
5

A Systematic Approach for Structuring

Exception Handling in Robust

Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,
Vinicius Asta Pagano and Cecília Mary F. Rubira

Institute of Computing - State University of Campinas (UNICAMP)
P.O. Box 6176. CEP 13084-971, Campinas, SP, Brazil.

{fernando, asterio, cmrubira}@ic.unicamp.br, vinicius.pagano@eldorado.org.br

Abstract
Component-based development (CBD) is recog-

nized today as the standard paradigm for structuring large
software systems. However, the most popular component
models and component-based development processes pro-
vide little guidance on how to systematically incorporate
exception handling into component-based systems. The
problem of how to employ language-level exception han-
dling mechanisms to introduce redundancy in component-
based systems is recognized by CBD practitioners as very
difficult and often not adequately solved. As a conse-
quence, the implementation of the redundant exceptional
behaviour causes a negative impact, instead of a positive
one, on system and maintainability. In this paper, we pro-
pose an approach for the construction of dependable com-
ponent-based systems that integrates two complementary
strategies: (i) a global exception handling strategy for
inter-component composition and (ii) a local exception
handling strategy for dealing with errors in reusable com-
ponents. A case study illustrates the application of our
approach to a real software system.

Keywords: Exceptional behaviour, Fault-tolerant
component, Software fault tolerance, Component-based
development.

1 INTRODUCTION

Component-based development (CBD)[36] is em-
ployed today to build large software systems, such as
commercial and financial information systems with high
dependability requirements. The central tenet of CBD is
that software systems should be built by integrating pre-

existing reusable software components, which may be de-
veloped by different organizations. A direct implication of
this notion is the separation in time and space between
component development and system integration. On the
one hand, developers of reusable software components do
not have full knowledge of the different contexts in which
the components will be used. On the other hand, system
integrators usually have limited access to the internal de-
sign and source code of these components. The construc-
tion/integration dichotomy leads to mismatches[13] between
assumptions made by different components of an
assembled system. Techniques for dealing with mismatches
related to the functional properties of a system, such as
wrappers and mediators[13], are in widespread use. However,
mismatches related to conflicting assumptions regarding
the behaviour of components when they deviate from their
specifications (exceptional or abnormal behaviour) are not
well understood. Failure to take the exceptional behaviour
of components into account when building a component-
based system compromises the analysability of the
assembled system and its overall dependability.

Exception handling[8] is a well-known mechanism
for introducing forward error recovery[1] in software
systems. Many important object-oriented programming
languages, such as Java, C++, and C# have incorporated
this mechanism. In traditional software development, a large
part of the code of a reliable software system is dedicated to
detection and handling of exceptions[8]. However, this
redundant part of the code is usually the least understood,
tested, and documented. In component-based development,
a similar phenomenon can be observed. Developers of large
systems based on the J2EE platform[35], one of the de facto

6

standards in the industry for CBD, have habits concerning
the use of exception handling that make applications more
vulnerable to faults and harder to maintain[28].

The lack of systematic approaches for structuring
the exceptional behaviour of component-based applications
is an important factor that contributes to this situation. Ex-
isting component-based development processes, such as
Catalysis[10] and UML Components[6], focus almost ex-
clusively on the system’s normal behaviour. There are some
proposals in the literature for extending such processes
with activities for designing the exceptional behaviour of
component-based systems[2,29,40]. However, these
proposals do not address the translation of the obtained
design down to the implementation level of a component-
based system. Also, the most popular component models,
such as EJB (Enterprise Java Beans)[34] and .NET[24] rely
almost entirely on the exception handling system (EHS) of
the target programming language, providing little guidance
about how to better incorporate exception handling into
their component-based applications.

The proper use of an EHS requires a consistent strat-
egy for defining exception types and allocating respon-
sibilities to exception handlers. Structuring exception
handling is even more difficult for developers of compo-
nent-based systems, due to the construction/integration
dichotomy as discussed earlier.

When integrating software components to build de-
pendable systems, it is of critical importance to resolve
conflicts between the exceptional behaviour of the reusable
components and the intended exceptional behaviour of the
assembled system. When these conflicts are not solved,
they may result in undesirable situations, such as: (i) the
context and/or semantics of an exception raised by a
component are lost, making it difficult for other components
to handle it; or (ii) an exception may simply be ignored,
leading to the propagation of errors throughout the system.
Our practical experience in component-based mentoring for
various Brazilian companies has shown us that, in practice,
this is a recurring problem and motivated us to devise a
general exception handling approach for component-based
software systems.

In this paper, we propose a strategy for structuring
exception handling in dependable component-based soft-
ware systems. The proposed strategy is based on an abstract
exception type hierarchy and the definition of different kinds
of handlers with clearly pre-defined responsibilities.
Component developers use the abstract exception type
hierarchy to derive concrete exception types that preserve
the semantics of a small set of generic exception types.
These generic types are used by the system integrator to
define an exception handling strategy for the integrated
system that is not dependent of any particular

implementation of its components. The different kinds of
handlers promote separation of concerns between local
(component-specific) and global (architectural) exception
handling policies. The proposed strategy is based on two
different and complementary views on exception handling.
The first view is that presented by Flaviu Cristian in a classic
article formally describing the termination model of
exception handling in sequential programs[8]. The second
is Bertrand Meyer’s view, presented as part of the Design-
by-Contract[20] methodology.

Our approach could be integrated within a typical
component-based development process. The main re-
quirement for this integration is the a priori execution of
activities for defining the failure hypotheses of the system
and designing the exceptional behaviour to be implemented.
The execution of these tasks is not considered to be trivial
and, in the literature, there are several works that address
them[2,29,40]. We consider these works complementary to
ours.

Our ultimate goal is to provide component develop-
ers and system integrators with a set of design and
implementation guidelines that allows them to better
structure the exceptional behaviour of the systems they
build. In this manner, the impact of exceptional behaviour
on the overall system complexity is reduced and the resulting
system is both more reliable and easier to maintain.
Furthermore, these guidelines should be easy enough to be
applied to systems that do not have strict dependability
requirements, and flexible enough to be used in conjunction
with more sophisticated software fault tolerance
mechanisms, such as design diversity[1].

