

Using Agents and Ontologies for
Application Development on the

Semantic Web

Marcelo Blois1, Maurício Escobar1 & Ricardo Choren2

1 FACIN, PUCRS
Av. Ipiranga, 6681, Porto Alegre/RS, 90619-900 - Brazil

{blois, escobar}@inf.pucrs.br

2 Computer Engineering Department, IME
Pça Gen Tibúrcio, 80, Rio de Janeiro/RJ, 22290-270 - Brazil

choren@de9.ime.eb.br

Abstract

The Semantic Web provides access to
heterogeneous, distributed information, enabling
software products to mediate between user needs and
the information sources available. Agents are one of the
most promising technologies for the development of
Semantic Web software products. However, agent-based
technologies will not become widespread until there are
adequate infrastructures for the development of
semantic multi-agent systems (MAS). Some challenges,
such as turning software agents into practical
abstractions for dealing with ontologies, taking
advantage of the distributed nature of the Web to create
distributed agents and making a seamless integration
with existing Web tools, e.g. the browser, still need to be
addressed. This paper describes the main features of the
SemantiCore framework, an agent infrastructure to
develop semantic MAS. A look at a benchmark Semantic
Web application illustrates the SemantiCore potential as
an infrastructure for the deployment of semantic agent
applications.

Keywords: multi-agent systems, semantic Web, agent
infrastructure, ontology.

1. INTRODUCTION
 The ever-increasing importance of the Web in everyday
life is driving the need for software capable of coping with
open and dynamic environments [1]. Indeed, networking
systems and Web technologies is fostering the use of the
Internet as a basis for software development. More than
other technologies, software agents seem to have the
necessary characteristics to support the development of
open and flexible software systems [11, 19, 22, 23] such as
Web-based systems.

Multi-agent systems (MAS) are appropriate for
domains that are naturally distributed. The use of agent
concepts for distributed systems engineering provides
several advantages for reducing complexity, including [12,
20]: autonomy, situatedness and high-level interactions.
Interaction between agents enables the construction of a
community of software programs. Without some shared or
common knowledge, the agents of MAS have little hope of
effective communication [15, 16]. Thus the design of agent
systems require [24]: suitable design abstractions to support
shared knowledge exhibited by agent societies, i.e.
knowledge that cannot directly be ascribed to individual
agents [4, 25]; and, suitable infrastructures that
semantically shape the agent environment to enable and
promote the exploitation of this knowledge.

In this sense, the Semantic Web is a platform in which
information is given well-defined meaning, better enabling

Marcelo Blois, Maurício Escobar Using Agents and Ontologies for Application
& Ricardo Choren Development on the Semantic Web

 36

knowledge representation, and allowing agents to create the
social intelligence. Particularly in the most common way to
solve the problem of enabling software agents to
interoperate over the semantic Web is to give each of them
the same specified conceptualization, or ontology, of the
domains they are expected to work in. It is important to
mention that this ontology can be public information or an
agreed set of definitions and meanings of basic
communicable concepts, i.e. information that was not
develop specifically for a given application.

Thus it would be desirable for agent infrastructures to
support the development knowledge-aware systems so that
agents can collect Web content (shared knowledge) from
diverse sources, process the information and exchange the
results with other agents. Other challenging problem in the
deployment open and flexible systems using the Web
infrastructure is the development of agent platforms that
provide seamless distribution and integration with existing
Web tools, such as the browser. An agent platform for the
Semantic Web should take advantage of the Web
infrastructure itself so that agents interact with other agents
in an open environment, not limited to an agent container.
Moreover, the user entry-point for the Web usually is a
browser application. Thus agents should be integrated with
browsers to support user access to online information and
functionalities.

These issues are not directly addressed by the existing
multi-agent development platforms (e.g. [9, 21]). These
platforms were created for the development of closed agent
systems, i.e. systems in which agents are encompassed
within the boundaries of a specific container (limited
environment), not using the (semantic) Web infrastructure
as a basis. If agents are to keep their promise as a
technology for semantic Web application development, it
makes no sense to have two disjoint concepts: the agent
container and the Web.

The aim of this paper is to present SemantiCore, an
agent infrastructure that integrates the richer semantics of
the Semantic Web to the implementation of agent systems.
SemantiCore is a framework that provides an abstraction
layer for agent-oriented application development for the
Semantic Web. It can be integrated with the current web
infrastructure extending its computational capabilities to
allow agents to process semantic content while the user is
navigating on annotated web pages.

