
Infeasible Paths in the Context of
Data Flow Based Testing Criteria:
Identification, Classification and

Prediction
Silvia Regina Vergilio1, Jośe Carlos Maldonado2, Mario Jino 3

1Federal University of Paraná
DInf-UFPR - Curitiba, PR

CP: 19081, CEP: 81531-970, Brazil
+55 41 33613411 fax: +55 41 33613502

silvia@inf.ufpr.br

2University of S̃ao Paulo - USP
ICMC-USP - S̃ao Carlos, SP

CP:668, CEP: 13560-970, Brazil
jcmaldon@icmc.sc.usp.br

3State University of Campinas
DCA-FEEC-UNICAMP - Campinas, SP

CP: 6101, CEP: 13083-970, Brazil
jino@dca.fee.unicamp.br

Abstract
Infeasible paths constitute a bottleneck for the com-

plete automation of software testing, one of the most ex-
pensive activities of software quality assurance. Research
efforts have been spent on infeasible paths, basically on
three main approaches: prediction, classification and
identification of infeasibility. This work reports the results
of experiments on data flow based criteria and of stud-
ies aimed at the three approaches above. Identification,
classification, and prediction of infeasible paths are re-
visited in the context of data flow based criteria (Potential
Uses Criteria-PU). Additionally, these aspects are also
addressed in the scope of integration and object-oriented
testing. Implementation aspects of mechanisms and fa-
cilities to deal with infeasibility are presented taking into
consideration Poketool - a tool that supports the appli-

cation of the Potential Uses Criteria Family. The results
and ideas presented contribute to reduce the efforts spent
during the testing activity concerning infeasible paths.

Keywords: software testing, data flow based criteria,
infeasible paths.

1. Introduction
Testing is one of the most traditional activity for soft-

ware quality assurance. Considering that software testing
aims at revealing faults, a good test case is one that has
a high probability of finding a not-yet revealed fault. In
other words, a good test case is one that reveals a fault if
it is present.

To test a program with all possible input values is, in

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

general, impossible. To select a finite set containing the
best inputs, different testing criteria were proposed. Test-
ing criteria have the goal of revealing as many faults as
possible with minimal effort and cost. A testing crite-
rion establishes a predicate that has to be satisfied by a
given test case set T. It requires that elements of a pro-
gram, such as statements or paths are exercised by the
test cases. It constitutes a means to assess the effective-
ness of the testing activity and to provide reliability mea-
sures. Usually, they are classified as functional, structural
or fault-based testing techniques. The structural criteria
consider a particular implementation to derive the test-
ing requirements and are classified as: Control Flow [28],
Data Flow [12, 19, 23, 27, 28, 30] and Complexity Based
Criteria [26].

Data flow based criteria are among the most inves-
tigated criteria for unit testing in the past few years
[12, 19, 23, 27, 28, 30]. It would not be unrealistic to
say that these criteria have reached their maturity, in the
sense that they have moved from the state of the art to the
state of the practice. Prototype tools have been developed
[4, 6, 14] and a commercial tool is available to support the
application of some of these criteria [1]. Some authors
have been investigated strategies to allow the application
of structural criteria in real and large systems [18].

In spite of this popularization, a common problem as-
sociated with the use and evaluation of structural criteria
is that amongst the required elements may occur infea-
sible ones (paths and/or associations). A path through a
program is infeasible if there is no set of values for the
input and global variables and parameters of the program
that cause the path to be executed. In general, there is no
algorithm to determine the feasibility of a path; it is an
undecidable question [6].

Infeasible elements required by structural testing cri-
teria constitute a bottleneck to the complete automation of
software testing - either to generate a test set or to evaluate
its adequacy. Data flow based criteria often require exer-
cising infeasible elements since most programs contain
infeasible paths, even well-formulated correct programs.
Some experiments applying the all-definition-uses(du)-
paths and all-potential-du-paths criteria, have reportedup
to 50% of the total required elements as being infeasible
[22, 32, 35, 37].

Infeasibility impacts significantly the effort, cost and
time to apply structural testing criteria, in testing, debug-
ging and maintenance activities. Studies on infeasible
paths, described in the literature, address three basic ap-
proaches: prediction, classification and identification of
infeasibility. Malevris et al [24] use the number of pred-
icates in a path to predict infeasibility, considering the

all-LCSAJs (Linear Code Sequence and Jumps) criterion.
They concluded that the greater the number of predicates
in a path, the greater the probability of the path being in-
feasible. Hedley and Hennel [11] show the main causes
of infeasible paths in a program and present a classifica-
tion for those causes. Frankl [6] introduces a heuristic
to determine infeasible associations, based on data flow
analysis and symbolic execution techniques.

Among the above mentioned works, only Frankl fo-
cuses infeasibility in the context of data-flow testing. Ad-
ditionally, all of them address only unit testing and nowa-
days, data flow based testing criteria and tools are being
applied within a broader context. For example, data-flow
based criteria have been extended to integration testing
[2, 8, 10, 20], specification testing [3, 7], object-oriented
software [9, 16, 25], concurrent and parallel programs
[39, 33] and, most recently, to web applications [21, 29].
In all these new contexts the problem of infeasible paths
remains. More recent studies with object-oriented soft-
ware [25], web applications [29], concurrent programs
[5] and test of specifications [13] point out the negative
effects of the presence of infeasible paths.

The goal of this paper is to address these basic ap-
proaches - classification, prediction and identification - in
the context of data flow based testing, more specifically in
the context of the Potential Uses Criteria Family [22], by
carrying out two experiments [22, 31]. These experiments
were conducted using Poketool [4], a tool that supports
the application of the Potential Uses Criteria Family and
the control flow based criteria: all-nodes and all-edges.
During this experiment, we evaluate some existent depen-
dencies between units and the results obtained with both
experiments can be used in the broader context of data-
flow based testing. We illustrate this fact by addressing
the problem of infeasible paths in the integration phase
and in the testing of object-oriented software.

Section 2 presents basic terminology and the Potential
Uses Criteria. Section 3 describes the experiments. The
following sections describe the main results obtained ac-
cording to the three approaches in the literature. The main
causes that generate infeasible paths are described and a
classification based on the program contexts is proposed
in Section 4. Prediction models validating Malevris’ work
within the context of data flow based criteria are presented
in Section 5. To help in the task of determining infea-
sibility, some facilities, infeasible patterns and Frankl’s
heuristic are discussed in Section 6. This section also
presents an extension to Poketool that incorporates these
facilities. Section 7 addresses the usage of knowledge and
information obtained from unit testing to reduce the effort
necessary to deal with infeasibility during the integration

74

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

phase and in the test of object-oriented software. In Sec-
tion 8 we present the final remarks on our work and future
steps on our research.

