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Abstract

Component-based development (CBD) is recog-
nized today asthe standard paradigmfor structuring large
software systems. However, the most popular component
models and component-based devel opment processes pro-
vide little guidance on how to systematically incorporate
exception handling into component-based systems. The
problem of how to employ language-level exception han-
dling mechanisms to introduce redundancy in component-
based systemsis recognized by CBD practitioners as very
difficult and often not adequately solved. As a conse-
guence, the implementation of the redundant exceptional
behaviour causes a negative impact, instead of a positive
one, on system and maintainability. In this paper, we pro-
pose an approach for the construction of dependable com-
ponent-based systems that integrates two complementary
strategies: (i) a global exception handling strategy for
inter-component composition and (ii) a local exception
handling strategy for dealing with errorsin reusable com-
ponents. A case study illustrates the application of our
approach to a real software system.

Keywords: Exceptional behaviour, Fault-tolerant
component, Software fault tolerance, Component-based
development.

1 INTRODUCTION

Component-based development (CBD)[36] is em-
ployed today to build large software systems, such as
commercia and financial information systems with high
dependability requirements. The central tenet of CBD is
that software systems should be built by integrating pre-

existing reusable software components, which may be de-
veloped by different organizations. A direct implication of
this notion is the separation in time and space between
component development and system integration. On the
one hand, developers of reusable software components do
not have full knowledge of the different contexts in which
the components will be used. On the other hand, system
integrators usually have limited access to the internal de-
sign and source code of these components. The construc-
tion/integration dichotomy leadsto mismatches 13] between
assumptions made by different components of an
assembled system. Techniquesfor dealing with mismatches
related to the functional properties of a system, such as
wrappersand mediatorg 13], areinwidespread use. However,
mismatches related to conflicting assumptions regarding
the behaviour of components when they deviate from their
specifications (exceptional or abnormal behaviour) are not
well understood. Failure to take the exceptional behaviour
of components into account when building a component-
based system compromises the analysability of the
assembled system and its overall dependability.

Exception handling[8] is a well-known mechanism
for introducing forward error recovery[1] in software
systems. Many important object-oriented programming
languages, such as Java, C++, and C# have incorporated
thismechanism. Intraditional software development, alarge
part of the code of areliable software system isdedicated to
detection and handling of exceptions[8]. However, this
redundant part of the code is usualy the least understood,
tested, and documented. In component-based development,
asimilar phenomenon can be observed. Developersof large
systems based on the J2EE platform[35], one of thedefacto
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standards in the industry for CBD, have habits concerning
the use of exception handling that make applications more
vulnerable to faults and harder to maintain[28].

The lack of systematic approaches for structuring
the exceptional behaviour of component-based applications
isan important factor that contributes to this situation. Ex-
isting component-based development processes, such as
Catalysig[10] and UML Components 6], focus almost ex-
clusively on the system’snormal behaviour. There are some
proposals in the literature for extending such processes
with activities for designing the exceptional behaviour of
component-based systems[2,29,40]. However, these
proposals do not address the trandation of the obtained
design down to the implementation level of a component-
based system. Also, the most popular component models,
such asEJB (Enterprise JavaBeans)[34] and .NET[24] rely
almost entirely on the exception handling system (EHS) of
thetarget programming language, providing little guidance
about how to better incorporate exception handling into
their component-based applications.

The proper use of an EHSrequiresaconsistent strat-
egy for defining exception types and alocating respon-
sibilities to exception handlers. Structuring exception
handling is even more difficult for developers of compo-
nent-based systems, due to the construction/integration
dichotomy as discussed earlier.

When integrating software componentsto build de-
pendable systems, it is of critical importance to resolve
conflicts between the exceptional behaviour of the reusable
components and the intended exceptional behaviour of the
assembled system. When these conflicts are not solved,
they may result in undesirable situations, such as. (i) the
context and/or semantics of an exception raised by a
component arelost, makingit difficult for other components
to handle it; or (ii) an exception may simply be ignored,
leading to the propagation of errorsthroughout the system.
Our practical experiencein component-based mentoring for
various Brazilian companies has shown usthat, in practice,
this is a recurring problem and motivated us to devise a
general exception handling approach for component-based
software systems.

In this paper, we propose a strategy for structuring
exception handling in dependable component-based soft-
ware systems. The proposed strategy isbased on an abstract
exception type hierarchy and thedefinition of different kinds
of handlers with clearly pre-defined responsibilities.
Component developers use the abstract exception type
hierarchy to derive concrete exception types that preserve
the semantics of a small set of generic exception types.
These generic types are used by the system integrator to
define an exception handling strategy for the integrated
system that is not dependent of any particular

implementation of its components. The different kinds of
handlers promote separation of concerns between local
(component-specific) and global (architectural) exception
handling policies. The proposed strategy is based on two
different and complementary views on exception handling.
Thefirst view isthat presented by Flaviu Cristianinaclassic
article formally describing the termination model of
exception handling in sequential programg[8]. The second
is Bertrand Meyer’s view, presented as part of the Design-
by-Contract[20] methodol ogy.

Our approach could be integrated within a typical
component-based development process. The main re-
quirement for this integration is the a priori execution of
activities for defining the failure hypotheses of the system
and designing the exceptional behaviour to beimplemented.
The execution of these tasks is not considered to be trivial
and, in the literature, there are several works that address
them([2,29,40]. We consider these works complementary to
ours.

Our ultimate goal isto provide component devel op-
ers and system integrators with a set of design and
implementation guidelines that allows them to better
structure the exceptional behaviour of the systems they
build. In this manner, the impact of exceptional behaviour
ontheoverall system complexity isreduced and theresulting
system is both more reliable and easier to maintain.
Furthermore, these guidelines should be easy enough to be
applied to systems that do not have strict dependability
requirements, and flexible enough to be used in conjunction
with more sophisticated software fault tolerance
mechanisms, such as design diversity[1].