This paper is structured as follows. In section 2, we
give an overview of the role of software agents in the
Semantic Web. From this overview, we show that agents
are suitable to develop Semantic Web applications.
Section 3 introduces the SemantiCore framework. It
describes the agents the framework provides, the
semantic agent lifecycle and its components. Section 4
illustrates how the framework is successfully exploited
in a benchmark Semantic Web application. Section 5
shows some related work and, finally, we draw

conclusions and look at challenges for future research on
environments in section 6.

2. AGENTS AND THE SEMANTIC WEB
 Semantic Web technologies seam to be way to provide
the semantic integration between data and processes across
systems that can be owned by different enterprises [2]. This
technology is still in progress [3, 8], for instance the
definition of languages for expressing the semantics of the
Web is not mature yet [14]. However different the powerful
synergism between agents and Semantic Web could be
very promising [13, 18] and some efforts have been made
in order to define ontology models and develop tools
suitable for agents aiming at being truly semantic-aware
agents.

Therefore a key component in the semantics-rich
approach is the ontology. An ontology is the specification
of a conceptualization, that is it is the formal, agreed
vocabulary whose terms are used in the construction of a
semantic system. An ontology is a conceptualization of an
application domain in a human-understandable and
machine-readable form, and typically comprises the classes
of entities, relations between entities and the axioms which
apply to the entities which exist in that domain.

The Semantic Web will not be primarily comprised of
nice organized ontologies that have been carefully
constructed by experts; instead, it will be a complex web of
semantics ruled by the same sort of havoc that currently
rules the rest of the web. Rather than a few large, complex,
consistent ontologies, shared by great numbers of users, the
Web will be composed of a great number of small
ontological components [7]. Information will be exchanged
between applications, allowing computer programs to
collect and process web content, and to exchange
information with each other.

An agent is a software system that is (i) situated in
some environment, (ii) capable of autonomous actions in
order to meet its objectives and (iii) capable of
communicating with other agents [20]. Therefore agents
are situated systems and the environment should provide
agents the essential information to work. Thus the highly
semantic infrastructure of the Semantic Web will make
agent-based computing much more practical [7].

However, one challenge for Agent-oriented Software
Engineering (AOSE) is to provide an affordable way to
introduce the design and implementation of intelligent
(knowledge-based) behavior into mainstream Software
Engineering [24]. The issue is not simply provide a method
for integrating ontologies and agents but providing an
implementation framework that is not simply creating
dedicated (isolated) containers for agents to execute but
rather use the Semantic Web and all its features to deploy
open and flexible software systems composed of
knowledge-aware agents.

Marcelo Blois, Maurício Escobar Using Agents and Ontologies for Application
& Ricardo Choren Development on the Semantic Web

 37

3. THE SEMANTICORE FRAMEWORK
 MAS development platforms usually focus on the
distribution issues such as concurrency control, message
passing, environment management and internal agent
architecture implementation. SemantiCore was developed
to fulfill the gap the existing MAS platforms have for
creating open MAS on the Web capable of processing
semantic content annotated in Web pages. SemantiCore
was developed to be integrated to web servers and web
browsers in order to create Semantic Domains where
software agents live thus extending the Web without
interfering with its current structure. These Domains turn
the current request-response paradigm used on the Web
into a hybrid request-response / peer-to-peer model.

Agents living on the client’s machine in a Semantic
Domain associated to a web browser can contact other
agents in other Semantic Domains. Thus, a Semantic
Domain can be defined as an extension of the current web
domain that provides an environment for agents capable to
process ontologies to run. This hybrid computational model
allows agents to coordinate their actions to other agents
“living” on the web to achieve a common goal. Figure 1
illustrates how SemantiCore modifies the current web
architecture providing a software layer that processes
semantic content using intelligent agents.

Figure 1: SemantiCore integration with the current web infrastructure.

Since SemantiCore is based on the FIPA Reference

Model [6] it provides internal domain messages routing,
external domain messages routing, services directory
facilities, agent registration services and agent execution
contexts. These characteristics are distributed among
different domain agents such as the Environment Manager,
the Domain Controller and the Service Directory.