2. Concepts and Terminology
The basic abstraction used to establish the elements

required by structural testing criteria is the control flow
graph G, also called program graph. Basically, they re-
quire the execution of components of the program under
test in terms of corresponding elements of the program
graph: nodes, edges and paths. Each block of statements
is associated to a node in the graph G. Edges are asso-
ciated to possible transfers of control between nodes and
a path is given by a sequence of nodes,(n1, n2, ..., nm)
wherem ≥ 2 and(ni, ni+1) is an edge in the graph for
i = 1..m − 1. In Figure 1, the programgetlist and its
control flow graph are shown. Examples of control flow
based criteria are: all-nodes, all-edges and all-paths.

A common characteristic of data flow based criteria
is that they require associations: the interactions between
variable definitions and subsequent uses of these defini-
tions [19, 27, 28, 30]. A variable is defined when a value
is saved in its corresponding memory position. Typical
definition statements includes function side effects (pa-
rameter by reference, global variables and member vari-
ables) and involve assignments, input commands and ini-
tialization of variables in declarations. A use of x occurs
when a reference is made to the value associated to x.

The motivation for data flow based adequacy criteria
comes from the observation that a test set, which is ad-
equate with respect to control flow based adequacy crite-
ria, such as all-nodes or all-edges, is unable to identify the
presence of some simple faults, more specifically, compu-
tation faults [38]. Data flow based adequacy criteria aim
at reducing these limitations.

To satisfy a structural criterion C it is necessary to ex-
ercise all the required elements according to the criterion;
in this case, we say that a 100% coverage is obtained and
that the corresponding test case set T is C-adequate.

The Potential Uses criteria do not require an explicit
use to occur, as all of data flow based criteria do; just a
definition clear path from nodes where a definition occurs
to nodes in the graph where the definition could be possi-
bly used is enough to characterize an association, in this
case, a potential-association. Two of the Potential Uses
criteria are defined below.

• All-potential-uses criterion (PU): requires the execu-
tion of paths in G that cover all potential-associations
in the program. A potential-association (i,j,x) or

(i,(j,k),x) is established if a variable x is defined in
a node i and there is a path from node i to j (or
edge (j,k)) that does not redefine x. The associa-
tions <3,9,line1> and<3,(9,11),line1> are exam-
ples of required potential-associations for the pro-
gram getlist (Figure 1) becauseline1 is defined in
node 3 and there is a path in the graph from Node
3 to Node 9 and to arc (9,11) that does not redefine
line1. However,<1,4,line2> and <1,(3,4),line2>
are not potential-associations; all paths from node 1
to node 4 redefineline2 in node 3.

• All-potential-du-paths criterion (PDU): requires the
execution of paths in G that cover all potential-du-
paths in the program. A potential-du-path with re-
spect to a variable x is given by a sequence of nodes
(i, n1, n2..., nn, j) of G such that, a variable x is
defined in node i, all the nodes in the sequence
(n1, n2..., nn) are distinct and contain no redefini-
tion of x. Forgetlist the paths (3, 4, 5, 7, 8, 2, 9, 10)
and (3, 4, 5, 7, 8, 2, 3) are potential du-paths with
respect to variableline1.

To derive the elements required by the Potential Uses
criteria we need only to associate variable definitions to
each node in the control flow graph. For example the
variablesline1, line2 andnlinesare defined in statements
of the programgetlist associated to Node 3. Determin-
ing every potential-association for Node 3 is determining
every node to which there is a definition clear path with
respect to each of the variables defined in Node 3. Poke-
tool [4] is a testing tool that supports the Potential Uses
criteria family [23] and the all-nodes and all-edges criteria
for testing of C programs. It provides facilities to instru-
ment the source code, to execute code and to do coverage
analysis of a given set of test cases. It also provides other
information from static and dynamic analysis of the pro-
gram.

Given a path, the number of predicates is the number
of components of the boolean expressions of all condi-
tions associated to the nodes of that path. For instance,
the path (1, 2, 3, 5, 7, 8, 2) has five predicates. The con-
dition in Node 3 has one component, in Node 5 has two
components and in Node 2 the condition is considered
twice.

As stated before, a program path is infeasible if there
is no set of values for the input variables, global variables
and parameters of the program that cause the path to be
executed. For example, the path (1, 2, 9, 11, 13, 15, 16)
in the programgetlist is infeasible. An association can be
covered by a set of distinct paths of the program. If all
paths in this set are infeasible the association is consid-

75

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

stcode getlist(char *lin, int *i, stcode *status)
/* 1 */ {
/* 1 */ int num, done;
/* 1 */ line2 = 0;
/* 1 */ nlines = 0;
/* 1 */ done = (getone(lin,i,&num,status)!=OK);
/* 2 */ while (!done)
/* 3 */ {
/* 3 */ line1 = line2;
/* 3 */ line2 = num;
/* 3 */ nlines++;
/* 3 */ if (lin[*i]==SEMICOL)
/* 4 */ curln = num;
/* 5 */ if ((lin[*i]==COMMA)||(lin[*i]==SEMICOL))
/* 6 */ {
/* 6 */ *i = *i + 1;
/* 6 */ done = (getone(lin,i,&num,status)!=OK);
/* 6 */ }
/* 7 */ else
/* 7 */ done = 1;
/* 8 */ }
/* 9 */ nlines = min(nlines,2);
/* 9 */ if (nlines == 0)
/* 10 */ line2 = curln;
/* 11 */ if (nlines <= 1)
/* 12 */ line1 = line2;
/* 13 */ if (*status != ERR)
/* 14 */ *status = OK;
/* 15 */ return(*status);
/* 16 */ }

Figure 1. Program Getlist

ered infeasible and it is not possible to obtain a 100% cov-
erage for the criteria. The tester is responsible for dealing
with this situation since determining feasibility of a path
is, in general, undecidable.

Data-flow based criteria were first used in the con-
text of unit testing, which has the goal of testing a mod-
ule separately. Extensions to these criteria have been ap-
plied at the integration testing level [2, 8, 10, 15, 20, 34].
These criteria aim at revealing interface faults. They are
based on call graphs and inter-procedural flows. Inter-
procedural associations and paths are the required ele-
ments in integration testing.

When we consider object-oriented software, there are
three levels of testing [9]: a) Intra-method testing, that
tests methods individually; b) Inter-method testing, that
tests public methods together, with other methods in its
class; and c) Intra-class testing, that tests interactionsof
public methods, as they are called in various sequences.
The first level is equivalent to unit testing and the sec-
ond and third ones correspond to the integration testing
of procedural programs.

