)

4 «/ addst r (ANY, pat, & , MAXPAT) ;

5 «/ else if ((arg[i]==BOL)&&(i==start))

6 */ addst r (BOL, pat, & , MAXPAT) ;

7+l else if ((arg[i]==EQL)&&(arg[i+1]==delimn))

8 */ addstr (EQL, pat, & , MAXPAT) ;

9 */ else if (arg[i]==CCL)

10 =/ done = getccl (arg, & , pat, &);

11 «/ else if((arg[i]==CLOSURE)&&(i>start))

12 «/ {Ij = lastj;

12 +/ if((pat[lj]==Ba)||(pat[lj]==EQ)
Il (pat[lj] == CLOSURE))

13 «/ done = 1;

14 */ el se

14 =/ stclose(pat, & ,lastj);

15 «/ }

16 =/ el se

16 «/ { addstr (LI TCHAR, pat, & , MAXPAT) ;

16 =/ addstr(esc(arg, &), pat, & , MAXPAT) ;

16 */ }

17 end if 11 «/

18 end if 9 «/

19 end if 7 */

20 end if 5 «/

21 end if 3 «/

21] lastj =1j;

21 */ if (!done)

22 | i+

23 5/}

24 =/ if ((done)||(arg[i]!=delin)

25 =/ return -1;

26 */ el se if (!addstr(ENDSTR, pat, & , MAXPAT))

27 I return -1;

28 */ el se

28 */ return (i);

29 «/ }

B-Q-O-E@@-G-Gl

Figure 2. Program Makepat

80

Silvia Regina Vergilio, Jos & Carlos Maldonado,

Infeasible Paths in the Context of Data Flow Based

Mario Jino Testing Criteria: Identification, Classification and
Prediction
voi d dodash(int delim char * src, int * i, char » dest, int » j, int maxset)}
I+ 1« {int k;
I* 2%/ while((src[i]!=delinm&&(src[+i]!=ENDSTR))
/* 3% { if (src[+i]==ESCAPE)
I+ 4 x/ addstr(esc(src,i), dest,j, maxset);
I+ 5 x] else if (src[+i]!=DASH)
I+ 6 =/ addstr(src[+i], dest,j, maxset);
I 7 %/ el'se if ((*j<=0)||(src[*i+1]==ENDSTR))
/1% 8 %/ addstr(src[*i], dest,j, maxset);
I* 9 %/ else if ((isalnun(src[*i-1]))&&(isalnun(src[+i+1]))
&& (src[*i-1]<=src[*i+1]))

[+ 10 11 12 «/ { for (k = src[*i-1]+1; k<=src[*i+1]; k++)
I* 12] addstr (k, dest,j, maxset);
/% 13 */ *io= xi o+ 1
/% 13 =/ }
I+ 14 =/ el se
1% 14 =/ addst r (DASH, dest , j , maxset);
I+ 15 end if 9 «/
I+ 16 end if 7 «/
I 17 end if 5 «/
I+ 18 end if 3 «/
/% 18 */ *i= x4+ 1;
I+ 18 */ }
I+ 19 «/ }
voi d main(int argc, char *argv[])
{int i,j;

char str[MAXSTR], dest[MAXSTR];

if (argc<=3)

{ printf("Erro nunero de argunentos");

exit(1);

}

strepy(str,argv[1]);

ji=

atoi (argv[2]);
atoi (argv[3]);

dodash(ENDSTR, str, & , dest, & , MAXSTR) ;
dest[j] = ENDSTR;
puts(dest);

Figure 3. Program Dodash

81

Silvia Regina Vergilio, Jos & Carlos Maldonado, Infeasible Paths in the Context of Data Flow Based
Mario Jino Testing Criteria: Identification, Classification and
Prediction