The Environment manager is an agent that captures
information on the web browser or the web server,
depending if the Semantic Domain is integrated to a browser
or a web server, and passes this information to the Semantic

Domain. It also passes back the information resulted from
the agents processing to the web. This is a central feature
since the ontologies that are captured by the browser must be
passed to the agents in the Semantic Domain and the results
of the agent’s action may interfere on the browser navigation
and content presentation. When the user navigate in a
Semanticore enabled domain the server must send response
variable in the HTTP protocol to signal the presence and the
identifier of the Semantic Domain. The Semantic Domain
attached to the browser is then able to connect the Semantic
Domain attached to the server allowing agent to
communicate directly through the environment.

The Domain Controller has, among other
capabilities, the potential to connect different Semantic
Domains depending on the interests of the agents
running on these domains. It is responsible to detect and
connect different Semantic Domains allowing the
message passing and routing to the appropriate receiver.
It also maintains regulations over the agents’ actions
related to environment resources usage and code
migration (for mobile agents). Social regulations and
agent specific regulations must be implemented directly
by the developer and do not use the supervisory feature
provided by the Domain Controller.

Other Semantic Domains features include the
support of native code migration, which allows the
creation of mobile agents and the definition of different
channels for message exchange. Migration can be done
simply by a method invocation which must indicate the
location to move. Control messages among management
agents and components of an agent are sent in a separate
control channel while messages exchanged by
application agents are sent using a data channel. This
provides control message isolation and less interference
of the domain’s control-related traffic on application
agent communication.

3.1. THE SEMANTICORE AGENT LIFECYCLE
 SemantiCore agents extend the Semantic Agent class
(figure 2). The agent starts its execution by calling the setup
method. During setup, the developer may create sensors,
facts, rules, effectors, actions, action plans, and goals for
the agent. All these structures are created using
SemantiCore classes and form the SemantiCore reference
model for the Semantic Agent. Figure 3 shows an example
code extracted from an agent responsible to answer other
agent’s requests on lists of clinics suitable for a certain
type of physiotherapy treatment.

Figure 2: The SemantiCore agent lifecycle.

Marcelo Blois, Maurício Escobar Using Agents and Ontologies for Application
& Ricardo Choren Development on the Semantic Web

 38

Figure 3: A setup method example

 The Semantic Agent class has some in-built
methods to add all the elements an agent may have in
SemantiCore. The addSensor method enables the agent to
add a previous defined TestSensor in its definitions (line
03). Sensors are created extending the Sensor class. Agents
may have different types of sensors working
simultaneously depending on the kind of messages they
want to capture, e.g. OWL or SOAP messages. The
setDecisionEngine (line 07) method is used to define the
inference engine to be used for manipulating ontologies.
This method allows the creation of agents with different
decision making methods, e.g. inference engines, neural
networks and decision trees.

During setup it is also possible to define facts, rules and
actions. SimpleFact, FunctionBasedFact and
CompositeFact classes are used to create different patterns
of facts that may be associated to the decision making

method or that may be part of a rule this method must take
into account. An action extends a FunctionBasedFact so it
may be automatically started from the decision making
method (in this case the inference engine). The action has
some arguments which are used to pass the data sensed in
the environment or discovered during the decision making.
The developer has complete access to the agent and its
execution context (such as variables) in each action.

Setup is only executed once when the agent is created
in the environment. SemantiCore’s agents are instantiated
and registered by the Domain Controller agent. Once an
agent has started, it basically performs 4 operations in loop
during its execution: senses the environment, decides in
accordance to the information sensed, executes the actions
depending on the decisions made and publishes
information back in the environment. This lifecycle is
automatically managed by SemantiCore.

Marcelo Blois, Maurício Escobar Using Agents and Ontologies for Application
& Ricardo Choren Development on the Semantic Web

 39

3.2. THE SEMANTICORE AGENT COMPONENTS
 The four basic lifecycle operations are encapsulated
into components: sensorial, decision, executor and
effector. These specialized components allow better
maintenance, extensibility and organization of code.
Figure 4 shows the agent component architecture. The
Sensorial component manages all the different sensors

an agent has, selecting one of them dynamically
according to the kind of message received from the
environment. This component generates a list of objects
that are transmitted to other components depending on
the communication links mapped. The basic
SemantiCore distribution maps the sensorial output to
the decision input.

Figure 4: The agent component architecture.