The rest of this paper is organized as follows. Sec-
tion 2 presents somerelated work, while Section 3 provides
some background on exception handling, software archi-
tecture[30], and component-based development processes.
Section 4 presentsthe strategy for exception handling from
the perspective of both system integrators and component
developers. In Section 5 we describe some of the lessons
learned from a real-world case study. Section 6 presents
concluding remarks and ideas for future work.

2 ReLaTED WORK

Softwarefault tolerance at thearchitectural level isa
young research area that has recently gained considerable
attention. Some approaches based on the idea of design
diversity[1] have been developed in the context of reliable
evolution of component-based distributed systems.
Herculesframework[ 7] and Multi-Versioning Connectorg27]
are approaches that maintain old and new versions of
components working concurrently, in order to guarantee
that the expected serviceisprovided, evenif therearefaults
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in the new versions. The guidelines described in Section
4.3 for handling exceptions at the architectural level are
based on these two approaches.

Other possible approach for building fault-tolerant
component-based systemsisto employ exception handling
at the architectural level, as suggested by some authorsin
theliterature]3,16,18]. Thework by Issarny and Banétre[ 18]
describesan extension to existing  architecture description
languages[21] for specifying configuration exceptions,
which are exceptionsraised dueto violations of architectural
invariants. Guerra et al[16] have proposed an approach for
architecting fault-tolerant component-based systems based
on a specific architectural style. Castor et a[3] have pro-
posed an EHS addressing specific concerns of component-
based systems, at the architectural level, also focusing on a
specific architectural style. These works differ from our
present work in the sense that they do not attempt to inte-
gratearchitectural-level and implementation-level exception
handling. Architectural-level exception handling is not a
replacement for implementation-level exception
handling[3,18]. Thetwo techniques are complementary and
should be employed synergistically in order to achieve best
results. To the best of our knowledge, however, no attempts
have previously been made to devise ageneral strategy for
structuring component-based systems taking into account
both architectural -level and implementation-level exception
handling.

There are some works in the literature describing
guidelines for structuring exception handling in object-
oriented software systemg[9,32]. In general, theseworks do
not focus on CBD and do not try to bridge the gap between
architectural-level and implementation-level exception
handling. In spite of this, they do provide valuable advice,
which has been taken into account for the elaboration of
the approach proposed in this paper.

More closely related to DBC, is the work of
Shenoy[31] that discusses best practicesin EJB exception
handling. Themain goal of Shenoy’swork isfaster problem
resolution and it is based on the backward error recovery
capabilities provided by EJB containers. In contrast, our
main goal is a basis for forward error recovery and fault-
tolerance that is not dependent on any specific component
framework.

Vecellio[ 38] motivates the creation of techniquesto
assess the reliability of off-the-shelf (OTS) components.
The author argues that traditional techniques for assuring
the reliability of software systems are not effective for
component-based systems. Meyer[ 23] reinforcestheseideas
and discusses the concept of trusted components. The
author states that the elaboration of extensive techniques
for demonstrating the quality of reusable components,
together with the construction of a large set of trusted

components, has the potential to change the way systems
are developed. This viewpoint is complementary to ours.

Also related to our work, in the area of dependabil-
ity benchmarking, it is possible to estimate the dependabil -
ity of certain types of OTS components[19]. However, itis
still difficult to predict how components built by different
organizations will behave together when integrated into a
new system.

3 BACKGROUND

3.1 EXCEPTION HANDLING

The complexity introduced by fault tolerancein soft-
ware systems motivated the development of awell-known
style of system structuring known as idealised fault-toler-
ant component (IFTC)[1]. An idealised fault-tolerant
component is a piece of software (a class, module, com-
ponent, or awhole system) where the parts responsible for
normal and exceptional activities are separated and well
defined. Figure 1 presents the structure and flow of control
of the IFTC. Upon receipt of a service request, an IFTC
produces three types of responses: normal responses in
case the request is successfully processed, interface
exceptions in case the request is not valid, and failure
exceptions, which are produced when a valid request is
received but cannot be successfully processed.

Service Normal Interface Failure
Request Response Exceptions Exceptions
Normal Abnormal

Activity Activity

Local Exceptions

!

Figure 1. Idealised fault-tolerant component[1]

Interface Failure
Exceptions Exceptions

Normal
Response

Service
Request

Exception handling is a very popular technique for
incorporating fault tolerance into software systems. It a-
lows developers to structure the redundant code that is
added to deal with the exceptional conditions that may
occur, separating it from the code responsiblefor the normal
operating flow. An exceptional condition is signalled by
means of an exception that is raised by the normal code.
When thisoccurs, the underlying EHS interruptsthe normal
flow and transfers the control to an appropriate exception
handler, which can deal with the exceptional conditions
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associated with the type of the exception raised. Handling
contexts are regions of the code in which exceptions of the
same type are treated in the same way.

In [8], Flaviu Cristian presents a synthesis of the
termination exception-handling paradigm for sequential
programs. The exception handling systems of C++, Java,
and C# adhere to this model of exception handling. The
Design by Contract approach[22] providesadifferent view
of exception handling, which is supported by the Eiffel
language.

Themain focusof Cristian’sapproachisrobustness,
which is a means to achieve fault tolerance. A robust pro-
gram should be prepared to handle al possible inputs, in
conformance to a specification. A program may terminate
normally, at its standard exit point, or exceptionaly, at one
of its exceptional exit points. In the second case, an
exception should be signalled. A program specification
defines the standard exit point and zero or more declared
exceptional exit points. A declared exceptiona exit point
corresponds to an abnormal condition that is anticipated
by the designers. There may also be undeclared excep-
tional exit points, which result from unanticipated abnormal
conditions (or design faults). An undeclared exceptional
exit point is signalled by an undeclared exception.