3. Description of the Experiments
This section describes two experiments with data flow

based criteria that provided data and results pointing out

the relevance of infeasible paths for the application of
these criteria.

Both experiments were conducted using Poketool,
considering the all-potential-uses criterion (PU), and
the all-potential-du-paths criterion (PDU). The programs
were selected from [17], also used in an experiment by
Weyuker [36]. These programs, originally written in Pas-
cal, were translated to C, as Poketool does not support
testing of Pascal programs.

Drivers were built to be as general as possible to avoid
making feasible paths into infeasible ones, since restric-
tions in the input provided by the driver to a program may
inhibit the execution of feasible paths. The experiment
used complete programs instead of stubs, since all the
programs were available. Using stubs instead of complete
programs may generate a higher degree of infeasibility,
due to the usually limited functionality of stubs compared
to that of complete programs. The steps carried out in
both experiments were basically the same:

1. Initial ”ad-hoc” test set generation considering only
functional aspects of the programs;

2. Test set adequacy analysis with respect to the data
flow criteria PU and PDU;

3. Manual identification of infeasible elements;

76

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

4. Generation of test cases to cover the remaining re-
quired elements; and

5. Execution of new test cases until adequacy is
achieved.

The main differences between the two experiments are
discussed next.

3.1. Experiment I [22, 32]
Experiment I is referred to as “Unit testing”. The set of
27 programs listed in Table 1 was used. A driver and
an initial test set for each unit have been used. Table 1
presents the final coverage for each criterion, number of
executed/required elements. The infeasible elements have
been manually determined. For instance, for the program
append, the PU criterion requires 49 associations, but
only 38 were executed because 11 are infeasible; the PDU
criterion requires 43 potential-du-paths, but only 23 are
feasible. Notice that only three of the 27 programs do not
have infeasible elements:archive, dodashandgetcmd.

With the goal of replicating Malevris’ work for data
flow based criteria, the number of predicates of the
potential-du-paths required for all programs in Table 1
were determined. Table 2 shows the number of infeasi-
ble and feasible potential-du-paths withq predicates, with
0 ≤ q ≤ 18. For example, there are 47 potential-du-paths
with 13 predicates, 31 of them infeasible and 16 feasible.

3.2. Experiment II [32]
This experiment is referred to as “Cluster Testing”.

A cluster includes two or more units from Experiment I.
Such clusters are listed in Table 3. Notice that some units
from Experiment I were not used in Experiment II. An
initial “ad-hoc” test case set was generated for a cluster of
units.

For the first unit of each cluster, Experiment II used
the driver used in Experiment I. For the other units inside
a cluster, we used complete programs, that is, we did not
use stubs nor drivers. Some programs used in Experiment
I were selected to study the influence of other contexts on
unit testing. Notice that the programdodashis called in
two different contexts and belongs to two different clus-
ters (see Table 3).

During Step 4, additional test cases were generated to
cover the remaining elements of every unit in each cluster.
Table 3 presents the final coverage obtained. Observe that
the number of required elements ofmakepatandgetfns
inside a cluster is greater due some potential associations
with respect to global variables that are not required when
the unit is tested alone.

Table 1. Experiment I - Main Results
Coverage:

Executed Elem. / Total of Required .Elem.
Unit PU PDU

archive 17/17 17/17
append 38/49 20/43
change 37/38 24/27
ckglob 34/35 20/27
cmp 10/13 9/12

command 44/47 42/61
compare 38/38 34/64
compress 36/39 24/34
dodash 33/33 21/21

edit 110/130 86/346
entab 57/80 29/70

expand 25/39 15/25
getcmd 119/119 119/119
getdef 56/59 40/49
getfn 16/18 13/20
getfns 37/44 25/34
getlist 58/82 38/102
getnum 8/8 7/12
getone 59/62 30/177
gtext 27/33 12/22

makepat 134/207 95/253
omatch 21/33 18/43
optpat 12/13 8/21
spread 54/61 33/47
subst 176/219 87/322

translit 133/139 126/333
unrotate 80/94 41/70

Total 1469/1749 1033/2371

The task of generating test cases to satisfy a criterion
is more difficult when the unit is inside a cluster. Semantic
aspects of different programs make difficult to determine
test cases that cause the execution of a particular path in a
unit inside a cluster. Moreover, notice that the number of
infeasible paths is very high for both experiments: 1338 in
a total of 2371 (56.4%) in Experiment I and 411 in a total
of 880 (46,7%) in Experiment II. If we consider, in Exper-
iment I only the programs used in Experiment II, the per-
centage of infeasible elements found in Experiment II is
greater than that of Experiment I, as some elements could
not be exercised due to the restrictions imposed by the
calling programs. The final coverages obtained for both
experiments are different. In the next section, we discuss
these results and present a classification for infeasibility:
intrinsic and extrinsic.

4. Classification
The infeasibility of a path is related to semantic as-

pects of the program. In the experiments described in the
last section, the infeasible elements were manually de-
termined – a costly, fault-prone and tedious task! This

77

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

Table 2. Number of Predicates in Potential-du-paths of Experiment I

nprd. 0 1 2 3 4 5 6 7 8 9 10 11
infeas. 0 19 40 37 83 109 190 228 105 109 130 111
feas. 19 104 104 101 115 106 117 96 50 44 61 33
Total 19 123 144 138 198 215 307 324 155 153 191 144

npred 12 13 14 15 16 17 18 Total
infeas. 57 31 24 40 14 5 6 1338
feas. 25 16 10 17 8 5 2 1033
Total 82 47 34 57 22 10 8 2371

Table 3. Experiment II - Main Results
Coverage:

Executed Elem. / Total of Required Elem.
Cluster PU PDU
archive 17/17 17/17
getfns 37/45 25/34

command 44/47 42/61
getcmd 119/119 119/119
optpat 12/13 8/21

makepat 133/209 95/253
dodash 33/33 19/21
translit 133/139 126/333
dodash 33/33 18/21
Total 562/655 469/880

section reports the main causes of infeasibility and their
dependences. Based on Hedley and Hennel, the causes
found are classified into three categories:

a. Dependence among predicates in a path: A path
can include two or more predicates which are the same or
are opposite; the evaluation of one implies the evaluation
of the other. For example, in the programgetlist (Figure
1), the predicates of Nodes 9 and 11 are dependent. The
sub-path given by the sequence (9, 10, 11, 13) is infeasi-
ble. If edge (9, 10) is executed, the sequence (9, 10, 11,
12, 13) is also executed.