The rest of this paper is organized as follows. Sec-
tion 2 presents some related work, while Section 3 provides
some background on exception handling, software archi-
tecture[30], and component-based development processes.
Section 4 presents the strategy for exception handling from
the perspective of both system integrators and component
developers. In Section 5 we describe some of the lessons
learned from a real-world case study. Section 6 presents
concluding remarks and ideas for future work.

2 RELATED WORK

Software fault tolerance at the architectural level is a
young research area that has recently gained considerable
attention. Some approaches based on the idea of design
diversity[1] have been developed in the context of reliable
evolution of component-based distributed systems.
Hercules framework[7] and Multi-Versioning Connectors[27]
are approaches that maintain old and new versions of
components working concurrently, in order to guarantee
that the expected service is provided, even if there are faults

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

7

in the new versions. The guidelines described in Section
4.3 for handling exceptions at the architectural level are
based on these two approaches.

Other possible approach for building fault-tolerant
component-based systems is to employ exception handling
at the architectural level, as suggested by some authors in
the literature[3,16,18]. The work by Issarny and Banâtre[18]
describes an extension to existing architecture description
languages[21] for specifying configuration exceptions,
which are exceptions raised due to violations of architectural
invariants. Guerra et al[16] have proposed an approach for
architecting fault-tolerant component-based systems based
on a specific architectural style. Castor et al[3] have pro-
posed an EHS addressing specific concerns of component-
based systems, at the architectural level, also focusing on a
specific architectural style. These works differ from our
present work in the sense that they do not attempt to inte-
grate architectural-level and implementation-level exception
handling. Architectural-level exception handling is not a
replacement for implementation-level exception
handling[3,18]. The two techniques are complementary and
should be employed synergistically in order to achieve best
results. To the best of our knowledge, however, no attempts
have previously been made to devise a general strategy for
structuring component-based systems taking into account
both architectural-level and implementation-level exception
handling.

There are some works in the literature describing
guidelines for structuring exception handling in object-
oriented software systems[9,32]. In general, these works do
not focus on CBD and do not try to bridge the gap between
architectural-level and implementation-level exception
handling. In spite of this, they do provide valuable advice,
which has been taken into account for the elaboration of
the approach proposed in this paper.

More closely related to DBC, is the work of
Shenoy[31] that discusses best practices in EJB exception
handling. The main goal of Shenoy’s work is faster problem
resolution and it is based on the backward error recovery
capabilities provided by EJB containers. In contrast, our
main goal is a basis for forward error recovery and fault-
tolerance that is not dependent on any specific component
framework.

Vecellio[38] motivates the creation of techniques to
assess the reliability of off-the-shelf (OTS) components.
The author argues that traditional techniques for assuring
the reliability of software systems are not effective for
component-based systems. Meyer[23] reinforces these ideas
and discusses the concept of trusted components. The
author states that the elaboration of extensive techniques
for demonstrating the quality of reusable components,
together with the construction of a large set of trusted

components, has the potential to change the way systems
are developed. This viewpoint is complementary to ours.

Also related to our work, in the area of dependabil-
ity benchmarking, it is possible to estimate the dependabil-
ity of certain types of OTS components[19]. However, it is
still difficult to predict how components built by different
organizations will behave together when integrated into a
new system.

3 BACKGROUND

3.1 EXCEPTION HANDLING

The complexity introduced by fault tolerance in soft-
ware systems motivated the development of a well-known
style of system structuring known as idealised fault-toler-
ant component (IFTC)[1]. An idealised fault-tolerant
component is a piece of software (a class, module, com-
ponent, or a whole system) where the parts responsible for
normal and exceptional activities are separated and well
defined. Figure 1 presents the structure and flow of control
of the IFTC. Upon receipt of a service request, an IFTC
produces three types of responses: normal responses in
case the request is successfully processed, interface
exceptions in case the request is not valid, and failure
exceptions, which are produced when a valid request is
received but cannot be successfully processed.

Exception handling is a very popular technique for
incorporating fault tolerance into software systems. It al-
lows developers to structure the redundant code that is
added to deal with the exceptional conditions that may
occur, separating it from the code responsible for the normal
operating flow. An exceptional condition is signalled by
means of an exception that is raised by the normal code.
When this occurs, the underlying EHS interrupts the normal
flow and transfers the control to an appropriate exception
handler, which can deal with the exceptional conditions

Figure 1. Idealised fault-tolerant component[1]

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

8

associated with the type of the exception raised. Handling
contexts are regions of the code in which exceptions of the
same type are treated in the same way.

In [8], Flaviu Cristian presents a synthesis of the
termination exception-handling paradigm for sequential
programs. The exception handling systems of C++, Java,
and C# adhere to this model of exception handling. The
Design by Contract approach[22] provides a different view
of exception handling, which is supported by the Eiffel
language.

The main focus of Cristian’s approach is robustness,
which is a means to achieve fault tolerance. A robust pro-
gram should be prepared to handle all possible inputs, in
conformance to a specification. A program may terminate
normally, at its standard exit point, or exceptionally, at one
of its exceptional exit points. In the second case, an
exception should be signalled. A program specification
defines the standard exit point and zero or more declared
exceptional exit points. A declared exceptional exit point
corresponds to an abnormal condition that is anticipated
by the designers. There may also be undeclared excep-
tional exit points, which result from unanticipated abnormal
conditions (or design faults). An undeclared exceptional
exit point is signalled by an undeclared exception.

The main goal of the Design by Contract approach
is correctness, that is, it focuses on avoiding faults, not
tolerating them. A routine should not be prepared to handle
all possible inputs, but only those specified by the pre-
condition of its contract. A routine has a single contract
that specifies a single exit point. This exit point is taken
whenever the routine succeeds to fulfil its contract. Ex-
ceptions are only used to signal design faults, which are
detected by means of executable assertions that describe
the contracts.

3.2 SOFTWARE ARCHITECTURE

The architecture of a software system shows how
the system is realized by a collection of components and
the interactions among them[30]. The building blocks of an
architectural description are components, connectors, and
architectural configurations. A component is a unit of
computation or a data store. Therefore, components are
loci of computation and state. Connectors are architectural
building blocks used to model interactions among
components and rules that govern those interactions.
Architectural configurations, or topologies, are connected
graphs of components and connectors that describe
architectural structures[21].