The Decision component handles the rules and

facts that form the mental model of an agent. It also
manages the decision making mechanism used to
decide over the data received by sensorial output. The
facts and rules have specific hotspots for their
representation in different formats. The basic
SemantiCore distribution already has hotspots
implementation to codify the rules and facts in the
format accepted by the Jena’s OWL Reasoner. The
output of the decision making is a list of actions to be
performed.

The Execution component manages the execution
of agent actions allowing developers to access the
data internally stored by the agent and all the agent’s
primitives. Semantic agents have all information
sensed stored in their data contexts. This information
is formed by individuals in the ontologies processed
and it is made available to all running actions by the
execution component.

Actions may need to send messages to other
agents in the Semantic Domain as a part of its
processing. The encapsulation of these messages in
different structures and their transmission in the
environment is the responsibility of the Effector
component. The effector component selects
dynamically the effector that must be used to codify
the message that will be transmitted. This is done by a
dynamic instantiation depending on the type of
effector needed to send a message. For example, if
the message must be sent using an OWL effector,
then the OWLEffector class will be dynamically
instantiated. When an agent is created, the developer
may indicate the types of effectors the agent will
work with. This feature allows an agent to talk
simultaneously with different peers such as web
services (SOAP messages), other agents created in a
FIPA-compliant platform (ACL messages) or other
SemantiCore agents (OWL messages).

Marcelo Blois, Maurício Escobar Using Agents and Ontologies for Application
& Ricardo Choren Development on the Semantic Web

 40

3.3 SEMANTICORE AND THE SEMANTIC WEB
 Component organization, different hotspots
instantiation, different formats and native OWL
processing contribute to differentiate SemantiCore
from other MAS platforms. SemantiCore enables the
agent component distribution over machines. This
unique feature allows SemantiCore to adapt to
particular Semantic Web performance requirements.
For example, if the Decision component demands
higher processing capability than the Sensorial
component, it may be distributed in a high
performance hardware.

Figure 5 shows the result of a performance test
executed on an application developed (see section 4)
using SemantiCore. The graphics show the
performance upgrade distribution. Notice that the
average performance upgrade is 16,66% for
distributed decision execution. The performance
upgrade continues to be relevant as the number of
agents in the domain grows although it decreases in
absolute values. This is partially explained by the
overhead produced by multiple threads management on
a single machine versus the communication overhead
among them.

Figure 5: Performance upgrade using SemantiCore distribution.

The test (repeated 5 times) was run using four

Pentium IV, 3.4 Ghz, duo core, 1Gb RAM, running
Windows XP operating system, and connected in a
100Mbps wired network. Each machine had a part of
the same SemantiCore domain where 4 agents were
executed. One of these agents had the decision
component centralized in the first testing set and
distributed in the second one.

Another relevant characteristic is SemantiCore
ontology-based agent representation as shown in
figure 6. This representation maps all the elements a
Semantic Agent has, allowing it to reason about itself
and about other agents in the domain. This
representation also allows browsers to capture agent
definitions on Semantic enabled web sites and
execute the agent based on the representation. It is
important to consider that the ontology does not have
only concept definition, but also instances definition

enabling the agent instantiation. The content of the
agent action is coded using the Java language
embedded in the instance ontology definition. Other
elements use the ontology properties to define their
instances.

4. A SAMPLE MAS USING SEMANTICORE
This section presents a case study adapted from

the classical Semantic Web example published in [2].
The adaptation aimed to better specify the problem in
order to build an agent-based solution for this
problem.

4.1. PROBLEM DESCRIPTION
 The example shows two brothers, Pete and Lucy,
trying to schedule physiotherapy sessions for their
mother, who will be called Marie for explanations
purposes. Pete and Lucy have personal digital
assistants (Semantic Agents, named AgPete and
AgLucy respectively) to execute certain specialized
tasks. One of such tasks is the sessions’ scheduling.
The discussion about how they interface with their
users is out of the scope of this work.

The first interaction occurs when Lucy decides to
give the scheduling task to her agent. AgLucy starts
the execution of its action plan specially developed
for this purpose which comprehends the following
tasks: (i) recover Marie’s prescribed treatment with
the doctor’s personal digital assistant; (ii) look for the
clinics that offer this kind of physiotherapy sessions;
(iii) rank clinics that are in-plan for Mom's insurance
within a 20-mile radius of her home and with a rating
of excellent or very good on trusted rating services;
(iv) send the searching results to Pete’s agent; (v)
negotiate available time frames for driving Marie to
the clinic with AgPete; and (vi) fix the appointments
on her personal agenda. Due to space restrictions this
section will only show AgLucy’s code comprising
steps (i) to (iv).