Table 4. Infeasible Paths Found in Experiment ||

Cluster # Infeas./ Infeasibility: # Path/ #Patterns
Req.Elem. | Category Dependence
(%) a bl b2 c intrsc. extr.- extr.-
called calling
archive 0/17
0%
getfns 9/34 9/4 9/4
26.47%
command 19/61 19/4 16/3 3/1
31.1%
getcmd 0/119
0%
optpat 13/21 9/6 4/1 9/6 4/1
56%
makepat 158/253 114/12 14/1 18/5 12/4 156/21 2/1
62.45%
dodash 2/21 2/1 2/1
10%
translit 207/333 | 89/2 63/2 55/5 156/6 51/3
62.76%
dodash 03/21 3/1 3/1
14.29%
Total 411/880 231722 14/1 95/22 71/10 348/40 56/5 713
46.7%
aspect, consider again programptpatin Figure 4. The Pokeexecmodule executes the executable program

association< 1,(10,11),lin > is required by the all- with test cases provided by the tester and produces the ex-
potential uses criterion. The paths candidate to cover thaecuted pathsPokeadegnodule does the adequacy analy-
association are given in Table 6, which also presents thesis with respect to a chosen criterion and generates the list
number of predicates in each path and its probability ofof unexercised elements and a coverage measure.
being feasible, given by the exponential model. Using the To deal with infeasibility two new modules were pro-
strategy “fewer number of predicates”, one of the pathsposed:PokeheurisandPokepatternPokeheuridelps the
with p = 0.60, that is, with higher probability of be- task of determining infeasible potential associationagisi
ing feasible, would be selected. Notice that this strategyFrankl’s heuristicsPokepatterrmanipulates infeasibility
avoids selecting the infeasible paths: (1, 3, 5, 7, 8, 9, 10patterns and eliminates infeasible elements from the list
11,12,13,15)and (1, 3,5, 7,8, 9,10, 11, 12, 14, 15). of required elements.
Frankl's heuristics are applied to check the infeasibil-
ity of a given association. To apply Frankl’s heuristics,
. first we determine all the paths candidate to cover an asso-
6. Identification ciation. Next, we try eliminating the infeasible candidate
Determining infeasibility of an element required by a paths by analysing the loops in the program. If a loop is
structural criterion is an undecidable question. Based orexecuted at least once and all the paths through this loop
Frankl's work and on the experience conducting experi-that redefine the predicate variables also redefine the vari-
ments with testing criteria an extension to Poketool wasables of the association, there will be no paths covering
proposed. This extension helps the identification and authe association; all the paths can be eliminated and the as-
tomatic elimination of infeasible elements. sociation is infeasible. For other cases, nothing about the
Figure 6 presents a simplified module diagram of association infeasibility can be concluded.
Poketool.Poketoolmodule translates the source code into For example, consider the control flow graph of pro-
an intermediate language which allows abstract informa-gramgetlistin Figure 1 and the associati¢n, 10, line2).
tion on the control flow of the program; the program graph The variables defined in each node are presented in the
is generated from this intermediate language representagraph. The loop headed by Node 2 is executed at least
tion. Poketoolmodule also analyses the code and gen-once becauséldone) is true in Node 1; hence, (1, 2,
erates the list of required elements and the instrumente®, 10) is infeasible. All the remaining paths candidate
program. to cover this association include paths through the loop

82

Silvia Regina Vergilio, Jos & Carlos Maldonado,

Infeasible Paths in the Context of Data Flow Based

Mario Jino Testing Criteria: Identification, Classification and
Prediction
stcode optpat(char *lin, int *i)
I+ 1/ { if (lin[*i]==ENDSTR)
I+ 2« *io=-1;
I+ 3« else if (lin[*i+1] == ENDSTR)
1% 4 %/ *o=-1;
I+« 5%/ else if (lin[*i+1]==lin[*i])
I+ 6 %/ *io= xi o+ 1
I« 7 =] el se
I* 7 %/ *i = makepat(lin, *i+1,lin[*i],pat) ;
I~ 8 end if 5 «/
I 9 end if 3 «/
/+ 10 =/ if (pat[0]==ENDSTR)
/% 11 +/ o= -1
Jx 12 «/if (xi==-1)
I+ 13 «/ { pat[0] = ENDSTR
I+ 13 =/ return ERR
% 13 %/
I+ 14 =/ el se
I+ 14 «/ return OK;
/% 15 =/ }

Figure 4. Program Optpat

Table 5. Number of Predicates in Potential-du-paths Wwith ¢ < 12

nprd 1 2 3 4 5 6 7 8 9 10 11 12| Total
infeas. | 19 40 37 78 91 140 156 57 49 22 36 (@ 725
feas. 78 78 74 87 76 78 52 25 15 16 O 0| 598
Total 97 118 111 165 167 218 208 82 64 38 36 1323

83

Silvia Regina Vergilio, Jos & Carlos Maldonado, Infeasible Paths in the Context of Data Flow Based