The realization of abstract software architectures re-
quires concrete implementations, which raises the question
about conformance of an implementation to the intended

architecture. To be effective, solutions at the architectural
level must be correctly mapped to the implementation level.
It is not trivial to guarantee this conformance, since there is
a semantic gap between the abstractions defined by software
architecture, namely, architectural components and
connectors, and the abstractions supported by mainstream
object-oriented programming languages, such as packages
and classes. In this work, we have used a component im-
plementation model, called COSMOS[33], to bridge the gap
between the software architecture of the system and its
implementation.

The COSMOS model integrates a set of design pat-
terns and guidelines into the implementation of a compo-
nent-based system. These guidelines include: materialization
of architectural elements at runtime; separation of non-
functional concerns; clear separation between component’s
specification and implementation; explicit declaration of com-
ponent’s specification dependencies; strong encapsulation
of implementation; separation of code inheritance from types
hierarchy and loose coupling of implementation classes[33].

When using COSMOS, each architectural compo-
nent is mapped, at the implementation level, to a package
containing two sub packages: (i) the specification package
contains the specification of the component’s provided and
required interfaces; and (ii) the implementation package
contains the definition of the concrete classes that
implement the component’s behaviour. Architectural
connectors are mapped to connector packages that
implement the connections between required and provided
interfaces of interacting components.

3.3 A TYPICAL COMPONENT-BASED DEVELOPMENT PROCESS

There are few CBD processes that have achieved
some acceptance in the industry[6,10], compared to the large
number of processes available for object-oriented
development. This is not something to be surprised by.
Although the first work proposing the use of “mass
produced software components”[20] dates back to more
than 30 years ago, most research on the subject has ap-
peared in the last ten years.

Figure 2 presents a typical component-based devel-
opment process divided into six workflows[6]: requirements,
specification, provisioning, assembly (or integration), test,
and deployment. The requirements workflow aims to identify
the system requirements. The specification workflow
structures the software architecture of the system as a set
of abstract components that have specific responsibilities
and interact to fulfil the system requirements.

The implementation of a component-based system
is achieved by provisioning and assembly workflows. This
is a consequence of the component development/system

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

9

integration dichotomy described in Section 1. Components
are instantiated during the provisioning workflow. In this
workflow, the system integrator decides if an abstract
component can be instantiated by an existing OTS
component, or if it will require an implementation effort, in
which case it is called a newly developed component. The
selection of an OTS component often requires its adaptation
and, possibly, the refinement of the system’s software ar-
chitecture to fit the available OTS component. This
adaptation may include the development of wrappers[13]
to adapt the external interface of the OTS component to
that specified for the abstract component being instantiated.

In the assembly workflow, the system integrator as-
sembles OTS and newly developed components to build
the whole system. This integration effort includes the devel-
opment of glue code necessary to connect the various
components, and comprises the specification and implemen-
tation of connectors and wrappers.

During the test workflow, the integrated system is
tested and corrections may be made to ascertain that it
fulfils its requirements and conforms to its specification.
During the deployment workflow, the final system is in-
stalled in the environment of the user.

corresponding declared exception type. The semantics of
a declared exception is defined by the specification and it is
part of the component’s interface specification. Any cor-
rect implementation of a specification should include de-
tection of the anticipated exceptional conditions. However,
a more robust implementation may include the detection of
exceptional conditions that are not anticipated by the
specification. For these unanticipated exceptional
conditions, the component developer should define
undeclared exceptional exit points.

Undeclared exceptional exit points are problematic
because different correct implementations of the same
specification may define different undeclared exceptional
exit points. This may result in architectural mismatches[13]
when one tries to integrate such components in a system. It
is a current practice to associate undeclared exceptional
exit points with exceptions of arbitrary types that are defined
by the component developer or are propagated from lower
level components. This ad hoc scheme for signalling unan-
ticipated exceptional conditions may cause, during system
execution, the raising of undeclared exceptions without
proper contextual information and failure semantics. In these

4 THE PROPOSED EXCEPTION HANDLING STRATEGY

We assume that the specification of a component
includes its exceptional specification. The latter defines the
expected behaviour when some abnormal, but anticipated,
conditions occur. The exceptional specification associates
anticipated exceptional conditions with a number of declared
exceptional exit points (Section 3.1). A declared exceptional
exit point, when taken, is signalled by an exception of a

circumstances, the system integrator has little opportunity
for introducing fault tolerance in the integrated system.

Our approach to solve this problem comprises two
complementary strategies: a global (inter-component)
strategy and a local (intra-component) strategy. The inter-
component strategy is concerned with system integration
and is applied to configurations of components and
connectors. The intra-component strategy is concerned with

Figure 2. Workflows in the component-based development process[6]

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

10

component development and is applied to individual
reusable software components. To allow these two strategies
to be applied in conjunction, they share a common abstract
exception type hierarchy for precisely expressing the failure
semantics of a component or connector.

4.1 ABSTRACT EXCEPTION TYPE HIERARCHY

Figure 3 shows the proposed abstract exception type
hierarchy. This hierarchy can be easily mapped to existing
object-oriented programming languages where exceptions
are defined by classes, such as C++, Java, and Delphi. On
the top of the hierarchy is Exception, the super class of
all exception classes. A component’s execution terminates
at a declared exceptional exit point by signalling an exception
of the abstract type DeclaredException. All the excep-
tions of type DeclaredException, as well as its
subtypes, should be explicitly declared in the signatures of
operations that may signal them. The failure semantics
associated with the abstract exception type hierarchy is
based on the exception types defined for the idealized fault-
tolerant component[1] and coordinated atomic actions[39].

The UndeclaredException hierarchy is used
by a component developer to attach failure semantics to
exceptions associated with exceptional conditions that are
not anticipated by the component’s specification. These
abstract exception types also allow system integrators to
incorporate handlers in a component-based system to deal
with these undeclared exceptions in a systematic way.
UndeclaredException has two direct subtypes:
RejectedRequestException and
FailureException . Exceptions of the
RejectedRequestException type are used to signal
that a request received from a client could not be processed,
due to a pre-condition violation, and that the system’s state
has not been affected.