4.2. THE APPLICATION AGENTS
 The multi-agent system developed to solve the
previous problem is composed by the Health care
service catalog agent (HealthCareAgent), the doctor
agent (AgDrLee), the trust rating service agent
(ClinicsChecker), and Lucy’s and Pete’s agents.
These agents execute on different machines and can
and may be on a single domain or multiple domains
since SemantiCore abstracts the distribution issues.
Figure 7 illustrates the solution scenario.

The HealthCareAgent implements a health care
service provider catalog, executing searches in it
catalog based on other agents’ requests. Requests are
done using keywords represented in an ontology. The

Marcelo Blois, Maurício Escobar Using Agents and Ontologies for Application
& Ricardo Choren Development on the Semantic Web

 41

agent tries to find the most appropriate service
description according to the query ontology. The
similarity between ontologies is an open issue and this
was implemented in this example using an adaptation of
OntoMetric [22]. This agent only has one kind of Sensor
which is an instantiation of the regular OWLSensor
provided by SemantiCore. It has a very simple decision
capability that maps each query fact to an action
execution. This action is implemented by the
FetchClinicsAction class. It encapsulates the heuristic
just described and publishes in the environment the
query results using the regular OWLEffector provided
by SemantiCore.

The AgDrLee agent main goal in the example is to
inform patient’s treatments based on his medical
records. To achieve this goal, the agent must receive a
retrieve treatment message with a name of one of its
patients. Then it decides, based on the patient’s
characteristics, in which record to look for. This is
achieved using simple decision rules in the decision
component. Once a record is found, the agent starts the
appropriate action plan RetrieveTreatmentInformation.
The information retrieved is associated to a predefined
OWL schema as instances of its classes and published
using the regular OWLEffector.

Figure 6: Ontology-based agent representation.

The ClinicsChecker agent certificates different types
of medical service providers based on predefined quality
of service evaluations, allowing other agents to query for
certificates for heath care service providers. This agent
was implemented with a single Sensor to capture
requests based on the clinic’s medical registration. The
clinic information is passed to the decision engine and
then to the execution component to be processed. This
initiates the action plan RetrieveClinicsQualification.
This plan queries a database for the clinic certificate and
possible incidents it may be involved in.

Figure 7: The sample application solution scenario.

Marcelo Blois, Maurício Escobar Using Agents and Ontologies for Application
& Ricardo Choren Development on the Semantic Web

 42

AgLucy is Lucy’s personal agent and it encapsulates
all the necessary elements to coordinate different
requests and decide if a clinic is suitable for scheduling
physiotherapy sessions or not, based on Lucy’s and
Pete’s constraints. Since this agent is central in our
example, its code will be presented in detail to illustrate
how agents were implemented.

The agent definition begins in its setup method
where 3 action plans are declared: RetrieveTreatment,
RetrieveClinicsList and RetrieveClinicsQualification.
The first allows the communication with the AgDrLee to
retrieve Marie’s prescribed treatment. The second
contacts the HealthCareAgent to recover the list of
clinics which provide physiotherapy sessions. The later
contacts the ClinicsChecker in order to rate the clinics in
terms of quality of service. These action plans are
associated with the agents’ goals and must be executed
when their pre-conditions are achieved and/or the agent
inference indicates so. Some rules and facts are created
to map these pre-conditions and inference chains. For
instance, AgLucy has some facts and rules that relate the
distance and the qualification of a Clinic to its selection
from the list as a consequence of then inference
processing.

In the setup the agent also has the hotspot
instantiation indicating which decision engine will be
used. In this example, AgLucy indicates through the
setDecisionEngine method the use of the
InferenceEngine class as the hotspot implementation.
This hotspot implementation is distributed with
SemantiCore and integrates Jena’s inference engines
into the Semantic Agents. The rules and facts defined in
setup are translated automatically to the format used by
the inference engine.