b. Inconsistent values of variables in a predicate:
A variable in a predicate is defined with a value different
from that which causes the path to be executed. These
paths are classified into two groups:

b1. The predicate is in awhileor repeatstatement. In
this case the variable controls a loop. The variabledonein
the programmakepat(Figure 2) controls the loop headed
by Node 2. Sub-path (13, 15, 17, 18, 19, 20, 21, 23, 2, 3)
is infeasible. At Node 13 the value ofdoneis 1. There are
no definitions ofdonethrough (15, ..., 2); hence, the loop
is exited.

b2. The predicate is in anif or casestatement. The pa-
rameterj in the programdodash(Figure 3) is defined in
makesetwith value 0. Sub-path (1, 2, 3, 5, 7, 9) is infea-
sible, as there is a redefinition ofj through the sequence
(1, .. ,7) and the predicate(j > 0), associated to the edge
(7,9), can not be satisfied.

c. Combinations of the causes from categories
above: The following example illustrates this category.
The sub-path given by the sequence (3, 5, 7, 8, 9, 10,
11) in the programoptpat (Figure 4) is infeasible due
to causes from categoriesa and b2. The string pat
is a global variable initially defined with ENDSTR. If
makepat, called in Node 7, definespat, the edge (10,11)
in optpat is not executed. The loop headed by Node
2 in makepatis executed at least once, when (1,3,5,7)
is executed inoptpat. This is because the predicate of
that loop is dependent on the predicates of edges (3,5)
and (5,7) inoptpat. When these edges are executed the
loop is also executed, since there is a correspondence be-
tween lin[∗i + 1] and arg[i], and betweenlin[∗i] and
delim. The programaddstradds topat a character dif-
ferent from ENDSTR whenj < MAXPAT . As j = 0
andj < MAXPAT whenmakepatbegins, in the first
path through the loop headed by Node 2, Node 13 must
be executed to avoid callingaddstr. But in this first time
i = start and the condition of Node 11 is false. Thus,
there is no way to avoid definingpat in makepatand, con-
sequently, to execute edge (10,11) inoptpat.

An infeasible sequence such as (9, 10, 11, 13), found
in getlist, is called “infeasible pattern” [32]. If a path in-
cludes an infeasible pattern it is infeasible. Determining
infeasible patterns helps the task of determining infeasi-
ble elements; a large number of infeasible elements can
be identified using a pattern. Infeasible patterns can be
classified into the same categories used to classify infea-
sible paths.

Another classification for infeasibility concerns the
context of programs. For example, the number of infeasi-
ble paths found indodashis different in both experiments.

78

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

In Experiment I, all the required elements indodashare
exercised when using the driver. The driver is the main
program in Figure 3. The same does not happen in Ex-
periment II. The number of infeasible elements depends
on the cluster to whichdodashbelongs and on its calling
context.

Differently of the classification proposed by Hedley
and Hennel, we are also interested in the interdependen-
cies among the units being tested. The results of Experi-
ment II leads to the classification of infeasibility of a path
or pattern as intrinsic or extrinsic.Intrinsic Infeasibil-
ity exists independently of the context. It is caused by
internal features. The example used in Categorya (De-
pendence among predicates in a path) is an intrinsic in-
feasibility of getlist. Extrinsic Infeasibility is imposed
by the testing context. Infeasibility may be dependent on
the calling program context. The example used in Cate-
goryb2 is an extrinsic infeasibility ofdodashwith respect
to the calling programmakeset. Infeasibility can also be
dependent on the called program context. The example
used to illustrate Categoryc is an extrinsic infeasibility of
optpatimposed by the called programmakepat.

Table 4 presents a summary of the number of infea-
sible paths and infeasible patterns found in Experiment
II. For example, in the first cluster, there are 9 infeasible
paths and 4 patterns, all ingetfns. They belong to Cate-
gorya and are infeasible due to intrinsic characteristics. It
is possible for a path or pattern to be classified into more
than one category. The result presented concerns the first
cause identified. The most common category of infeasi-
ble paths is Categorya (231 of 411 (56%)) and most of
them were generated by intrinsic features of the unit (348
of 411 (85%)).

5. Prediction
As expected, in the experiments described previously,

it was more difficult to generate test cases to execute a
path with a large number of predicates and to determine
its infeasibility. The greater the number of predicates in
a path the greater the difficulty of satisfying the combina-
tion of these predicates and executing the path. This fact
motivated a study, based on Malevris’ work, to check the
influence of the number of predicates on the infeasibility
of a path. In spite of being intuitive, the influence must be
validated statistically.

To study this influence, polynomial and exponential
models were explored considering the interval1 ≤ q <

12. (Recall thatq is the number of predicates in a path).
Given that only three programs have potential-du-paths
with q ≥ 12, all the potential-du-paths of these programs

were not considered. The study was accomplished us-
ing Table 5, which is different from Table 2, to avoid the
influence of particular characteristics of those three pro-
grams. The first two columns (0 and 1 predicate) were
merged. The values of Table 5 are depicted in Figure 5.
Figure 5 shows the influence of the number of predicates
on the number of infeasible paths. The greater the num-
ber of predicates the greater the percentage of infeasible
paths found in the experiment for1 ≤ q < 12. These re-
sults, however, should be further investigated in a broader
selection of programs.

Malevris et al used paths generated to cover LCSAJ
testing [24]. Our study used potential-du-paths, required
by the all-potential-du-paths criterion. The first step, sim-
ilarly to Malevris’, is to explore the hypothesis,H0, of
the existence of equal proportions of feasible paths for
all q, whereq is the number of predicates.H0 true means
that there is no relation between number of predicates and
feasibility. A χ2 test on data from Table 2 resulted in
χ2

υ(0.005) = 35.718 andυ = 17, whereυ is the number
of degrees of freedom. There is a standardχ2 table and
a valueχ2

υ(α) such that ifχ2 > χ2
υ(α) the hypothesis

H0 can be rejected with probabilityα. From the standard
tableχ2

11(0.005) = 35.718 andH0 can be confidently re-
jected meaning that there is a relation between the number
of predicates of a path and its feasibility.

In the second step, a least squares fitting process of the
function f = keλq gives the modelp = 0.965e−0.160q,
with r2 = 94.4, wherep is the probability that a path
with q predicates is feasible. For further details see [31].

This model validates Malevris’ results within the con-
text of data flow based criteria and shows that the number
of predicates in a path can be used as a metric for predict-
ing its infeasibility. The greater the number of predicates
in a path, the greater the probability of the path be infea-
sible.