The main goal of the Design by Contract approach
is correctness, that is, it focuses on avoiding faults, not
tolerating them. A routine should not be prepared to handle
al possible inputs, but only those specified by the pre-
condition of its contract. A routine has a single contract
that specifies a single exit point. This exit point is taken
whenever the routine succeeds to fulfil its contract. Ex-
ceptions are only used to signal design faults, which are
detected by means of executable assertions that describe
the contracts.

3.2 SOFTWARE ARCHITECTURE

The architecture of a software system shows how
the system is realized by a collection of components and
theinteractions among them[30]. The building blocks of an
architectural description are components, connectors, and
architectural configurations. A component is a unit of
computation or a data store. Therefore, components are
loci of computation and state. Connectors are architectural
building blocks used to model interactions among
components and rules that govern those interactions.
Architectural configurations, or topologies, are connected
graphs of components and connectors that describe
architectural structures21].

Thereslization of abstract software architecturesre-
quires concrete implementations, which raises the question
about conformance of an implementation to the intended

architecture. To be effective, solutions at the architectural
level must be correctly mapped to theimplementation level.
Itisnot trivial to guaranteethis conformance, sincethereis
asemantic gap between the abstractions defined by software
architecture, namely, architectural components and
connectors, and the abstractions supported by mainstream
object-oriented programming languages, such as packages
and classes. In this work, we have used a component im-
plementation model, called COSMOS[33], to bridge the gap
between the software architecture of the system and its
implementation.

The COSMOS model integrates a set of design pat-
terns and guidelines into the implementation of a compo-
nent-based system. These guidelinesinclude: materiadization
of architectural elements at runtime; separation of non-
functional concerns; clear separation between component’s
specification and implementation; explicit declaration of com-
ponent’s specification dependencies; strong encapsulation
of implementation; separation of codeinheritancefromtypes
hierarchy and loose coupling of implementation classeq 33].

When using COSMOS, each architectural compo-
nent is mapped, at the implementation level, to a package
containing two sub packages: (i) the specification package
contains the specification of the component’s provided and
required interfaces; and (ii) the implementation package
contains the definition of the concrete classes that
implement the component’s behaviour. Architectural
connectors are mapped to connector packages that
implement the connections between required and provided
interfaces of interacting components.

3.3A TvyricaL ComPONENT-BASED DEVELOPMENT PROCESS

There are few CBD processes that have achieved
some acceptancein theindustry[6,10], compared to thelarge
number of processes available for object-oriented
development. This is not something to be surprised by.
Although the first work proposing the use of “mass
produced software components’[20] dates back to more
than 30 years ago, most research on the subject has ap-
peared in the last ten years.

Figure 2 presents atypical component-based devel-
opment processdivided into six workflowd 6]: requirements,
specification, provisioning, assembly (or integration), test,
and deployment. Therequirementsworkflow aimsto identify
the system requirements. The specification workflow
structures the software architecture of the system as a set
of abstract components that have specific responsibilities
and interact to fulfil the system requirements.

The implementation of a component-based system
isachieved by provisioning and assembly workflows. This
is a consequence of the component devel opment/system
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integration dichotomy described in Section 1. Components
are instantiated during the provisioning workflow. In this
workflow, the system integrator decides if an abstract
component can be instantiated by an existing OTS
component, or if it will require animplementation effort, in
which caseit is called anewly developed component. The
selection of an OT S component often requiresits adaptation
and, possibly, the refinement of the system’s software ar-
chitecture to fit the available OTS component. This
adaptation may include the development of wrapperg13]
to adapt the external interface of the OTS component to
that specified for the abstract component being instantiated.

In the assembly workflow, the system integrator as-
sembles OTS and newly developed components to build
thewhole system. Thisintegration effort includesthe devel-
opment of glue code necessary to connect the various
components, and comprises the specification and implemen-
tation of connectors and wrappers.

During the test workflow, the integrated system is
tested and corrections may be made to ascertain that it
fulfils its requirements and conforms to its specification.
During the deployment workflow, the final system is in-
stalled in the environment of the user.

corresponding declared exception type. The semantics of
adeclared exception isdefined by the specificationand itis
part of the component’s interface specification. Any cor-
rect implementation of a specification should include de-
tection of the anticipated exceptional conditions. However,
amore robust implementation may include the detection of
exceptional conditions that are not anticipated by the
specification. For these unanticipated exceptional
conditions, the component developer should define
undeclared exceptional exit points.

Undeclared exceptional exit points are problematic
because different correct implementations of the same
specification may define different undeclared exceptional
exit points. Thismay result in architectural mismatches[ 13]
when onetriesto integrate such componentsin asystem. It
is a current practice to associate undeclared exceptional
exit pointswith exceptions of arbitrary typesthat are defined
by the component developer or are propagated from lower
level components. Thisad hoc schemefor signalling unan-
ticipated exceptiona conditions may cause, during system
execution, the raising of undeclared exceptions without
proper contextual information and failure semantics. Inthese

Business Existing
requirements assets
Requirements

B s'nesL Concept User
ust i interface
models Technlgal Components
l_ constralntsl |_ —L ]

Use Case

models'__’ Specification

Provisioning

L_ Component specs
& architectures

I Assembly
[ |

Assemblies
» Test
1
Tested
assemblies
Deployment ‘_l

Figure 2. Workflows in the component-based development process[6]

4 THE ProPoseD EXCEPTION HANDLING STRATEGY
We assume that the specification of a component
includesits exceptional specification. Thelatter definesthe
expected behaviour when some abnormal, but anticipated,
conditions occur. The exceptional specification associates
anticipated exceptiona conditionswith anumber of declared
exceptional exit points (Section 3.1). A declared exceptional
exit point, when taken, is signalled by an exception of a

circumstances, the system integrator has little opportunity
for introducing fault tolerance in the integrated system.

Our approach to solve this problem comprises two
complementary strategies: a global (inter-component)
strategy and alocal (intra-component) strategy. The inter-
component strategy is concerned with system integration
and is applied to configurations of components and
connectors. Theintra-component strategy isconcerned with
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component development and is applied to individual
reusable software components. To allow thesetwo strategies
to be applied in conjunction, they share acommon abstract
exception type hierarchy for precisely expressing thefailure
semantics of a component or connector.