Other interesting SemantiCore’s feature that is
largely used in this example is the automatic variable
definition and attribution based on the data sensed
capability. When someone declares a fact which refers
to ontology concepts such as
http://semanticore.pucrs.br#distance SemantiCore
creates a variable with the same name in the agent
context. This variable will have its value automatically
set when an ontology arrives through the agent’s sensor
with individuals for the concept defined. The developer
can access these values directly in the action definition
of an action plan.

AgPete follows the same structure already presented
for AgLucy. The main difference is the strategy used in
its action plans to achieve the goal. AgPete does not
trust in the HealthCareAgent search capability and thus
it decides to fetch the clinics querying AgDrLee for
indications. With a new candidate list, it checks with the
HealthCareAgent if the service provider is registered in
the health care plan of Pete’s mother. Finally it executes
the same trust rating service checking to find the clinics

ratings and decides which is the most appropriate.

4.3. COMMENTS ABOUT THE IMPLEMENTATION
 The system was implemented using two different
interfaces. The first implementation used an interface
that allowed Lucy to control her agent through a
handheld. The other implementation used a simplified
browser written in Java that was integrated to
SemantiCore. This browser captured all the OWL
annotation indicated in a web page and encapsulated it
on a semantic message. It transmitted the semantic
message through the Environment Manager to the agents
in the local Semantic Domain. If an agent had a sensor
programmed to capture the kind of information
represented in the ontology, it started the information
processing. The processing results were delivered back
to browser by the Environment Manager. In the last
scenario the AgLucy interaction with the user was
completely done using the regular web interface. The
other agents executed in Semantic Domains integrated to
web servers while AgLucy and AgPete executed on the
client’s machines.

5. RELATED WORK
 Some works aim to support the creation of semantic
Web applications, such as Jena [10] and OntoBuilder
[17]. The Jena Semantic Web Toolkit is a Java
Application Programming Interface (API) and software
toolkit for manipulating RDF, RDFS, OWL and
SPARQL and includes a rule-based inference engine.
Using Jena it is possible to manipulate, query and store
OWL files and to create new inference engines.
OntoBuilder supports the extraction of ontologies from
Web search interfaces, ranging from simple search
engine forms to multiple-pages, complex reservation
systems.

There are no agent platforms specifically designed
for supporting the deployment of agent systems in the
Semantic Web. Jade [9] is an agent framework
implemented in Java language that supports the
implementation of multi-agent systems through a
middleware that complies with the FIPA specifications.
Jade provides some Java classes for ontology
manipulation, which allows the development of agents
that can use ontologies as objects. Nevertheless, Jade
agents are not specifically designed to take advantage of
the Semantic Web. For instance, agents in a MAS
execute in a container that are separated from the
containers of other MAS applications.

6. CONCLUSIONS
 Semantic content automatic interpretation is still an
open issue for Semantic Web researchers. Besides
issues related to ontology mapping and similarity

Marcelo Blois, Maurício Escobar Using Agents and Ontologies for Application
& Ricardo Choren Development on the Semantic Web

 43

there are other important issues such as how we can
leverage the full potential of the Semantic Web to our
daily applications that must be addressed before the
fully adoption of the Semantic. The Semantic Web
uses different protocol layers that turn the application
development a hard exercise. A high level abstraction
must be used to ease application development for the
Semantic Web.

This paper presented the SemantiCore framework
which aims to provide an abstraction layer developers
can use to create their semantic application without
having to deal with all the implementation details
involved in this task. SemantiCore uses the software
agent as the basic abstraction due to its application in
the solution of distributed complex problems.
SemantiCore can be integrated in the current web
infrastructure to allow agents to execute on semantic
domains associated with the regular web browsers
and servers.

SemantiCore agents have the ability to reason
about themselves and the others due to the ontological
representation of each Semantic Agent. Agents are
created using the basic Semantic Agent elements and
their lifecycle are managed automatically by the
Semantic Domain.

SemantiCore was used in practice to develop 3
different complete applications (a Conference
Management System as defined in [5], an automatic
advertisement system which offered special prices on
meals based on the customers’ (represented by
agents) food preferences and their geographic
location in relation to a restaurant (also represent by
an agent); and a MAS platform with different
hotspots instantiation to develop an Intelligent
Computer Integrated Manufacturing system for a 5-
robot-station production cell.) and the case study
presented in this paper which allows the critical
analysis of its features.