The relation between the number of infeasible
potential-du-paths and other characteristics of the pro-
gram being tested has also been studied. These character-
istics are: number of nodes, number of variables and num-
ber of variable definitions. The obtained models show that
all these characteristics influence the number of infeasible
potential-du-paths. These models are described by Mal-
donado [22].

This kind of information is relevant for establishing
strategies to generate data-flow adequate test case sets,
specifically for selecting complete paths associated to a
data-flow required testing element. For instance, a given
strategy may assign a higher priority to paths with a lower
number of predicates, as they have a higher probability
of being feasible, given by the model. To illustrate this

79

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

int getccl(char *arg, int *i, char *pat, int *j)}
{ int k,jstart;

*i = *i + 1;
if (arg[*i]==NEGATE)
{
addstr(NCCL,pat,j,MAXPAT);

*i = *i + 1;
}
else
addstr(CCL,pat,j,MAXPAT);

jstart = *j;
addstr(’0’,pat,j,MAXPAT);
dodash(CCLEND,arg,i,pat,j,MAXPAT);
k = *j-jstart-1;
pat[jstart] = k;
return(arg[*i] == CCLEND);

}

int makepat(char *arg, int start, int delim, char *pat)
/* 1 */ { int i,j,lastj,lj,done;
/* 1 */ j = 0; i = start; lastj = 0; done = 0;
/* 2 */ while((!done)&&(arg[i]!=delim)&&(arg[i]!=ENDSTR))
/* 3 */ { lj = j;
/* 3 */ if (arg[i]==ANY)
/* 4 */ addstr(ANY,pat,&j,MAXPAT);
/* 5 */ else if ((arg[i]==BOL)&&(i==start))
/* 6 */ addstr(BOL,pat,&j,MAXPAT);
/* 7 */ else if ((arg[i]==EOL)&&(arg[i+1]==delim))
/* 8 */ addstr(EOL,pat,&j,MAXPAT);
/* 9 */ else if (arg[i]==CCL)
/* 10 */ done = getccl(arg,&i,pat,&j);
/* 11 */ else if((arg[i]==CLOSURE)&&(i>start))
/* 12 */ {lj = lastj;
/* 12 */ if((pat[lj]==BOL)||(pat[lj]==EOL)

|| (pat[lj] == CLOSURE))
/* 13 */ done = 1;
/* 14 */ else
/* 14 */ stclose(pat,&j,lastj);
/* 15 */ }
/* 16 */ else
/* 16 */ { addstr(LITCHAR,pat,&j,MAXPAT);
/* 16 */ addstr(esc(arg,&i),pat,&j,MAXPAT);
/* 16 */ }
/* 17 end if 11 */
/* 18 end if 9 */
/* 19 end if 7 */
/* 20 end if 5 */
/* 21 end if 3 */
/* 21 */ lastj = lj;
/* 21 */ if (!done)
/* 22 */ i++;
/* 23 */ }
/* 24 */ if ((done)||(arg[i]!=delim))
/* 25 */ return -1;
/* 26 */ else if (!addstr(ENDSTR,pat,&j,MAXPAT))
/* 27 */ return -1;
/* 28 */ else
/* 28 */ return (i);
/* 29 */ }

Figure 2. Program Makepat

80

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

void dodash(int delim, char * src, int * i, char * dest, int * j, int maxset)}
/* 1 */ { int k;
/* 2 */ while((src[*i]!=delim)&&(src[*i]!=ENDSTR))
/* 3 */ { if (src[*i]==ESCAPE)
/* 4 */ addstr(esc(src,i),dest,j,maxset);
/* 5 */ else if (src[*i]!=DASH)
/* 6 */ addstr(src[*i],dest,j,maxset);
/* 7 */ else if ((*j<=0)||(src[*i+1]==ENDSTR))
/* 8 */ addstr(src[*i],dest,j,maxset);
/* 9 */ else if ((isalnum(src[*i-1]))&&(isalnum(src[*i+1]))

&& (src[*i-1]<=src[*i+1]))
/* 10 11 12 */ { for (k = src[*i-1]+1;k<=src[*i+1]; k++)
/* 12 */ addstr(k,dest,j,maxset);
/* 13 */ *i = *i + 1;
/* 13 */ }
/* 14 */ else
/* 14 */ addstr(DASH,dest,j,maxset);
/* 15 end if 9 */
/* 16 end if 7 */
/* 17 end if 5 */
/* 18 end if 3 */
/* 18 */ *i= *i + 1;
/* 18 */ }
/* 19 */ }

void main(int argc, char *argv[])
{ int i,j;
char str[MAXSTR], dest[MAXSTR];
if (argc<=3)
{ printf("Erro numero de argumentos");
exit(1);

}
strcpy(str,argv[1]);
i = atoi(argv[2]);
j = atoi(argv[3]);
dodash(ENDSTR,str,&i,dest,&j,MAXSTR);
dest[j] = ENDSTR;
puts(dest);

}

Figure 3. Program Dodash

81

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

Table 4. Infeasible Paths Found in Experiment II
Cluster # Infeas./ Infeasibility: # Path/ #Patterns

Req.Elem. Category Dependence
(%) a b1 b2 c intrsc. extr.-

called
extr.-
calling

archive 0/17
0%

getfns 9/34 9/4 9/4
26.47%

command 19/61 19/4 16/3 3/1
31.1%

getcmd 0/119
0%

optpat 13/21 9/6 4/1 9/6 4/1
56%

makepat 158/253 114/12 14/1 18/5 12/4 156/21 2/1
62.45%

dodash 2/21 2/1 2/1
10%

translit 207/333 89/2 63/2 55/5 156/6 51/3
62.76%

dodash 03/21 3/1 3/1
14.29%

Total 411/880 231/22 14/1 95/22 71/10 348/40 56/5 7/3
46.7%

aspect, consider again programoptpat in Figure 4. The
association< 1, (10, 11), lin > is required by the all-
potential uses criterion. The paths candidate to cover that
association are given in Table 6, which also presents the
number of predicates in each path and its probability of
being feasible, given by the exponential model. Using the
strategy “fewer number of predicates”, one of the paths
with p = 0.60, that is, with higher probability of be-
ing feasible, would be selected. Notice that this strategy
avoids selecting the infeasible paths: (1, 3, 5, 7, 8, 9, 10,
11, 12, 13, 15) and (1, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15).

6. Identification
Determining infeasibility of an element required by a

structural criterion is an undecidable question. Based on
Frankl’s work and on the experience conducting experi-
ments with testing criteria an extension to Poketool was
proposed. This extension helps the identification and au-
tomatic elimination of infeasible elements.