Exceptions of the type FailureException indi-
cate that the implementation of the component failed to
process a valid request. FailureException has two
subtypes: RecoveredFailureException and
UnrecoveredFailureException. Exceptions of the
type RecoveredFailureException are used to
indicate that, in spite of the fact that an error occurred, the
component has been left in a consistent state. Instances of
UnrecoveredFailureException are used to indicate
that a failed operation may have caused undesirable effects
in the state of the component.

4.2 INTRA-COMPONENT EXCEPTION HANDLING STRATEGY

The intra-component strategy is applied during the
provisioning workflow of a CBD process (Section 3.3). At
this stage, concrete components are selected in order to
materialize the abstract components specified in the software
architecture of the system being developed. As discussed
earlier, these components may be either existing or newly
developed components. Our intra-component strategy

described applies to both situations: the adaptation of
existing components and the development of new
components.

When a component is built from scratch, its imple-
mentation is under control of the software developer. Fig-
ure 4 depicts the proposed internal structure of a component
with one provided interface and one required interface. The
employed notation is UML 2.0[25]. The implementation
classes implement the operations specified by the
component’s provided interface. Furthermore, these classes
may have dependencies that are explicitly represented by
means of the required interface of the component. In the
proposed strategy, implementation classes are responsible
for: (i) detecting exceptional conditions anticipated by the
specification of the component and signalling exceptions
of types declared in the provided interface of the component;
(ii) signalling internal exceptions related to other exceptional
conditions which are specific to the implementation of the
component; and (iii) executing clean-up actions, when neces-
sary. The types of exceptions raised by the implementation
classes should be subtypes of DeclaredException

Figure 3. Abstract exception type hierarchy

Figure 4. Internal structure of a component built from scratch.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

11

and UndeclaredException, depending on whether
the exceptional condition that was anticipated or unantici-
pated.

A façade class[12] is associated to a provided inter-
face and defines an access point to its implementation. When
necessary, façade classes could be also responsible for
serializing incoming requests, in order to transform the com-
ponent in a damage confinement region[1]. A façade class
may also detect the violation of pre- and post-conditions
for operations defined by its corresponding provided
interface.

The intra-component strategy is based on applica-
tion-level exception (ALE) handlers and boundary-level ex-
ception (BLE) handlers. ALE handlers are associated to
implementation classes. They are responsible for handling
three kinds of exceptions: (i) external exceptions of types
declared in the required interfaces of the components; (ii)
internal exceptions signalled by implementation classes;
and (iii) internal exceptions signalled by the underlying
infrastructure.

BLE handlers are responsible for dealing with ex-
ceptions that reach façade classes. Exceptions of types
declared in the provided interface of the component, which
are anticipated by its specification, are simply propagated
by BLE handlers. These handlers also propagate exceptions
of type RejectedRequestException, which signal
an error in the request issued by the client. For other ex-
ception types, backward error recovery may be performed,
in case it is available. If the component is left in a consistent
state, an exception of type RecoveredFailure
Exception is signalled, indicating that the state of the
component is consistent. Otherwise, an exception of type
UnrecoveredFailureException is signalled.

architectural component is instantiated by a composite
component wrapping the OTS component, as depicted in
Figure 5. The OTS component may include its own exception
handlers. All responsibilities that are associated to façade
classes and BLE handlers in a component built from scratch,
are associated, respectively, to provided interface
interceptors and BLE handlers of the composite component.
Moreover, a provided interface interceptor is responsible
for adapting the OTS external interface to the provided
interface specified for the abstract architectural component.
Provided interface interceptors, together with the BLE
handlers, are also responsible for mapping exceptions raised
by the component’s implementation to the abstract
exception type hierarchy. The main responsibility of the
OTS component is the implementation of its external
interface.

4.3 INTER-COMPONENT EXCEPTION HANDLING STRATEGY

The inter-component strategy is applied during the
assembly workflow of a CBD process (Section 3.3). This
strategy deals with the integration of pre-existing
components into a new configuration. It is based on
connector-level exception (CLE) handlers that are associated
to architectural connectors in a specific software
configuration. Figure 6 shows the internal structure of an
architectural connector with a CLE handler and how it
connects a client component to a server component.

When an existing OTS component is reused, a
wrapper should be created in order to avoid architectural
mismatches (Section 3.3). In this case, the abstract

CLE handlers are responsible for: (i) providing error
recovery and masking at the architectural level exceptions
that cannot be handled within the context of a specific
component; and (ii) resolving failure semantics mismatches
between server components and their clients, for instance,
when a server component signals an exception that is not
expected by its client. A CLE handler should be capable of
dealing with all exceptions signalled by server components.
A possible scenario of exception handling at the architec-
tural level is a configuration that includes two or more re-
dundant server components. In this scenario, a fault-tolerant

Figure 5. Internal structure of a wrapped OTS component.

Figure 6. Connector-level exception handler.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

12

client/server connector could be used as a mediator between
client components and the redundant servers. Upon receipt
of an exception from a server component, the associated
CLE handler can try to mask the exception by re-invoking
the same service on an alternate (replicated or diversely
designed[1]) server component. Moreover, if a server
component successively fails, generating too many
exceptions, the connector may choose to isolate it and
forward all subsequent requests to an alternate server
component[7,27].

CLE handlers are also responsible for translating the
types of unmasked exceptions from the domain of the server
component to the domain of the client component, before
propagating them. Exceptions that require no further
adaptation are automatically propagated. When automatic
propagation is not possible, CLE handler can create a new
exception that encapsulates the unmasked exception raised
by the server component. The type of the propagated
exception should be: (i) one of the exception types declared
for the operation requested by the client component, as
defined by its required interface, or (ii) a subtype of
UndeclaredException. (Figure 3).

Table 1 provides guidelines for exception transla-
tion followed by architectural connectors. These guidelines
are based on the configuration depicted in Figure 6 and on
the premise that the Server component signalled an
exception E1 in response of a service request received from
the Client component.

CLE handlers are the best candidates for coordi-
nating the exceptional behaviour specified for the integrated

system. This way, the implementation of the exceptional
behaviour of the integrated system is less dependent of
any particular version of a component’s implementation.
Moreover, connectors are developed during the assembly
workflow, when knowledge about the integrated system’s
requirements, the exceptional behaviour specified for its
components, and the way they should interact, is available.
Being so, CLE handlers can take reasonable recovery actions
based on the abstract types of the undeclared exceptions
they may receive (Section 4.1). As these recovery actions
are system-dependent, this separation of concerns also
improves component reuse.