4.1 AsTRACT ExcerTION TYPE HIERARCHY

Figure 3 showsthe proposed abstract exception type
hierarchy. This hierarchy can be easily mapped to existing
object-oriented programming languages where exceptions
are defined by classes, such as C++, Java, and Delphi. On
the top of the hierarchy isExcept i on, the super class of
all exception classes. A component’s execution terminates
at adeclared exceptional exit point by signalling an exception
of theabstract type Decl ar edExcept i on.All theexcep-
tions of type Decl ar edExcepti on, as well as its
subtypes, should be explicitly declared in the signatures of
operations that may signal them. The failure semantics
associated with the abstract exception type hierarchy is
based on the exception types defined for the idealized fault-
tolerant component[ 1] and coordinated atomic actiong[39].

The Undecl ar edExcept i on hierarchy is used
by a component developer to attach failure semantics to
exceptions associated with exceptional conditions that are
not anticipated by the component’s specification. These
abstract exception types aso alow system integrators to
incorporate handlers in a component-based system to deal
with these undeclared exceptions in a systematic way.
Undecl ar edExcept i on has two direct subtypes:
Rej ect edRequest Excepti on and
Fail ureExcepti on. Exceptions of the
Rej ect edRequest Except i on typeareusedtosigna
that areguest received from aclient could not be processed,
dueto a pre-condition violation, and that the system’s state
has not been affected.

Exceptionsof thetypeFai | ur eExcept i onindi-
cate that the implementation of the component failed to
process a valid request. Fai | ur eExcept i on has two
subtypes: Recover edFai |l ureExcepti on and
Unr ecover edFai | ur eExcept i on. Exceptionsof the
type Recover edFai | ur eExcepti on are used to
indicate that, in spite of the fact that an error occurred, the
component has been left in a consistent state. Instances of
Unr ecover edFai | ur eExcept i on areusedtoindicate
that afailed operation may have caused undesirable effects
in the state of the component.

4.2 INTRA-COMPONENT EXCEPTION HANDLING STRATEGY
The intra-component strategy is applied during the
provisioning workflow of a CBD process (Section 3.3). At
this stage, concrete components are selected in order to
materializethe abstract components specified inthe software
architecture of the system being developed. As discussed
earlier, these components may be either existing or newly
developed components. Our intra-component strategy

10

/\

|DeclaredException|

|UndeclaredException|
I

|RejectedRequestException|

|FailureException|
[

| RecoveredFailureException|

|UnrecoveredFailureException

Figure 3. Abstract exception type hierarchy

described applies to both situations: the adaptation of
existing components and the development of new
components.

When a component is built from scratch, itsimple-
mentation is under control of the software developer. Fig-
ure4 depictsthe proposed internal structure of acomponent
with one provided interface and onerequired interface. The
employed notation is UML 2.0[25]. The implementation
classes implement the operations specified by the
component’s provided interface. Furthermore, these classes
may have dependencies that are explicitly represented by
means of the required interface of the component. In the
proposed strategy, implementation classes are responsible
for: (i) detecting exceptional conditions anticipated by the
specification of the component and signalling exceptions
of typesdeclared in the provided interface of the component;
(i) sgndlinginternal exceptionsrelated to other exceptional
conditions which are specific to the implementation of the
component; and (iii) executing clean-up actions, when neces-
sary. Thetypes of exceptionsraised by theimplementation
classes should be subtypes of Decl ar edExcepti on

(})Provided Interface

|
Provided Boundary-Level Eg]
Interface <>——Exception (BLE)
Facade Handler

*

Application-Level
Exception (ALE)
Handler

Implementation O
|

Classes

C) Required Interface

Figure 4. Internal structure of a component built from scratch.
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and Undecl ar edExcept i on, depending on whether
the exceptional condition that was anticipated or unantici-
pated.

A fagade class[12] is associated to aprovided inter-
face and definesan access point to itsimplementation. When
necessary, facade classes could be also responsible for
serializing incoming requests, in order to transform the com-
ponent in a damage confinement region[1]. A fagcade class
may also detect the violation of pre- and post-conditions
for operations defined by its corresponding provided
interface.

The intra-component strategy is based on applica
tion-level exception (ALE) handlersand boundary-level ex-
ception (BLE) handlers. ALE handlers are associated to
implementation classes. They are responsible for handling
three kinds of exceptions: (i) external exceptions of types
declared in the required interfaces of the components; (ii)
internal exceptions signalled by implementation classes;
and (iii) internal exceptions signalled by the underlying
infrastructure.

BLE handlers are responsible for dealing with ex-
ceptions that reach fagade classes. Exceptions of types
declared in the provided interface of the component, which
are anticipated by its specification, are simply propagated
by BLE handlers. These handlersal so propagate exceptions
of type Rej ect edRequest Except i on, which signal
an error in the request issued by the client. For other ex-
ception types, backward error recovery may be performed,
incaseitisavailable. If the component isleft in aconsistent
state, an exception of type Recover edFai |l ure
Except i on is signaled, indicating that the state of the
component is consistent. Otherwise, an exception of type
Unr ecover edFai | ur eExcepti on is signaled.

QDProvided Interface

Provided Boundary-Level ﬁg]
Interface <>_ Exception (BLE)
Interceptor Handler

E?SOTS External Interface

8]

OTS
Component
Reused

I
I
7\
(:) Required Interface

Figure 5. Interna structure of a wrapped OTS component.