Mario Jino Testing Criteria: Identification, Classification and
Prediction

120,00%
- 100,00% A
£
B 5000% 4
®
S 60,00%
=
% 40,00%
E 20,00%-H H H

0,00% i

T2 3 4 5 B 7 8 89 10 N
number of predicates

Figure 5. Number of Predicates and Percentage of Infeasitthes P

Table 6. Paths to Cover the Associatiad,(10,11),lin> test Caset
Path number of | Probability instrumentedprogram | executed paths
predicates D
@, 2,10, 11, 12, 14, 15) 3 0.60 rerion
(1v 2,10, 11, 12,13, 15) 3 0.60 . remaining elements
(1’ 3' 4’ 9' 10’ 11‘ 12' 14’ 15) 4 0.50 sourcecod:s Poketool required elements pokeadel coverage
(1,3, 4,9, 10, 11, 12, 13, 15) 4 0.50 ;
(1,3,5,6,8,9,10, 11, 12, 14, 15 5 0.43
(1,3,5,6,8,9,10, 11, 12, 13, 15 5 0.43 candidatd | SimPole
1,3,5,7,8,9,10, 11, 12, 14, 15 5 0.43 paths | | PO ——
(1,3,5,7,8,9,10, 11, 12, 13, 15 5 0.43
Pokeheuris—P2MEM _Pokepattery infeasible elements
asps((jjlceiggzlr patteq criterion
headed by Node 2. All of them can be eliminated as all
paths inside that loop redefining the variabtEnein the
predicate in Node 2 also redefine the varidite2. Thus, Figure 6. Poketool Modules

the association is infeasible.

Pokeheurisuses data generated Bpke-toolmodule
such as symbolic information about the program, mainly - :
about the predicates, and paths that are candidates tg Based on a preliminary study, we claim that all the

cover an association. If moduRokeheurisan conclude a_ckgro_und, concepts and information a vallaple at the
. . o o unit testing phase and all the results obtained with the ex-
something about such infeasibility the association is an

infeasibility pattern and the moduRekepatterris called periments described herein are relevant and can be taken
; - . . ~ . into consideration to reduce the effort and overcome the
If the tester identifies an infeasible pattern, he can pevid

s iomato o eOkepatermrke Fokepatory (TIPS TOoses b eSSl 1 8 eacer s
for an infeasible pattern and a criterion, identifies the in- 9 :

feasible required elements and updates the coverage ré:—la'm for integration and object-oriented testing.

sult. -
7.1. Inter-procedural Infeasibility

An inter-procedural association or path is infeasible
if there is no complete feasible inter-procedural path that
7. Infeasibility in a Broader Data-Flow- covers it. Any inter-procedural path that contains an in-
Based Context trinsic or extrinsic infeasible pattern is also infeasible
The same problems concerning infeasibility in the unit ~ Consider again progranmakeseanddodash(Figure
and cluster testing appear when applying data-flow base®). Variablej is defined in Node 11(n in makesétand
testing in a broader context such as integration testisg, te used in Node 121Qd in dodash. An inter-procedural
of web applications, parallel and object-oriented sofawvar association< 1m, 12d, j > is required but it is infeasible.
testing, and specification testing. All paths that would cover it are infeasible because they

84

Silvia Regina Vergilio, Jos & Carlos Maldonado, Infeasible Paths in the Context of Data Flow Based
Mario Jino Testing Criteria: Identification, Classification and
Prediction

public class Synbol Table {
private Tabl eEntry table[];
private int nunentries, tablenmax;
public Synbol Table (int m
{ tablemax = m
nunentries = 0;

necessarily include the infeasible sequence (1, 2, 3, 5, 7/~
9) intrinsic to prograndodash /
The same classification of infeasibility proposed for /: el N
unit testing can be used for integration testing. Infeasi-/- }
bility is generated by the same basic causes identified at '?'ub: o 10t AdTabla(char sybol, ohar() syrd nf)
the unit level, presented previously, or by a composition;: 8-
of them. /s 10
Concerning prediction, it is expected that if Malevris’ /- 12 -
hypothesis holds at the unit level it also holds at the in-/: 1 -
tegration level. New studies are being carried out in this/+ 16 +
direction.
Concerning identification of infeasibility, the heuris-
tics proposed by Frankl can also be applied to determine
infeasible inter-procedural associations. An example of
their application at the integration level can be extracted
from Figure 1. In Node 1, the global variabiénesis de-
fined and can be used in the program that cgéiflist
an inter-procedural association is established. All the| symbolTable] | AddtoTable | | GetfromTabld
inter-procedural candidate paths that include pattern (1,
2, 9) can be eliminated; thus, the set of candidate paths
is empty and the infeasibility of the association is estab-
lished.