4.4 A METHOD FOR OUR EXCEPTION HANDLING STRATEGY

This section describes a basic method for applying
our exception handling strategy. This method was devised
as an extension of a typical component-based process and
is based on our previous experience in the use of exception
handling for building fault-tolerant component-based
systems[17,26,29].

Figure 7 shows the main artifacts added by our
method and how they integrate in the development process
shown in Figure 2. The method starts with the specification
of the failure hypotheses and the exceptional behaviour
expected for the system. During the requirements workflow,
use case descriptions are analysed, in order to extract
exceptional scenarios. Next, during the component
specification workflow, these scenarios are used to specify
the exceptional conditions that should be anticipated by

Table 1: Guidelines for exception translation by a connector.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

13

the system and the types of the exceptions that might be
signalled. Based on this, the various kinds of handlers (ALE,
BLE and CLE) are specified, assigning to them
responsibilities for dealing with exception types defined in
the previous step. Finally, exceptions types and handlers
are implemented and incorporated in the system, during the
provisioning and assembly workflows.

Activity 4: Implementation of ALE and BLE handlers.
In Java and C#, this activity is performed by using try-
catch blocks. We suggest that the actual handlers be
implemented as methods in separate classes responsible
exclusively for exception handling. In this manner, normal
and exceptional behaviour are more explicitly decoupled
and exception handlers can be reused. This activity is
performed during the component provisioning workflow.

Activity 5: Implementation of CLE handlers. This
activity is performed during the assembly workflow.

5 CASE STUDY

In this section, we describe a case study that has
been conducted to assess the feasibility and benefits
obtained from applying our approach to part of a real system.
The main goal of this case study was to analyse the impact
of the proposed approach when applied to an existing sys-
tem, in terms of both separation of normal and exceptional
activities and reuse of the implementation of existing
components. The target system, called Telestrada, is a large
traveller information system being developed for a Brazilian
national highway administrator. It comprises five sub-
systems: Central Database Subsystem, GIS (Geographic
Information System) Subsystem, Call-Centre Operations
Subsystem, Roadside Operations Subsystem, and Complaint
Management Subsystem.

The case study consisted in applying our exception
handling strategy presented in Section 4 to the Complaint
Management Subsystem (CMS), in order to model its
exceptional behaviour. This subsystem is a web-based
application implemented in Java using the COSMOS model
(Section 3.2). The implementation of the CMS comprises
12175 lines of source code (1598 automatically generated),
as measured by the Unix wc (word count) command, and
more than 300 classes. It is based on popular technologies,
such as Enterprise Java Beans, Java Server Pages and
Servlets, and the Struts framework.

The case study covered two iterations of the imple-
mentation of the CMS. During the first iteration, it was
produced an initial implementation of the CMS in which
exception handling was introduced in an ad hoc manner.
The development of the proposed approach occurred after
the conclusion of this initial implementation. Hence, the
first iteration was not influenced by the proposed approach.
During the second iteration, our approach was applied to
obtain a robust implementation with a structured exceptional
behaviour of the CMS. Another developer that was familiar
with the proposed approach but had no previous contact
with the CMS conducted this second iteration. Hence, the
conditions under which the second iteration was conducted
were similar to those of a real software development effort.

The activities of the proposed method are described
next with more details.

Activity 1: Specification of the failure hypotheses
for the design of the system’s exceptional behaviour. This
includes the specification of exceptional conditions to be
detected and the exception types that will signal these
conditions. Although these two activities are not subject of
the present work, they are essential for the development
process. Activity 1 should be performed during the
requirements workflow.

Activity 2: Design of the exceptional behaviour, allo-
cating responsibilities to the various architectural elements
and their exception handlers (ALE, BLE or CLE) and covering
the failure hypothesis defined in Activity 1. Furthermore,
generic handlers that deal with unanticipated exceptional
conditions may be defined, for instance, to trigger backward
error recovery in case an undeclared exception is signalled.
This activity should be performed during the specification
workflow.

Activity 3: Implementation of the subtypes of the
exceptions specified by the abstract exception type hi-
erarchy (Section 4.1), if necessary. These exceptions are
dependent on the application and on the types of errors
expected. This activity is performed during the provisioning
workflow.

Figure 7. A component-based process extended
with our exception handling strategy.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

14

5.1 SYSTEM DESCRIPTION

The CMS manages the complaints of the users about
a section of a road. Information about roads and their sec-
tions are stored in a centralized database by the GIS Sub-
system. Users register complaints through a form at the
website of the project, selecting the desired road section. In
this process, the system presents any information about
existing complaints for the selected road section. If a
complaint is successfully registered, it is recorded in the
database and the user receives a complaint id that can later
be used to inquire about the complaint status. If the
complaint cannot be registered by the system, an error
message is presented to the user.

Part of the layered architecture of the CMS is pre-
sented in Figure 8.

The component’s stereotype indicates the architec-
tural layer to which it belongs. The presentation layer
component RegisterComplaint uses the
IComplaintRegistration interface, provided by the
ComplaintRegistration component of the system
layer. The ComplaintRegistration component, on
its turn, requires services provided by the ComplaintMgr,
RoadMgr, SectionMgr and UserMgr components of
the business layer. The ComplaintMgrConn and
UserMgrConn connectors mediate the interaction
between the ComplaintRegistration component and
those components of the business layer. Components of
the business layer use a database management system to
store and retrieve persistent information.

The case study was conducted by following the sys-
tematic approach described in Section 4.4. For clarity’s sake,
in this section we focus on the Register Complaint use case.

Figure 8. Partial layered architecture of the Complaint Management Subsystem (CMS)

Figure 9. Use case Register Complaint.

Figure 10. Exceptional scenario 7.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

15

5.2 SPECIFICATION OF THE FAILURE HYPOTHESES

The main success scenario for the Register Com-
plaint use case is shown in Figure 9. For each exceptional
condition in this scenario, an exceptional scenario was
defined. In total, 11 exceptional scenarios were defined for
the Register Complaint use case. The exceptional scenario
7 is described in Figure 10.