When an existing OTS component is reused, a
wrapper should be created in order to avoid architectural
mismatches (Section 3.3). In this case, the abstract

11

architectural component is instantiated by a composite
component wrapping the OTS component, as depicted in
Figure5. The OTS component may includeitsown exception
handlers. All responsibilities that are associated to fagade
classesand BLE handlersin acomponent built from scratch,
are associated, respectively, to provided interface
interceptorsand BLE handlers of the composite component.
Moreover, a provided interface interceptor is responsible
for adapting the OTS external interface to the provided
interface specified for the abstract architectural component.
Provided interface interceptors, together with the BLE
handlers, are al so responsible for mapping exceptionsraised
by the component’s implementation to the abstract
exception type hierarchy. The main responsibility of the
OTS component is the implementation of its external
interface.

4.3 INTER-COMPONENT EXCEPTION HANDLING STRATEGY
The inter-component strategy is applied during the
assembly workflow of a CBD process (Section 3.3). This
strategy deals with the integration of pre-existing
components into a new configuration. It is based on
connector-level exception (CLE) handlersthat are associated
to architectural connectors in a specific software
configuration. Figure 6 shows the internal structure of an
architectural connector with a CLE handler and how it
connects a client component to a server component.

Client Component

/J\ Client's

Required Interface

Connector-level
Exception (CLE)

Interface
Adaptor c
Handler

<<Connector>>

Server's
(;) Provided Interface

Server Component

Figure 6. Connector-level exception handler.

CLE handlersareresponsiblefor: (i) providing error
recovery and masking at the architectural level exceptions
that cannot be handled within the context of a specific
component; and (ii) resolving failure semantics mismatches
between server components and their clients, for instance,
when a server component signals an exception that is not
expected by itsclient. A CLE handler should be capable of
dealing with all exceptionssignalled by server components.
A possible scenario of exception handling at the architec-
tural level is a configuration that includes two or more re-
dundant server components. Inthisscenario, afault-tolerant
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client/server connector could be used asamediator between
client components and the redundant servers. Upon receipt
of an exception from a server component, the associated
CLE handler can try to mask the exception by re-invoking
the same service on an aternate (replicated or diversely
designed[1]) server component. Moreover, if a server
component successively fails, generating too many
exceptions, the connector may choose to isolate it and
forward all subsequent requests to an alternate server
component[7,27].

CLE handlersarealso responsiblefor trandating the
types of unmasked exceptionsfrom the domain of the server
component to the domain of the client component, before
propagating them. Exceptions that require no further
adaptation are automatically propagated. When automatic
propagation is not possible, CLE handler can create a new
exception that encapsul ates the unmasked exception raised
by the server component. The type of the propagated
exception should be: (i) one of the exception typesdeclared
for the operation requested by the client component, as
defined by its required interface, or (ii) a subtype of
Undecl ar edExcept i on. (Figure3).

Table 1 provides guidelines for exception transla-
tion followed by architectural connectors. These guidelines
are based on the configuration depicted in Figure 6 and on
the premise that the Ser ver component signalled an
exception E1 in response of aservice request received from
the C i ent component.

CLE handlers are the best candidates for coordi-
nating the exceptional behaviour specified for theintegrated

system. This way, the implementation of the exceptional
behaviour of the integrated system is less dependent of
any particular version of a component’s implementation.
Moreover, connectors are developed during the assembly
workflow, when knowledge about the integrated system’s
requirements, the exceptional behaviour specified for its
components, and the way they should interact, isavailable.
Being so, CLE handlerscan take reasonablerecovery actions
based on the abstract types of the undeclared exceptions
they may receive (Section 4.1). As these recovery actions
are system-dependent, this separation of concerns also
improves component reuse.

4.4 A MEeTHOoD FOR OUR EXCEPTION HANDLING STRATEGY

This section describes a basic method for applying
our exception handling strategy. This method was devised
as an extension of atypical component-based process and
isbased on our previous experiencein the use of exception
handling for building fault-tolerant component-based
systemd[17,26,29].

Figure 7 shows the main artifacts added by our
method and how they integrate in the devel opment process
shown in Figure 2. The method startswith the specification
of the failure hypotheses and the exceptional behaviour
expected for the system. During the requirementsworkflow,
use case descriptions are analysed, in order to extract
exceptional scenarios. Next, during the component
specification workflow, these scenarios are used to specify
the exceptional conditions that should be anticipated by

Exception E1 signalled by the server component

Type of exception propagated to the client component

E1 is declared in both the required interface of the
Client component and the provided interface of the
Server component

E1 (it may be automatically propagated)

E1 is declared in the provided interface of the Server
component and there is a corresponding exception type
E2 (compatible semantics) declared in the required inter-
face of the C1ient component

E2 (e.g. E1 and E2 have a common ancestor, E3, or E2
is a super type of E1)

E1 is declared in the provided interface of the Server
component and can not be translated according to the
two rules stated above

A subtype of RejectedRequestException,
UnrecoveredFailureException, or
RecoveredFailureException, according to the
failure semantics associated to E1 (Section 4.1)

E1 is a subtype of UndeclaredException

E1 (it may be automatically propagated)

E1 is not declared in the provided interface of the
Server component and is not a subtype of
UndeclaredException

A subtype of UnrecoveredFailureException

Table 1: Guidelines for exception translation by a connector.
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the system and the types of the exceptions that might be
signalled. Based on this, thevariouskindsof handlers(ALE,
BLE and CLE) are specified, assigning to them
responsibilities for dealing with exception types defined in
the previous step. Finally, exceptions types and handlers
areimplemented and incorporated in the system, during the
provisioning and assembly workflows.

Requirements

Failure
hypotheses

Specification

CLE
handlers specs

Exceptional
scenarios

Anticipated Exception ALE & BLE
exceptional Types handlers specs

conditions
Provisioning

Robust
components

Assembly

l

Robust
assemblies

Strategy for
unanticipated
exceptional
conditions

Test

{

Tested robust
assemblies

I

Deployment

Figure 7. A component-based process extended
with our exception handling strategy.

The activities of the proposed method are described
next with moredetails.