Figure 6 presents a simplified module diagram of
Poketool.Poketoolmodule translates the source code into
an intermediate language which allows abstract informa-
tion on the control flow of the program; the program graph
is generated from this intermediate language representa-
tion. Poketoolmodule also analyses the code and gen-
erates the list of required elements and the instrumented
program.

Pokeexecmodule executes the executable program
with test cases provided by the tester and produces the ex-
ecuted paths.Pokeadeqmodule does the adequacy analy-
sis with respect to a chosen criterion and generates the list
of unexercised elements and a coverage measure.

To deal with infeasibility two new modules were pro-
posed:PokeheurisandPokepattern. Pokeheurishelps the
task of determining infeasible potential associations using
Frankl’s heuristics.Pokepatternmanipulates infeasibility
patterns and eliminates infeasible elements from the list
of required elements.

Frankl’s heuristics are applied to check the infeasibil-
ity of a given association. To apply Frankl’s heuristics,
first we determine all the paths candidate to cover an asso-
ciation. Next, we try eliminating the infeasible candidate
paths by analysing the loops in the program. If a loop is
executed at least once and all the paths through this loop
that redefine the predicate variables also redefine the vari-
ables of the association, there will be no paths covering
the association; all the paths can be eliminated and the as-
sociation is infeasible. For other cases, nothing about the
association infeasibility can be concluded.

For example, consider the control flow graph of pro-
gramgetlistin Figure 1 and the association(1, 10, line2).
The variables defined in each node are presented in the
graph. The loop headed by Node 2 is executed at least
once because(!done) is true in Node 1; hence, (1, 2,
9, 10) is infeasible. All the remaining paths candidate
to cover this association include paths through the loop

82

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

stcode optpat(char *lin, int *i)
/* 1 */ { if (lin[*i]==ENDSTR)
/* 2 */ *i = -1;
/* 3 */ else if (lin[*i+1] == ENDSTR)
/* 4 */ *i = -1;
/* 5 */ else if (lin[*i+1]==lin[*i])
/* 6 */ *i = *i + 1;
/* 7 */ else
/* 7 */ *i = makepat(lin,*i+1,lin[*i],pat) ;
/* 8 end if 5 */
/* 9 end if 3 */
/* 10 */ if (pat[0]==ENDSTR)
/* 11 */ *i = -1;
/* 12 */ if (*i==-1)
/* 13 */ { pat[0] = ENDSTR;
/* 13 */ return ERR;
/* 13 */ }
/* 14 */ else
/* 14 */ return OK;
/* 15 */ }

Figure 4. Program Optpat

Table 5. Number of Predicates in Potential-du-paths with1 ≤ q < 12

nprd 1 2 3 4 5 6 7 8 9 10 11 12 Total

infeas. 19 40 37 78 91 140 156 57 49 22 36 0 725

feas. 78 78 74 87 76 78 52 25 15 16 0 0 598

Total 97 118 111 165 167 218 208 82 64 38 36 0 1323

83

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

Figure 5. Number of Predicates and Percentage of Infeasible Paths

Table 6. Paths to Cover the Association<1,(10,11),lin>

Path number of Probability
predicates p

(1, 2, 10, 11, 12, 14, 15) 3 0.60
(1, 2, 10, 11, 12, 13, 15) 3 0.60
(1, 3, 4, 9, 10, 11, 12, 14, 15) 4 0.50
(1, 3, 4, 9, 10, 11, 12, 13, 15) 4 0.50
(1, 3, 5, 6, 8, 9, 10, 11, 12, 14, 15) 5 0.43
(1, 3, 5, 6, 8, 9, 10, 11, 12, 13, 15) 5 0.43
(1, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15) 5 0.43
(1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15) 5 0.43

headed by Node 2. All of them can be eliminated as all
paths inside that loop redefining the variabledonein the
predicate in Node 2 also redefine the variableline2. Thus,
the association is infeasible.

Pokeheurisuses data generated byPoke-toolmodule
such as symbolic information about the program, mainly
about the predicates, and paths that are candidates to
cover an association. If modulePokeheuriscan conclude
something about such infeasibility the association is an
infeasibility pattern and the modulePokepatternis called.
If the tester identifies an infeasible pattern, he can provide
this information to thePokepatternmodule.Pokepattern,
for an infeasible pattern and a criterion, identifies the in-
feasible required elements and updates the coverage re-
sult.

7. Infeasibility in a Broader Data-Flow-
Based Context

The same problems concerning infeasibility in the unit
and cluster testing appear when applying data-flow based
testing in a broader context such as integration testing, test
of web applications, parallel and object-oriented software
testing, and specification testing.

sourcecode

program executed paths

required elements

simbolic
program

pattern

criterion

paths

potential

coverage

criterion

test cases

Poketool

Pokeexec
instrumented

Pokeheuris

Pokeadeq

Pokepattern infeasible elements

candidate

pattern
association

remaining elements

Figure 6. Poketool Modules

Based on a preliminary study, we claim that all the
background, concepts and information available at the
unit testing phase and all the results obtained with the ex-
periments described herein are relevant and can be taken
into consideration to reduce the effort and overcome the
limitations imposed by infeasibility in a broader data-
flow-based testing context. This section illustrates our
claim for integration and object-oriented testing.

7.1. Inter-procedural Infeasibility
An inter-procedural association or path is infeasible

if there is no complete feasible inter-procedural path that
covers it. Any inter-procedural path that contains an in-
trinsic or extrinsic infeasible pattern is also infeasible.

Consider again programsmakesetanddodash(Figure
3). Variablej is defined in Node 1 (1m in makeset) and
used in Node 12 (12d in dodash). An inter-procedural
association< 1m, 12d, j > is required but it is infeasible.
All paths that would cover it are infeasible because they

84

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

necessarily include the infeasible sequence (1, 2, 3, 5, 7,
9) intrinsic to programdodash.

The same classification of infeasibility proposed for
unit testing can be used for integration testing. Infeasi-
bility is generated by the same basic causes identified at
the unit level, presented previously, or by a composition
of them.

Concerning prediction, it is expected that if Malevris’
hypothesis holds at the unit level it also holds at the in-
tegration level. New studies are being carried out in this
direction.

Concerning identification of infeasibility, the heuris-
tics proposed by Frankl can also be applied to determine
infeasible inter-procedural associations. An example of
their application at the integration level can be extracted
from Figure 1. In Node 1, the global variablenlinesis de-
fined and can be used in the program that callsgetlist;
an inter-procedural association is established. All the
inter-procedural candidate paths that include pattern (1,
2, 9) can be eliminated; thus, the set of candidate paths
is empty and the infeasibility of the association is estab-
lished.