~NoUuAWNR
*E A % X %

if (nunmentries<tabl emax)
{ if (Lookup(symnbol,index)==FOUND)
return NOTCK;
AddSynbol (synbol , i ndex) ;
Addl nf o(symi nf o, i ndex) ;
nument ri es++;
return OK;

*

return NOTCK;
}

-

AddSymbol | | Lookup | | Getinfo

7.2. Infeasibility in Object Oriented Software

To test object-oriented software according to Harold
and Rothermel [9], we have to cover associations in the
following levels: intra-method, inter-method and intra-

class. Addinfo| | GetSymbol |
The intra-method testing is equivalent to unit testing
and the correspondence is direct. Intra-methods and intra- Figure 7. Class SymbolTable

class testing occur during the integration of classes. In
the same way, the causes of infeasibility and the cate-
gories presented in Section 4 are valid. Consider the
example of Figure 7, extracted from [9]. The example
contains a part of the class descriptionSfmbolTable
and its class call graph. In the intra-method testing eact8. Conclusions

unit is tested separately. To perform inter-method test- This work concerns the issue of infeasible paths and
ing on the AddtoTablemethod we integrate the meth- structural testing, mainly data flow based testing. The
odsAddSymbol, Lookup, AddInfo, GetSymlhtdsh and described experiments show that most studied programs
test several calls tdddTable For intra-class testing, we have infeasible paths.

extrinsic).

may select test sequences such<€®ymbolTable, Ad- Thus, facilities to deal with these aspects and to reduce
dTable, GetfromTable and <SymbolTable, AddTable, the effect of infeasible paths on the testing activity are
AddTable-. necessary.

Consider these sequences to illustrate infeasi- Given these facts, infeasibility issues in the context of
bility and the intra-class association definition-use data flow based testing have been deeply investigated con-
<3,(8,9),numentries. The association needs to be cov- sidering three basic research topics: classification,ipred
ered in the first call oAddTable asnumentrieds always tion and identification. These points have been addressed
redefined in a second call taddTable Thus, the feasi- in the scope of unit testing as well as of integration and
bility of this association depends on the context of the object-oriented software testing. Moreover, an extension
method (or main program) that uses the sequences. Ifo Poketool to provide facilities to deal with infeasible
tablemar >= 0 the association is infeasible (cause paths has been briefly presented.

85

Silvia Regina Vergilio, Jos & Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based

Testing Criteria: Identification, Classification and
Prediction

The knowledge and information summarized in this

References

paper can provide a good feedback to software devel- [1] H. Agrawal and et al. Mining systems tests to aid

opment. For instance, the classification of infeasibility
causes provides information for determining heuristics to
eliminate infeasible paths as well as guidelines for pro-

software maintenancelEEE Computer31(7):64—
73, July 1998.

gram writing. Based on the main causes of infeasibil- [2] D. Callahan. The program summary graph and flow-

ity some guidelines can be established: 1) “Be careful
about using a particular predicate more than once”; 2) “Be
careful with definitions and consequent testing of control-
loop variables”; and so on. Other contributions are intrin-
sic and extrinsic infeasibility and infeasible patterns-pr
posed in this paper, since they are useful information in
the context of software production and reuse and ease the
automatic identification of infeasible paths.

Infeasible patterns permit to determine the infeasibil-
ity of a great number of elements. They capture semantic
aspects of the program that can be used in regression and
integration testing. Intrinsic patterns can be used in the
integration of a program (method or process) with other

sensitive interprocedural data flow analysis Pho-

ceedings of the SIGPLAN’'88 Conference on Pro-
gramming Languages, Design and Implementation
pages 47-56. Atlanta - Georgia, 22-24, June 1986.

[3] A. Carniello. Teste Baseado na estrutura de casos de

usa Master Thesis, DCA/FEEC/Unicamp, Febru-
ary 2003. (in Portuguese).