Activity 1. Specification of the failure hypotheses
for the design of the system'’s exceptional behaviour. This
includes the specification of exceptiona conditions to be
detected and the exception types that will signal these
conditions. Although these two activities are not subject of
the present work, they are essential for the development
process. Activity 1 should be performed during the
requirementsworkflow.

Activity 2: Design of the exceptional behaviour, allo-
cating responsibilitiesto the various architectural elements
andtheir exceptionhhandlers(ALE, BLE or CLE) and covering
the failure hypothesis defined in Activity 1. Furthermore,
generic handlers that deal with unanticipated exceptional
conditionsmay be defined, for instance, to trigger backward
error recovery in case an undeclared exception issignalled.
This activity should be performed during the specification
workflow.

Activity 3: Implementation of the subtypes of the
exceptions specified by the abstract exception type hi-
erarchy (Section 4.1), if necessary. These exceptions are
dependent on the application and on the types of  errors
expected. Thisactivity isperformed during the provisioning
workflow.
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Activity 4: Implementation of ALE and BLE handlers.
In Java and C#, this activity is performed by usingt r y-
cat ch blocks. We suggest that the actual handlers be
implemented as methods in separate classes responsible
exclusively for exception handling. In this manner, normal
and exceptional behaviour are more explicitly decoupled
and exception handlers can be reused. This activity is
performed during the component provisioning workflow.

Activity 5. Implementation of CLE handlers. This
activity is performed during the assembly workflow.

5CasE Stuby

In this section, we describe a case study that has
been conducted to assess the feasibility and benefits
obtained from applying our approachto part of areal system.
The main goal of this case study was to analyse the impact
of the proposed approach when applied to an existing sys-
tem, in terms of both separation of normal and exceptional
activities and reuse of the implementation of existing
components. Thetarget system, called Telestrada, isalarge
traveller information system being devel oped for aBrazilian
national highway administrator. It comprises five sub-
systems. Central Database Subsystem, GIS (Geographic
Information System) Subsystem, Call-Centre Operations
Subsystem, Roadsi de Operations Subsystem, and Complaint
Management Subsystem.

The case study consisted in applying our exception
handling strategy presented in Section 4 to the Complaint
Management Subsystem (CMS), in order to model its
exceptional behaviour. This subsystem is a web-based
applicationimplemented in Javausing the COSM OS model
(Section 3.2). The implementation of the CM S comprises
12175 lines of source code (1598 automatically generated),
as measured by the Unix we (word count) command, and
more than 300 classes. It is based on popular technologies,
such as Enterprise Java Beans, Java Server Pages and
Servlets, and the Struts framework.

The case study covered two iterations of theimple-
mentation of the CMS. During the first iteration, it was
produced an initial implementation of the CMS in which
exception handling was introduced in an ad hoc manner.
The development of the proposed approach occurred after
the conclusion of this initial implementation. Hence, the
first iteration was not influenced by the proposed approach.
During the second iteration, our approach was applied to
obtain arobust implementation with astructured exceptional
behaviour of the CM S. Another devel oper that wasfamiliar
with the proposed approach but had no previous contact
with the CM S conducted this second iteration. Hence, the
conditions under which the second iteration was conducted
weresimilar to those of areal software devel opment effort.
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<<presentation>J§:]
RegisterComplaint

IComplaintRegistration

Q

<<system>>
ComplaintRegistration

2]

o

=N

IComplaintMgt (;) IUserMgt
<<Connector>> <<Connector>>
ComplaintMgrConn UserMgrConn
IRoadMgt<;> <;>ICompla1ntht <;>ISectioant (;)
<<bu51ness>> <<business>> <<business>> <<business>>
RoadMgr ComplaintMgr SectionMgr UserMgr

Figure 8. Partial layered architecture of the Complaint Management Subsystem (CMS)

5.1 System DESCRIPTION

The CM S managesthe complaints of the usersabout
a section of aroad. Information about roads and their sec-
tions are stored in a centralized database by the GIS Sub-
system. Users register complaints through a form at the
website of the project, selecting the desired road section. In
this process, the system presents any information about
existing complaints for the selected road section. If a
complaint is successfully registered, it is recorded in the
database and the user receives acomplaint id that can later
be used to inquire about the complaint status. If the
complaint cannot be registered by the system, an error
message is presented to the user.

Part of the layered architecture of the CMS is pre-
sented in Figure 8.

The component’s stereotype indicates the architec-
tural layer to which it belongs. The presentation layer
component Regi st er Compl ai nt uses the
| Conpl ai nt Regi strati oninterface, provided by the
Conpl ai nt Regi st rati on component of the system
layer. The Conpl ai nt Regi strati on component, on
itsturn, requires services provided by the Conpl ai nt Myr,
RoadMyr, Sect i onMgr and User Myr components of
the business layer. The Conpl ai nt Mgr Conn and
User Mgr Conn connectors mediate the interaction
betweenthe Conpl ai nt Regi st rat i on component and
those components of the business layer. Components of
the business layer use a database management system to
store and retrieve persistent information.

The case study was conducted by following the sys-
tematic approach described in Section 4.4. For clarity’ssake,
in this section wefocuson the Register Complaint use case.
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Use Case: Register Complaint

Main Success Scenario:

1. User selects the "Register Complaint" link in the

Telestrada homepage.

System presents list of roads.

. User selects the desired road.

. System presents road sections of the selected road
and the registered types of complaints.

. User selects a section and a complaint type.

. System checks if there is a default answer for the se-
lected road section and complaint type.

. System presents default answer, in case it exists, to-
gether with a form where the user may enter a com-
plaint and his personal information (name and e-
mail).

. User fills in the form and selects the option 'Include
complaint in database'.

. System includes the complaint, exhibits the com-
plaint registration number and instructions for the
user to check the status of the complaint.

2.
3

93]

Figure 9. Use case Register Complaint.

Exceptional Scenario 7:

Context: step 4 of the main scenario.