5.3 DESIGN OF THE EXCEPTIONAL BEHAVIOUR

The UML Components process[6] suggests that,
for each step in the main scenario of a use case, an opera-
tion in a system layer interface should be defined. We
performed this activity during the first iteration of the case
study. In the second iteration, the operations were specified
in terms of pre- and post-conditions, and the exceptions
they might signal.

For instance, step 4 of Register Complaint use case
was mapped to the listRoadSections operation of
the IComplaintRegistration interface (Figure 8).
The specification of this operation, as well as the excep-
tions that it may signal, are described in Figure 11.

of the new ComplaintMgr component resembles Figure
5. In our implementation, ALE, BLE, and CLE handlers were
developed as classes where methods correspond to the
actual handlers.

Façade classes of components were modified to in-
troduce explicit checks for pre- and post-conditions. In the
initial implementation, pre- and post-conditions of opera-
tions were checked at the presentation layer, or not at all. In
the robust implementation, façade classes raise an exception
of type RejectedRequestException, if a service re-
quest violates a pre-condition. When a response violates a
post-condition, the façade class invokes the appropriate
BLE handler. In most cases, the BLE handler signals an
exception of a subtype of
RecoveredFailureException or
UnrecoveredFailureException (Section 4.1).

The use of BLE handlers guarantees that compo-
nents always produce meaningful responses, when errors
occur. For instance, during the execution of the
listRoadSections operation, if the implementation
classes of the SectionMgr component signal an exception
of type SectionDatabaseQueryException, this ex-
ception is automatically propagated, since it denotes an
anticipated exceptional condition. However, if an exception
of type NullPointerException reaches the
component boundary, it is treated as signalling an unantici-
pated exceptional condition. Hence, the handler
encapsulates this exception as an instance of
RecoveredFailureException and raises it. The
component’s state is guaranteed to be consistent, since it
is not modified by the implementation of
listRoadSections. If support for backward error
recovery is available and the failed operation modifies the
system’s state, the BLE handlers may try to restore it to a
previous state free of errors.

The code snippet in Figure 12 illustrates how the
provided interface interceptor of the robust implementation
of the ComplaintMgr interceptor works.

The IManager interface defines methods for man-
aging the dependencies of the component. Each component
in the system provides its own implementation. In the ex-
ample, the interceptor uses an object of type IManager to
obtain a reference to the original ComplaintMgr com-
ponent.

The class ComplaintMgtIntercep-
tor_Exceptional implements the exceptional behaviour
of the component. This class implements a polymorphic
handle method responsible for handling the exceptions
that may be raised by the operations of the original compo-
nent. In this example, handling consists of transforming
instances of SQLException in instances of
ComplaintRegistrationException.

After specifying the exceptional failure hypotheses
for all the exceptional scenarios, we defined the exceptional
behaviour of the system for each of them. For the
listRoadSections operation, the exceptional
behaviour consists of preparing an error message and
displaying it to the user. In fact, this exceptional behaviour
is adopted by almost all the operations in the system. In
some cases, rollback is also performed, in order to guarantee
the consistence of the system’s state.

5.4 IMPLEMENTATION OF THE EXCEPTIONAL BEHAVIOUR

For most architectural components of the CMS the
initial implementation was modified to adhere to the internal
structure shown in Figure 4 (Section 4.2). However, the initial
implementation of the ComplaintMgr component was
reused as an OTS component. Hence, the internal structure

Figure 11. Operation listRoadSection

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

16

We have also modified the initial implementation of
the connectors ComplaintMgrConn and
UserMgrConn. In both cases, very small modifications
were made to their interface adaptor classes (Section 5).
For each of them, a new class responsible for the exceptional
behaviour was implemented, much like the
ComplaintMgrInterceptor_Exceptional in the
example above. These CLE handlers were responsible for
dealing with unanticipated exceptional conditions. If a server
component raises an unexpected exception, the connector
is responsible for transforming it into some declared
exception defined by the exceptional contract of the client
component or, if this is not possible, an appropriate subclass
of FailureException.

5.5 DISCUSSION

The most important benefit of applying our approach
to the CMS was enhanced system structure. The
implementation of the system bore a greater resemblance to
its design and the code responsible for the exceptional
behaviour was more clearly separated. The main
consequence of this fact is decreased complexity. Moreover,
exceptions are confined to where they are semantically
meaningful. For instance, in our case study, the system
layer did not have to handle any exception directly related
to the database. Hence, components are more reusable,
because they only have to deal with exceptions that are
directly related to their conceptual domains.

1 package business.complaintMgr.impl;
2 // imports all the required types
3 public class ComplaintMgrInterceptor implements IComplaintMgt {
4 private IManager manager;
5 public ComplaintMgtInterceptor(IManager manager){
6 this.manager = manager;
7 }
8 public String registerComplaint(...) throws ComplaintRegistrationException
9 {
10 IComplaintMgt iComplaintMgt = (IComplaintMgt)manager.
11 getRequiredInterface(“business.complaintMgr.spec.prov.IComplaintMgt”);
12 String complaintId = new String();
13 try {
14 complaintId = iComplaintMgt.registerComplaint(...);
15 } catch (SQLException e) {
16 ComplaintMgtInterceptor_Exceptional handler =
17 new ComplaintMgtInterceptor_Exceptional();
18 handler.handle(e);
19 }
20 return complaintId;
21 }
22 (...)
23 }

Component-based systems built according to our
proposed approach are also more robust, for two main reasons:

1. The specific exception handlers share responsibilities
for exception handling at different levels of semantics
abstraction. The most concrete and implementation-
dependent level is assigned to ALE handlers, while
the most abstract and system-dependent level is as-
signed to CLE handlers. Thus, specific exception
handling strategies can be employed at each
semantic level, preserving the system’s
independence of its component’s implementations.
This improves the substitutability of the system’s
components and, hence, also improves its
robustness.

2. Our exception handling strategy includes concrete
guidelines about how a component should react to
unanticipated exceptional conditions. This kind of
design decision is not left open to the component
developer. This avoids the situation where, in
absence of a specification, the developers adopt bad
practices such as: swallowing an exception,
including an empty catch block, and propagating
an exception that is meaningless to the component’s
client.