[4] M.L. Chaim. POKE-TOOL - Uma Ferramenta para

Suporte ao Teste Estrutural de Programas Baseado
em Ardlise de Fluxo de Dados Master Thesis,
DCA/FEEC/Unicamp, Campinas - SP, Brazil, April
1991. (in Portuguese).

programs. They are always valid, even if changes occur [5] M. B. Dwyer, L.A. Clarke, J. M. Cobleigh, and

in the called or calling programs; they will be changed
only if the unit (method or process) changes. Itis a fact, a
knowledge associated to the unit, that eases the task of au-
tomatically eliminating the infeasible elements, once the
tester discovers an infeasible pattern.

G. Naumovich. Flow analysis for verifying proper-
ties of concurrent software systemdCM Trans. On
Software Engineering and Methodologiol 13(4),
October 2004.

[6] F.G. Frankl. The use of Data Flow Information for

The obtained results statistically validate the influence
of the number of predicates of a path on its feasibility for
1 < ¢ < 12 (wheregq is the number of predicates in a
path). Further studies are needed to investigate Malevris’

the Selection and Evaluation of Software Test Data
PhD Thesis, Department of Computer Science, New
York University, New York, U.S.A., October 1987.

hypothesis for programs containing paths wjth> 12. [7] S. Fujiwara, G. v. Bochmann, F. Khendek,

A module namedPokepathswhich generates paths can-
didate to cover an element required by a given criterion
supported by Poketool was developeBokepathscon-
sider the number of predicates to select paths. We intend
to implement Frankl's heuristics, as well as other facili-
ties, to determine infeasibility in the integration levala

in other data-flow based contexts.

In summary, the results presented in this paper con-
tribute to the planning of the testing activity and to the
establishment of testing strategies. For instance, the ap-
plication of a context-independent unit testing strategy,

M. Amalou, and A. Ghedamsi. Test selection based
on finite state modeldEEE Trans. on Soft. Engin.
Vol 17(6), June 1991.

[8] A.Haley and S. Zweben. Development and applica-

tion of a white box approach to integration testing.
The Journal of Systems and Softwa4e309-315,
1984.

[9] M.J. Harrold and G. Rothermel. Performing data

flow on classes. IACM-SIGSOFTpages 154-163.
New Orleans-USA, December 1994,

similar to Experiment |, is very important: 1) you may 510] M.J. Harrold and M.L. Soffa. Selecting and using

exercise a greater number of required elements; and 2
you acquire more knowledge about the unit. The knowl-
edge about infeasible elements and infeasible patterns can

data for integration testing.|[EEE Software \Vol.
8(2):58-65, March 1980.

be used for unit cluster testing, where determining infea-[11] D. Hedley and M.A. Hennell. The causes and effects

sibility is more difficult. It may also contribute to reduce
costs in the debugging and maintenance phases and in re-
gression testing.

86

of infeasible paths in computer programs. Rro-
ceedings of VIII International Conference on Soft-
ware Engineeringpages 259-266. UK, 1985.

Silvia Regina Vergilio, Jos & Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

[12] W.E. Herman. Flow analysis approach to program[23] J.C. Maldonado, M.L. Chaim, and M. Jino. Bridging

testing. The Australian Computer Journahol.
8(3):259-266, November 1976.

[13] R.M. Hierons, T.-H. Kim, and H. Ural. On the testa-

bility of SDL specifications. Computer Networks
44(5):681-700, October 2004.

[14] J.R. Horgan and S. LondorATAC- Automatic Test

Coverage Analysis for C Program8ellicore Inter-
nal Memorandum, June 1990.

[15] Z. Jin and A. J. Offut. Integration testing based
on software couplings. IProceedings of the X
Annual Conference on Computer Assurance (COM-
PASS 95) pages 13-23, Gaithersburg, Maryland, 2

January 1995.

[16] P. Jorgesen and C. Erickson. Object oriented inte-

gration. Communications of the ACN, September
1994,

[17] B.W. Kernighan and P.J. PlaugeSoftware Tools

in Pascal Addison-Wesley Publishing Company [28]

Reading, Massachusetts - USA, 1981.

[18] Y.W. Kim. Efficient use of code coverage in large-
scale software development. Rroceedings of the
2003 conference of the Centre for Advanced Stud

ies on Collaborative researcipages 145-155. IBM
Press, Toronto-Canada, 2003.