Exceptional pre-condition: the system is unable to
present to the user the list of road sections corre-
sponding to the selected road

Signal: problems when trying to access the database
server.

Handler: prepare an error message explaining to the
user that the database is not accessible.

Exceptional post-condition: an error message is pre-
sented to the user and the system state is left un-
modified.

Figure 10. Exceptional scenario 7.




Fernando Castor Filho, Paulo Asterio de C. Guerra,
Vinicius Asta Pagano and Cecilia Mary F. Rubira

A Systematic Approach for Structuring Exception
Handling in Robust Component-Based Software

5.2 SPECIFICATION OF THE FAILURE HYPOTHESES

The main success scenario for the Register Com-
plaint use case is shown in Figure 9. For each exceptional
condition in this scenario, an exceptional scenario was
defined. In total, 11 exceptional scenarioswere defined for
the Register Complaint use case. The exceptional scenario
7 isdescribedin Figure 10.

5.3 DESIGN OF THE EXCEPTIONAL BEHAVIOUR

The UML Components process[6] suggests that,
for each step in the main scenario of a use case, an opera-
tion in a system layer interface should be defined. We
performed this activity during the first iteration of the case
study. Inthe second iteration, the operationswere specified
in terms of pre- and post-conditions, and the exceptions
they might signal.

For instance, step 4 of Register Complaint use case
was mapped to the | i st RoadSect i ons operation of
the | Conpl ai nt Regi strati on interface (Figure 8).
The specification of this operation, as well as the excep-
tionsthat it may signal, are described in Figure 11.

Operation: IComplaintRegistration::
listRoadSections

Pre-condition: some section of the selected road must
exist.

Post-condition: the list of sections for the selected road
is returned.

Exception associated to pre-condition:
SectionsDoNotExistException

Exception associated to post-condition:
ListSectionException

Figure 11. Operation listRoadSection

After specifying the exceptional failure hypotheses
for al the exceptional scenarios, we defined the exceptional
behaviour of the system for each of them. For the
| i st RoadSecti ons operation, the exceptional
behaviour consists of preparing an error message and
displaying it to the user. In fact, this exceptional behaviour
is adopted by almost all the operations in the system. In
some cases, rollback isalso performed, in order to guarantee
the consistence of the system’s state.

5.4 IMPLEMENTATION OF THE EXCEPTIONAL BEHAVIOUR

For most architectural components of the CMS the
initial implementation was modified to adhereto theinternal
structureshownin Figure4 (Section 4.2). However, theinitia
implementation of the Conpl ai nt Mgr component was
reused as an OTS component. Hence, the internal structure
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of thenew Conpl ai nt Mgr component resembles Figure
5. Inour implementation, ALE, BLE, and CLE handlerswere
developed as classes where methods correspond to the
actual handlers.

Fagade classes of components were modified to in-
troduce explicit checks for pre- and post-conditions. In the
initial implementation, pre- and post-conditions of opera-
tionswere checked at the presentation layer, or not at al. In
therobust implementation, facade classesrai se an exception
of typeRej ect edRequest Except i on,if aservicere-
quest violates a pre-condition. When aresponse violates a
post-condition, the fagade class invokes the appropriate
BLE handler. In most cases, the BLE handler signals an
exception of a subtype of
RecoveredFail ureException or
Unr ecover edFai | ur eExcepti on (Section4.1).

The use of BLE handlers guarantees that compo-
nents always produce meaningful responses, when errors
occur. For instance, during the execution of the
I i st RoadSect i ons operation, if the implementation
classesof theSect i onMyr component signal an exception
of typeSect i onDat abaseQuer yExcept i on, thisex-
ception is automatically propagated, since it denotes an
anticipated exceptional condition. However, if an exception
of type Nul | Poi nt er Excepti on reaches the
component boundary, it istreated as signalling an unantici-
pated exceptional condition. Hence, the handler
encapsulates this exception as an instance of
Recover edFai | ureExcepti on and raises it. The
component’s state is guaranteed to be consistent, since it
is not modified by the implementation of
| i st RoadSecti ons. If support for backward error
recovery is available and the failed operation modifies the
system’s state, the BLE handlers may try to restore it to a
previous state free of errors.

The code snippet in Figure 12 illustrates how the
provided interfaceinterceptor of the robust implementation
of the Conpl ai nt Mgr interceptor works.

Thel Manager interface defines methodsfor man-
aging the dependencies of the component. Each component
in the system provides its own implementation. In the ex-
ample, theinterceptor usesan object of typel Manager to
obtain a reference to the original Conpl ai nt Mgr com-
ponent.

The class Compl ai nt Mgt | nt ercep-
t or _Excepti onal implementstheexceptional behaviour
of the component. This class implements a polymorphic
handl e method responsible for handling the exceptions
that may be raised by the operations of the original compo-
nent. In this example, handling consists of transforming
instances of SQLExcepti on in instances of
Conpl ai nt Regi strati onExcepti on.
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1 package business. conpl ai nt Mgr.inpl;

2 // inports all the required types

3 public class Conplaint Myrlnterceptor

4 private | Manager nanager;

5 public Conplaint Myt nterceptor (Il Manager manager) {

6 t hi s. manager = nmanager;

7}

8 public String registerConplaint(...

9 {

10 | Conpl ai nt Mgt i Conpl ai nt Mgt = (I Conpl ai nt Mgt ) manager .
11 get Requi redl nterface(“busi ness. conpl ai nt Mgr. spec. prov. | Conpl ai nt Mgt ") ;
12 String conplaintld = new String();

13 try {

14 conplaintld = i Conpl ai nt Myt. regi sterConplaint(...);
15 } catch (SQLException e) {

16 Conpl ai nt Mgt | nt er cept or _Excepti onal handl er

17 new Conpl ai nt Mgt | nt er cept or _Exceptional ();

18 handl er. handl e(e);

19 }

20 return conpl aintld,

21 }

22 (...)