7.2. Infeasibility in Object Oriented Software
To test object-oriented software according to Harold

and Rothermel [9], we have to cover associations in the
following levels: intra-method, inter-method and intra-
class.

The intra-method testing is equivalent to unit testing
and the correspondence is direct. Intra-methods and intra-
class testing occur during the integration of classes. In
the same way, the causes of infeasibility and the cate-
gories presented in Section 4 are valid. Consider the
example of Figure 7, extracted from [9]. The example
contains a part of the class description ofSymbolTable
and its class call graph. In the intra-method testing each
unit is tested separately. To perform inter-method test-
ing on theAddtoTablemethod we integrate the meth-
odsAddSymbol, Lookup, AddInfo, GetSymbol, Hash, and
test several calls toAddTable. For intra-class testing, we
may select test sequences such as<SymbolTable, Ad-
dTable, GetfromTable> and <SymbolTable, AddTable,
AddTable>.

Consider these sequences to illustrate infeasi-
bility and the intra-class association definition-use
<3,(8,9),numentries>. The association needs to be cov-
ered in the first call ofAddTable, asnumentriesis always
redefined in a second call toAddTable. Thus, the feasi-
bility of this association depends on the context of the
method (or main program) that uses the sequences. If
tablemax >= 0 the association is infeasible (causea,

public class SymbolTable {
/* 1 */ private TableEntry table[];
/* 2 */ private int numentries, tablemax;
/* 3 */ public SymbolTable (int m)
/* 4 */ { tablemax = m;
/* 5 */ numentries = 0;
/* 6 */ table = new TableEntry[tablemax];
/* 7 */ }

...
public int AddTable(char symbol,char[] syminfo)
{ int index;

/* 8 */ if (numentries<tablemax)
/* 9 */ { if (Lookup(symbol,index)==FOUND)
/* 10 */ return NOTOK;
/* 11 */ AddSymbol(symbol,index);
/* 12 */ AddInfo(syminfo,index);
/* 13 */ numentries++;
/* 14 */ return OK;
/* 15 */ }
/* 16 */ return NOTOK;

}
...
}

SymbolTable AddtoTable

AddSymbol GetInfo

GetfromTable

GetSymbolAddInfo

Hash

Lookup

Figure 7. Class SymbolTable

extrinsic).

8. Conclusions
This work concerns the issue of infeasible paths and

structural testing, mainly data flow based testing. The
described experiments show that most studied programs
have infeasible paths.

Thus, facilities to deal with these aspects and to reduce
the effect of infeasible paths on the testing activity are
necessary.

Given these facts, infeasibility issues in the context of
data flow based testing have been deeply investigated con-
sidering three basic research topics: classification, predic-
tion and identification. These points have been addressed
in the scope of unit testing as well as of integration and
object-oriented software testing. Moreover, an extension
to Poketool to provide facilities to deal with infeasible
paths has been briefly presented.

85

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

The knowledge and information summarized in this
paper can provide a good feedback to software devel-
opment. For instance, the classification of infeasibility
causes provides information for determining heuristics to
eliminate infeasible paths as well as guidelines for pro-
gram writing. Based on the main causes of infeasibil-
ity some guidelines can be established: 1) “Be careful
about using a particular predicate more than once”; 2) “Be
careful with definitions and consequent testing of control-
loop variables”; and so on. Other contributions are intrin-
sic and extrinsic infeasibility and infeasible patterns pro-
posed in this paper, since they are useful information in
the context of software production and reuse and ease the
automatic identification of infeasible paths.

Infeasible patterns permit to determine the infeasibil-
ity of a great number of elements. They capture semantic
aspects of the program that can be used in regression and
integration testing. Intrinsic patterns can be used in the
integration of a program (method or process) with other
programs. They are always valid, even if changes occur
in the called or calling programs; they will be changed
only if the unit (method or process) changes. It is a fact, a
knowledge associated to the unit, that eases the task of au-
tomatically eliminating the infeasible elements, once the
tester discovers an infeasible pattern.

The obtained results statistically validate the influence
of the number of predicates of a path on its feasibility for
1 ≤ q < 12 (whereq is the number of predicates in a
path). Further studies are needed to investigate Malevris’
hypothesis for programs containing paths withq ≥ 12.
A module namedPokepaths, which generates paths can-
didate to cover an element required by a given criterion
supported by Poketool was developed.Pokepathscon-
sider the number of predicates to select paths. We intend
to implement Frankl’s heuristics, as well as other facili-
ties, to determine infeasibility in the integration level and
in other data-flow based contexts.

In summary, the results presented in this paper con-
tribute to the planning of the testing activity and to the
establishment of testing strategies. For instance, the ap-
plication of a context-independent unit testing strategy,
similar to Experiment I, is very important: 1) you may
exercise a greater number of required elements; and 2)
you acquire more knowledge about the unit. The knowl-
edge about infeasible elements and infeasible patterns can
be used for unit cluster testing, where determining infea-
sibility is more difficult. It may also contribute to reduce
costs in the debugging and maintenance phases and in re-
gression testing.

References
[1] H. Agrawal and et al. Mining systems tests to aid

software maintenance.IEEE Computer, 31(7):64–
73, July 1998.

[2] D. Callahan. The program summary graph and flow-
sensitive interprocedural data flow analysis. InPro-
ceedings of the SIGPLAN’88 Conference on Pro-
gramming Languages, Design and Implementation,
pages 47–56. Atlanta - Georgia, 22-24, June 1986.

[3] A. Carniello.Teste Baseado na estrutura de casos de
uso. Master Thesis, DCA/FEEC/Unicamp, Febru-
ary 2003. (in Portuguese).

[4] M.L. Chaim. POKE-TOOL - Uma Ferramenta para
Suporte ao Teste Estrutural de Programas Baseado
em Ańalise de Fluxo de Dados. Master Thesis,
DCA/FEEC/Unicamp, Campinas - SP, Brazil, April
1991. (in Portuguese).

[5] M. B. Dwyer, L.A. Clarke, J. M. Cobleigh, and
G. Naumovich. Flow analysis for verifying proper-
ties of concurrent software systems.ACM Trans. On
Software Engineering and Methodology, Vol 13(4),
October 2004.

[6] F.G. Frankl. The use of Data Flow Information for
the Selection and Evaluation of Software Test Data.
PhD Thesis, Department of Computer Science, New
York University, New York, U.S.A., October 1987.

[7] S. Fujiwara, G. v. Bochmann, F. Khendek,
M. Amalou, and A. Ghedamsi. Test selection based
on finite state models.IEEE Trans. on Soft. Engin.,
Vol 17(6), June 1991.