[19] J.W. Laski and B. Korel. A data flow oriented [30]

program testing strategy.|[EEE Transactions on
Software Engineeringvol. SE-9(3):347-354, May
1983.

[20] U. Linnenkugerl and M. Mullerburg. Test data se-
lection criteria for (software) integration testing. In
Proceedings of the First International Conference
on Systems Integratippages 709—717. IEEE Press,

Morristown, New Jersey, April 1990.

[21] C.H. Liu, D.C. Kung, P. Hsia, and C.T. Hsu. Struc-

tural testing of web applications. Ihlth Interna-

tional Symposium on Software Reliability Engineer-

ing, pages 84-96. IEEE Press, 2000.

[22] J.C. Maldonado.Critérios Potenciais Usos: Uma

Contribuicgdo ao Teste Estrutural de Softwar@oc-

torate Dissertation, DCA/FEEC/Unicamp, Camp-

inas - SP, Brazil, July 1991. (in Portuguese).

87

the gap in the presence of infeasible paths: Poten-
tial uses testing criteria. |XII International Con-
ference of the Chilean Computer Science Society
pages 323-340. Santiago, Chile, October 1992.

N. Malevris, D.F. Yates, and A. Veevers. Predictive
metric for likely feasibility of program pathdnfor-
mation and Software Technolggyol. 32(2):115-
118, March 1990.

V. Martena, A. Orso, and M. Pezze. Interclass test-
ing of object oriented software. lmternational
Conference on Engineering of Complex Computer
Systems (ICECCS’'Olpages 135-144. IEEE Press,
Maryland- USA, December 2002.

] T. McCabe. A software complexity measut&EE

Transactions on Software Engineerjnyol. SE-
2(4):308-320, December 1976.

S.C. Ntafos. On required element testing.
IEEE Transactions on Software EngineeringE-
10(6):795—-803, November 1984.

S. Rapps and E.J. Weyuker. Selecting software test
data using data flow informatiotEEE Transactions

on Software EngineeringsE-11(4):367-375, April
1985.

F. Ricca and P. Tonella. Analysis and testing of
web applications. 1123rd International Conference
on Software Engineering (ICSE’'Qlpages 25-34.
IEEE Press, Toronto-Canada, May 2001.

H. Ural and B. Yang. A structural test selection cri-
terion. Information Processing Letter28(3):157—
163, July 1988.

S.R. Vergilio. Caminhos Mo Execudveis:
Caracterizago, Previgio e Determinago para Su-
porte ao Teste de Programas Master Thesis -
DCA/FEEC/Unicamp, Campinas - SP, Brazil, Jan-
uary 1992. (in Portuguese).

S.R. Vergilio, J.C. Maldonado, and M. Jino. Infea-
sible paths within the context of data flow based cri-
teria. InVI International Conference on Software
Quality, pages 310-321. Ottawa-Canada, October
1996.

S.R. Vergilio, S.R.S. Souza, and P.S.L. Souza. Cov-
erage testing criteria for message passing parallel
programs. InlEEE Latin American Test Work-
shop (LATW'05) pages 161-166. Salvador -Bahia,
Brazil, March 2005.

Silvia Regina Vergilio, Jos & Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and
Prediction

[34]

[35]

[36]

[37]

[38]

[39]

P. Vilela, J.C. Maldonado, and M. Jino. Data flow
based integration testing. Killl Brazilian Sympo-
sium on Software Engineeringages 393—-409. Flo-
riandpolis, SC, Brazil, October 1999.

E.J. Weyuker. An empirical study of the complex-
ity of data flow testing. InProceedings of the Sec-
ond Workshop on Software Testing, Verification and
Analysis pages 188-195. Computer Science Press,
Banff - Canada, July 1988.

E.J. Weyuker. The evaluation of program-based
software test data adequacy critediBEE Transac-
tions on Software Engineerinyol. SE-16(2):121-
128, February 1988.

E.J. Weyuker. More experience with data flow test-
ing. IEEE Transactions on Software Engineerjing
Vol. SE-19(3):914-919, September 1993.

L.J. White and E.I. Cohen. A domain strategy for
computer program testinglEEE Transactions on
Software Engineeringvol. SE-6(3):247-257, May
1980.

R-D. Yang and C-G. Chung. Path analysis testing
of concurrent programslnformation and Software
Technology34(1):101-130, January 1992.

88