23}

i mpl enents | Conpl ai nt Mgt {

) throws Conpl ai nt Regi strationException

Figure 12. Implementation of ther egi st er Conpl ai nt method of class Conpl ai nt Myr | nt er cept or

We have also modified theinitial implementation of
the connectors Compl ai nt Mgr Conn and
User Mgr Conn. In both cases, very small modifications
were made to their interface adaptor classes (Section 5).
For each of them, anew classresponsiblefor the exceptional
behaviour was implemented, much like the
Conpl ai nt Myr I nt er cept or _Excepti onal inthe
example above. These CLE handlers were responsible for
dealing with unanticipated exceptional conditions. If aserver
component raises an unexpected exception, the connector
is responsible for transforming it into some declared
exception defined by the exceptional contract of the client
component or, if thisisnot possible, an appropriate subclass
of Fai | ur eExcepti on.

5.5 Discussion

Themost important benefit of applying our approach
to the CMS was enhanced system structure. The
implementation of the system bore agreater resemblanceto
its design and the code responsible for the exceptional
behaviour was more clearly separated. The main
consequence of thisfact isdecreased complexity. Moreover,
exceptions are confined to where they are semantically
meaningful. For instance, in our case study, the system
layer did not have to handle any exception directly related
to the database. Hence, components are more reusable,
because they only have to deal with exceptions that are
directly related to their conceptual domains.

Component-based systems built according to our
proposed approach area so morerobust, for two main reasons:

1. The specific exception handlers share responsibilities
for exception handling at different level sof semantics
abstraction. Themost concrete and implementation-
dependent level is assigned to ALE handlers, while
the most abstract and system-dependent level isas-
signed to CLE handlers. Thus, specific exception
handling strategies can be employed at each
semantic level, preserving the system’s
independence of its component’s implementations.
This improves the substitutability of the system’s
components and, hence, also improves its
robustness.

. Our exception handling strategy includes concrete
guidelines about how a component should react to
unanticipated exceptiona conditions. This kind of
design decision is not left open to the component
developer. This avoids the situation where, in
absence of a specification, the devel opers adopt bad
practices such as: swallowing an exception,
including an empty cat ch block, and propagating
an exception that is meaninglessto the component’s
client.

CLE handlers guarantee that exceptions a compo-
nent receives are compatible with the abstract exception
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type hierarchy, as discussed in Section 5.2. Hence, thereis
always some semantic information regarding the error that
can be taken into account by handlers. Furthermore, the
exceptionsin the abstract exception type hierarchy provide
some information regarding the state in which the
component that signalled the exception was left. This is
important for error diagnosis and recovery.

Theintra-component strategy for reusing OTS com-
ponents proved to be useful. To reuse the initial imple-
mentation of the Compl ai nt Mgr component, no
modificationswererequired to other elements of the system.
All we had to do was to deploy the robust implementation
(reused Conpl ai nt Myr plusprovided interfaceinterceptor
and BLE handlers) asif it were theinitial implementation.
This is an important benefit of applying the proposed
approach.

Theimplementation overhead of applying our strat-
egy inan existing systemisnot negligible. In our case study,
therobust implementation of the CM Shad 9.54% morelines
of code than the initial implementation (9747 loc of the
original version against 10677 loc of the new one, ignoring
automatically generated code). Although the robust
implementation islarger, it isalso better structured.

Our strategy also imposed a development time
overhead, due to specification and implementation
activities. Thetimeit took for the devel oper to perform the
three activities described in Section 4.4 throughout
reguirements, specification, provisioning, and assembly
workflows accounted for more than 30% of the time re-
quired for the development of theinitial implementation.

6 CONCLUSIONS

Themain contribution of thispaper isageneral strat-
egy for exception handling in component-based systems,
addressing the problem of how to develop robust and re-
usable software components that can be easily integrated
in dependable component-based systems. We have drawn
ideasfrom different views on exception handling[8,22] and
combined them in a set of guidelines for structuring
exception handling at both architectural and implementa-
tion levels.

An initial assessment of the approach described in
this paper has been presented elsewhere[15]. Our present
work improvesthisinitial assessment adding anew type of
exception handler. Pagano[26] describes an extended
version of the case study presented in Section 5. Guerra[17]
presents a case study describing the application of the
proposed exception handling strategy to a real-world
banking application.

Although theworkflow described in Section 4.4 may
be used in isolation, it is more effective if fully integrated
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withaCBD process. Inthismanner, it can berefined and the
specification of the exceptional behaviour of a system can
be taken into account since early stages of development.
Weare currently extending the UML components process 2]
with the method described in Section 4.4. Thiseffort builds
upon previouswork on the definition of aCBD processthat
takesthe exceptional behaviour of asysteminto considera-
tion[29].

Our most immediate future work consists of devel-
oping tools for partially automating the implementation of
handlers at both inter-component and intra-component
levels. Thisis an ongoing work that is being conducted in
the context of alarger project[37].

Other important issues to be addressed in future
works are: (i) to measure quantitatively the impact of the
proposed approach in thereliability of thefinal system; and
(i) to investigate how the proposed approach can be
extended to include guidelines for structuring concurrent
exception handling. For thereliability analysis, our intentis
to apply fault-injection techniques on both implementations
of the Complaint Management Subsystem to obtain
statistical data about the frequency of failures before and
after the application of the proposed approach. The
structuring of concurrent exception handling, at the
architectural level, is currently being addressed by our
research.

Furthermore, weintend to eval uate the applicability
of aspect-oriented programming[11] techniquestoincrease
separation of concernsin two complementary levels. Firgt,
to specify architectural level exception handlers. Inthiscase,
aspectswould complement existing architecture description
languages, instead of programming languages. The result
of weaving such aspectswould be an extended architecture
description that expresses certain properties regarding
dependability. Second, to help in decoupling the
implementation of the normal and exceptional behaviours
of systems built according to the proposed guidelines.
These are both ongoing works that are described in more
detail elsewhere[4,5].
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