CLE handlers guarantee that exceptions a compo-
nent receives are compatible with the abstract exception

Figure 12. Implementation of the registerComplaint method of class ComplaintMgrInterceptor

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

17

type hierarchy, as discussed in Section 5.2. Hence, there is
always some semantic information regarding the error that
can be taken into account by handlers. Furthermore, the
exceptions in the abstract exception type hierarchy provide
some information regarding the state in which the
component that signalled the exception was left. This is
important for error diagnosis and recovery.

The intra-component strategy for reusing OTS com-
ponents proved to be useful. To reuse the initial imple-
mentation of the ComplaintMgr component, no
modifications were required to other elements of the system.
All we had to do was to deploy the robust implementation
(reused ComplaintMgr plus provided interface interceptor
and BLE handlers) as if it were the initial implementation.
This is an important benefit of applying the proposed
approach.

The implementation overhead of applying our strat-
egy in an existing system is not negligible. In our case study,
the robust implementation of the CMS had 9.54% more lines
of code than the initial implementation (9747 loc of the
original version against 10677 loc of the new one, ignoring
automatically generated code). Although the robust
implementation is larger, it is also better structured.

Our strategy also imposed a development time
overhead, due to specification and implementation
activities. The time it took for the developer to perform the
three activities described in Section 4.4 throughout
requirements, specification, provisioning, and assembly
workflows accounted for more than 30% of the time re-
quired for the development of the initial implementation.

6 CONCLUSIONS

The main contribution of this paper is a general strat-
egy for exception handling in component-based systems,
addressing the problem of how to develop robust and re-
usable software components that can be easily integrated
in dependable component-based systems. We have drawn
ideas from different views on exception handling[8,22] and
combined them in a set of guidelines for structuring
exception handling at both architectural and implementa-
tion levels.

An initial assessment of the approach described in
this paper has been presented elsewhere[15]. Our present
work improves this initial assessment adding a new type of
exception handler. Pagano[26] describes an extended
version of the case study presented in Section 5. Guerra[17]
presents a case study describing the application of the
proposed exception handling strategy to a real-world
banking application.

Although the workflow described in Section 4.4 may
be used in isolation, it is more effective if fully integrated

with a CBD process. In this manner, it can be refined and the
specification of the exceptional behaviour of a system can
be taken into account since early stages of development.
We are currently extending the UML components process[2]
with the method described in Section 4.4. This effort builds
upon previous work on the definition of a CBD process that
takes the exceptional behaviour of a system into considera-
tion[29].

Our most immediate future work consists of devel-
oping tools for partially automating the implementation of
handlers at both inter-component and intra-component
levels. This is an ongoing work that is being conducted in
the context of a larger project[37].

Other important issues to be addressed in future
works are: (i) to measure quantitatively the impact of the
proposed approach in the reliability of the final system; and
(ii) to investigate how the proposed approach can be
extended to include guidelines for structuring concurrent
exception handling. For the reliability analysis, our intent is
to apply fault-injection techniques on both implementations
of the Complaint Management Subsystem to obtain
statistical data about the frequency of failures before and
after the application of the proposed approach. The
structuring of concurrent exception handling, at the
architectural level, is currently being addressed by our
research.

Furthermore, we intend to evaluate the applicability
of aspect-oriented programming[11] techniques to increase
separation of concerns in two complementary levels. First,
to specify architectural level exception handlers. In this case,
aspects would complement existing architecture description
languages, instead of programming languages. The result
of weaving such aspects would be an extended architecture
description that expresses certain properties regarding
dependability. Second, to help in decoupling the
implementation of the normal and exceptional behaviours
of systems built according to the proposed guidelines.
These are both ongoing works that are described in more
detail elsewhere[4,5].

Acknowledgements
F. Castor Filho is supported by FAPESP/Brazil, grant

number 02/13996-2. C. M. F. Rubira is partially supported by
CNPq/Brazil, grant number 351592/97-0. We would like to
thank Rodrigo Tomita for reading a draft of the paper and
providing several interesting comments. We are also grateful
to the anonymous reviewers for their valuable remarks that
contributed to many improvements in this final version of
the paper.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

18

References
[1] T. Anderson and P A. Lee. Fault Tolerance: Principles

and Practice. Springer-Verlag, Wine, Austria, 2nd
Edition, 1990.

[2] P. H. S. Brito, F. C. Filho and C. M. F. Rubira. A method
for modeling exceptions in component-based
development (in portuguese). In Proc. IV Brazilian
Workshop on Component-Based Development
(WDBC’2004), pp. 29-34, João Pessoa, PB, Brazil,
Sep. 2004.

[3] F. Castor Filho, P. A. de C. Guerra and C. M. F. Rubira.
An Architectural-level Exception Handling System
for Component-based Applications. In: Proc. First
Latin-American Symposium on Dependable
Computing, LNCS 2847, pp. 321-340, Springer-Verlag,
2003.

[4] F. Castor Filho and C. M. F. Rubira. Implementing
Coordinated Error Recovery for Distributed
Object-Oriented Systems in AspectJ. Journal of
Universal Computer Science, 10(7):843-858, Jul.
2004.

[5] F. Castor Filho, P. H. S. Brito, and C. M. F. Rubira. A
Framework for Analyzing Exception Flow in
Software Architectures. Submitted to IV ICSE
Workshop on Architecting Dependable Systems
(WADS’2005).

[6] J. Cheesman and J. Daniels. UML Components: A
Simple Process for Specifying Component-Based
Software. Addison-Wesley, Reading, MA., USA,
Oct. 2000.

[7] J. E. Cook and J. A. Dage. Highly reliable upgrading
of components. In Proc. 21st International
Conference on Software Engineering (ICSE’1999),
pp. 203-212, Los Angeles, CA, ACM Press, May
1999.

[8] F. Cristian. Exception Handling. In: T. Anderson (Ed.)
Dependability of Resilient Computers. BSP
Professional Books, UK, pp. 68-97, 1989.