[8] A. Haley and S. Zweben. Development and applica-
tion of a white box approach to integration testing.
The Journal of Systems and Software, 4:309–315,
1984.

[9] M.J. Harrold and G. Rothermel. Performing data
flow on classes. InACM-SIGSOFT, pages 154–163.
New Orleans-USA, December 1994.

[10] M.J. Harrold and M.L. Soffa. Selecting and using
data for integration testing.IEEE Software, Vol.
8(2):58–65, March 1980.

[11] D. Hedley and M.A. Hennell. The causes and effects
of infeasible paths in computer programs. InPro-
ceedings of VIII International Conference on Soft-
ware Engineering, pages 259–266. UK, 1985.

86

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

[12] W.E. Herman. Flow analysis approach to program
testing. The Australian Computer Journal, Vol.
8(3):259–266, November 1976.

[13] R.M. Hierons, T.-H. Kim, and H. Ural. On the testa-
bility of SDL specifications. Computer Networks,
44(5):681–700, October 2004.

[14] J.R. Horgan and S. London.ATAC- Automatic Test
Coverage Analysis for C Programs. Bellcore Inter-
nal Memorandum, June 1990.

[15] Z. Jin and A. J. Offut. Integration testing based
on software couplings. InProceedings of the X
Annual Conference on Computer Assurance (COM-
PASS 95), pages 13–23, Gaithersburg, Maryland,
January 1995.

[16] P. Jorgesen and C. Erickson. Object oriented inte-
gration.Communications of the ACM, 9, September
1994.

[17] B.W. Kernighan and P.J. Plauger.Software Tools
in Pascal. Addison-Wesley Publishing Company
Reading, Massachusetts - USA, 1981.

[18] Y.W. Kim. Efficient use of code coverage in large-
scale software development. InProceedings of the
2003 conference of the Centre for Advanced Stud-
ies on Collaborative research, pages 145–155. IBM
Press, Toronto-Canada, 2003.

[19] J.W. Laski and B. Korel. A data flow oriented
program testing strategy.IEEE Transactions on
Software Engineering, Vol. SE-9(3):347–354, May
1983.

[20] U. Linnenkugerl and M. Mullerburg. Test data se-
lection criteria for (software) integration testing. In
Proceedings of the First International Conference
on Systems Integration, pages 709–717. IEEE Press,
Morristown, New Jersey, April 1990.

[21] C.H. Liu, D.C. Kung, P. Hsia, and C.T. Hsu. Struc-
tural testing of web applications. In11th Interna-
tional Symposium on Software Reliability Engineer-
ing, pages 84–96. IEEE Press, 2000.

[22] J.C. Maldonado.Critérios Potenciais Usos: Uma
Contribuiç̃ao ao Teste Estrutural de Software. Doc-
torate Dissertation, DCA/FEEC/Unicamp, Camp-
inas - SP, Brazil, July 1991. (in Portuguese).

[23] J.C. Maldonado, M.L. Chaim, and M. Jino. Bridging
the gap in the presence of infeasible paths: Poten-
tial uses testing criteria. InXII International Con-
ference of the Chilean Computer Science Society,
pages 323–340. Santiago, Chile, October 1992.

[24] N. Malevris, D.F. Yates, and A. Veevers. Predictive
metric for likely feasibility of program paths.Infor-
mation and Software Technology, Vol. 32(2):115–
118, March 1990.

[25] V. Martena, A. Orso, and M. Pezze. Interclass test-
ing of object oriented software. InInternational
Conference on Engineering of Complex Computer
Systems (ICECCS’01), pages 135–144. IEEE Press,
Maryland- USA, December 2002.

[26] T. McCabe. A software complexity measure.IEEE
Transactions on Software Engineering, Vol. SE-
2(4):308–320, December 1976.

[27] S.C. Ntafos. On required element testing.
IEEE Transactions on Software Engineering, SE-
10(6):795–803, November 1984.

[28] S. Rapps and E.J. Weyuker. Selecting software test
data using data flow information.IEEE Transactions
on Software Engineering, SE-11(4):367–375, April
1985.

[29] F. Ricca and P. Tonella. Analysis and testing of
web applications. In23rd International Conference
on Software Engineering (ICSE’01), pages 25–34.
IEEE Press, Toronto-Canada, May 2001.

[30] H. Ural and B. Yang. A structural test selection cri-
terion. Information Processing Letters, 28(3):157–
163, July 1988.

[31] S.R. Vergilio. Caminhos Ñao Execut́aveis:
Caracterizaç̃ao, Previs̃ao e Determinaç̃ao para Su-
porte ao Teste de Programas. Master Thesis -
DCA/FEEC/Unicamp, Campinas - SP, Brazil, Jan-
uary 1992. (in Portuguese).

[32] S.R. Vergilio, J.C. Maldonado, and M. Jino. Infea-
sible paths within the context of data flow based cri-
teria. In VI International Conference on Software
Quality, pages 310–321. Ottawa-Canada, October
1996.

[33] S.R. Vergilio, S.R.S. Souza, and P.S.L. Souza. Cov-
erage testing criteria for message passing parallel
programs. InIEEE Latin American Test Work-
shop (LATW’05), pages 161–166. Salvador -Bahia,
Brazil, March 2005.

87

Silvia Regina Vergilio, Jos é Carlos Maldonado,
Mario Jino

Infeasible Paths in the Context of Data Flow Based
Testing Criteria: Identification, Classification and

Prediction

[34] P. Vilela, J.C. Maldonado, and M. Jino. Data flow
based integration testing. InXIII Brazilian Sympo-
sium on Software Engineering, pages 393–409. Flo-
rianópolis, SC, Brazil, October 1999.

[35] E.J. Weyuker. An empirical study of the complex-
ity of data flow testing. InProceedings of the Sec-
ond Workshop on Software Testing, Verification and
Analysis, pages 188–195. Computer Science Press,
Banff - Canada, July 1988.

[36] E.J. Weyuker. The evaluation of program-based
software test data adequacy criteria.IEEE Transac-
tions on Software Engineering, Vol. SE-16(2):121–
128, February 1988.

[37] E.J. Weyuker. More experience with data flow test-
ing. IEEE Transactions on Software Engineering,
Vol. SE-19(3):914–919, September 1993.

[38] L.J. White and E.I. Cohen. A domain strategy for
computer program testing.IEEE Transactions on
Software Engineering, Vol. SE-6(3):247–257, May
1980.

[39] R-D. Yang and C-G. Chung. Path analysis testing
of concurrent programs.Information and Software
Technology, 34(1):101–130, January 1992.

88