[9] G. Doshi. Best practices for exception handling.
ONJava Website. November 2003. http://
www.oreillynet.com/pub/a/onjava/2003/11/19/
exceptions.html

[10] D. D’Souza and A. C. Wills. Objects, Components
and Frameworks with UML: The Catalysis Approach.
Addison-Wesley, 2nd edition, 1999.

[11] T. Elrad, R. E. Filman and A. Bader. Aspect-oriented
programming. Communications of the ACM,
44(10):28-32, 2001.

[12] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design
Patterns: Elements of Reusable Software Systems.
Addison-Wesley, 1995.

[13] D. Garlan, R. Allen and J. Ockerbloom. Architectural
Mismatch: Why Reuse Is So Hard. IEEE Software.
12(6):17-26, 1995.

[14] D. Garlan, R. T. Monroe and D. Wile. Acme:
Architectural Description of Component-Based
Systems. In: G. T. Leavens and M. Sitamaran (Eds.)
Foundations of Component Based Systems, chapter
3, pp. 47-67. Cambridge University Press, Cambridge,
UK. 2000.

[15] P. A. de C. Guerra, F. Castor Filho V. A. Pagano and C.
M. F. Rubira. Structuring exception handling for
dependable component-based software systems. In
Proc. 30th Euromicro Conference, Rennes, France,
IEEE Computer Society Press. Sep. 2004.

[16] P. A. de C. Guerra, C. M. F. Rubira and R. de Lemos. A
Fault-Tolerant Software Architecture for
Component-Based Software Systems. In Ar-
chitecting Dependable Systems. LNCS 2677.
Springer-Verlag. 2003.

[17] P. A. de C. Guerra. An Architectural Approach for
Fault Tolerance in Component-Based Software
Systems (in portuguese). PhD thesis, Universidade
Estadual de Campinas, 2004.

[18] V. Issarny and J. P. Banatre. Architecture-Based
Exception Handling. In Proc. 34th Annual Hawaii
International Conference on System Sciences
(HICSS’34). IEEE Computer Society Press, 2001.

[19] A. Kalakech et al. Benchmarcing operating system
dependability: Windows 2000 as a case study. In
Proc. 10th IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC’2004), pp. 261-
270, Papeete, Tahiti, IEEE Computer Society Press,
Mar. 2004.

[20] M. D. McIlroy. Mass-Produced Software Com-
ponents. In P. Naur and B. Randell (Eds) Software
Engineering. Petrocelli/Charter, Brussels, Belgium,
pp. 88-98. 1976.

[21] N. Medvidovic and R. N. Taylor. A framework for
classifying and comparing architecture description
languages. In Proc. 6th Joint ACM/Sigsoft
Symposium on Foundations of Software Engineering
and European Software Engineering Conference
(FSE/ESEC’97), Sep. 1997.

[22] B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, New Jersey, 1988.

[23] B. Meyer. The grand challenge of trusted components.
In Proc. 25th International Conference on Software
Engineering, pp. 660-667. IEEE Computer Society
Press, May 2003.

[24] Microsoft Corporation. Microsoft .Net Information.
Available at http://www.microsoft.com/net/

[25] Object Management Group. Unified Modeling
Language: Superstructure, version 2.0. Jul. 2003.

[26] V. A. Pagano. An architectural approach based on
exception handling for the design of component-
based software systems (in portuguese). Master’s
thesis, Universidade Estadual de Campinas, 2004.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

19

[27] M. Rakic and N. Medvidovic. Increasing the
confidence in off-the-shelf components: A software
connector-based approach. In Proc. 2001 Symposium
on Software Reusability, pp. 11-18. ACM/SIGSOFT,
May 2001.

[28] D. Reimer and H. Srinivasan. Analyzing exception
usage in large java applications. In Proc.
ECOOP’2003 -Workshop on Exception Handling for
Object-Oriented Systems, pp. 10-19, Darmstadt,
Germany, Jul. 2003.

[29] C. M. F. Rubira, R. de Lemos, G. Ferreira and F. Castor
Filho. Exception handling in the development of
dependable component-based systems. Software -
Practice and Experience, 2005.

[30] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Morgan
Kaufmann Publishers, 1996.

[31] S. Shenoy. Best practices in EJB exception handling.
In IBM developerWorks website. Available at http:/
/www-106.ibm.com/developerworks/library/j-
ejbexcept. 2002.

[32] J. Siedersleben. Errors and exceptions - rights and
responsibilities. In Proc. ECOOP’2003 -Workshop on
Exception Handling for Object-Oriented Systems, pp.
2-9, Darmstadt, Germany, Jul. 2003.

[33] M. Silva Jr., P. A. de C. Guerra and C. M. F. Rubira. A
Java Component Model for Evolving Software
Systems. In Proc. 18th IEEE International Symposium
on Automated Software Engineering, pp. 327-330,
Oct. 2003.

[34] Sun Microsystems. Enterprise javabeans specifi-
cation v2.1 - proposed final draft, 2002. Available at
http://java.sun.com/products/ejb/

[35] Sun Microsystem. Java 2 Platform, Enterprise Edition
(J2EE). Available at http://java.sun.com/j2ee/
index.jsp

[36] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. ACM Press and Addison-
Wesley, New York, NY, second edition, November
2002.

[37] R. T. Tomita, F. Castor Filho, P. A. de C. Guerra and C.
M. F. Rubira. Bellatrix: An environment with
architectural support for component-based
development (in portuguese). In Proc. IV Brazilian
Workshop on Component-Based Development
(WDBC’2004), pp. 43-48, João Pessoa, PB, Brazil,
Sep. 2004.

[38] G. Veccellio and W. M. Thomas. Issues in the
assurance of component-based software. In Proc.
2000 International Workshop on Component-Based
Software, Carnegie Mellon Software Engineering
Institute, 2000.

[39] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud
and Z. Wu. Fault Tolerance in Concurrent Object-
Oriented Software through Coordinated Error
Recovery. In Proc. IEEE 25th Int. Symp. on Fault-
Tolerant Computing, pp. 499-508, Pasadena, 1995.

[40] J. Xu, B. Randell, A. Romanovsky, R. J. Stroud, A. F.
Zorzo, E. Canver and F. von Henke. Rigorous
development of an embedded fault-tolerant system
based on coordinated atomic actions. IEEE
Transactions on Computers, 51(2):164-179, Feb. 2002.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