This paper also showed some preliminary
SemantiCore performance testing results. Although it
is appropriate for Semantic Web application
development, SemantiCore has some limitations and
improvements opportunities. For instance, a visual
agent development tool must be provided in order to
facilitate the task since the agent is formed by a
relatively big set of elements. This visual composer
may also have intrinsic ontology development support
so the facts and rules can be directly implemented and
tested using ontologies. Also, it is necessary to extend
SemantiCore to integrate it with well-known web
browsers and servers such as Mozilla Firefox and
Apache Web Server. This can be done by creating a
SemantiCore plug-in for them. A SemantiCore-
enabled Firefox browser is currently under
development. This extension will turn the Semantic

Web navigation completely transparent to the user
turning the Semantic Web ideas into reality.

REFERENCES
[1] Bergenti, F.; Poggi, A. Agent-oriented

software construction with UML. The
Handbook of Software Engineering and
Knowledge Engineering (vol. 2), Emerging
Technologies, 2002, pp. 757-769.

[2] Berners-Lee, T.; Hendler, J.; Lassila, O. The
Semantic Web, Scientific American 1(5),
2001, pp. 34-43.

[3] de Bruijn, J.; Polleres, A.; Lara, R.; Fensel,
D. OWL DL vs. OWL Flight: Conceptual
Modeling and Reasoning for the Semantic
Web. Proceedings of the 14th International
World Wide Web Conference, 2005, pp. 623-
632.

[4] Ciancarini, P.; Omicini, A.; Zambonelli, F.
Multiagent systems engineering: The
coordination viewpoint. Intelligents Agents
VI: Agent Theories, Architectures, and
Languages, LNAI 1767, Springer-Verlag ,
2000, pp. 250–259.

[5] DeLoach, S. A. Modeling organizational
rules in the multi-agent systems engineering
methodology. Proceedings of the 15th
Congress of the Canadian Society for
Computational Studies of Intelligence, LNCS
2338, 2002, pp. 1-15.

[6] FIPA ACL Message Structure Specification.
http://www.fipa.org/specs/fipa00061, 2001.

[7] Hendler, J.A. Agents and the Semantic Web,
IEEE Intelligent Systems 16(2), 2001, pp. 30-
37.

[8] Horrocks, I.; Patel-Schneider, P.F. A
proposal for an OWL rules language.
Proceedings of the 13th International World
Wide Web Conference, 2004, pp. 723-731.

[9] Java Agent DEvelopment Framework.
http://jade.tilab.com/, 2006.

[10] Semantic Web Framework for Java.
http://jena.sourceforge.net/, 2006

[11] Jennings, N.R.; Wooldridge, M. Agent
oriented software engineering. The
Handbook of Agent Technology, MIT Press,
Massachussetts, 2000, pp. 1-24.

[12] Jennings, N.R. An agent-based approach for
building complex software systems.
Communications of the ACM 44(4), 2001,
pp. 35–41.

[13] Labrou, Y. Agents and ontologies for e-
business. Knowledge Engineering Review

Marcelo Blois, Maurício Escobar Using Agents and Ontologies for Application
& Ricardo Choren Development on the Semantic Web

 44

17(1), 2002, pp. 81-85.

[14] Negri, A.; Poggi, A. ; Tomaiuolo, M.; Turci,
P. Agents for e-Business Applications.
Proceedings of the 5th International Joint
Conference on Autonomous Agents and
Multiagent Systems, 2006, pp. 907-914.

[15] Lister, K.; Sterling, L. Agents in a Multi-
Cultural World: Towards Ontological
Reconciliation. Proceedings of the 14th
Australian Joint Conference on Artificial
Intelligence (LNCS 2256), 2001, pp. 321-
332.

[16] Lister, K.; Sterling, L. Reconciling
Ontological Differences for Intelligent
Agents. Proceedings 5th International Joint
Conference on Autonomous Agents and
Multiagent Systems, 2006, pp. 943-945.

[17] OntoBuilder,
http://iew3.technion.ac.il/OntoBuilder, 2006

[18] Parunak, H.V.D. Go to the ant: Engineering
principles from natural agent systems.
Annals of Operations Research 75, 1997, pp.
69–101.

[19] Patil, R.S.; Fikes, R.E.; Patel-Scheneider,
P.F.; McKay, D.; Finin, T.; Gruber, T.;
Neches, R. The DARPA knowledge sharing
effort: progress report. Proceedings of 3rd
Conference on Principles of Knowledge
Representation and Reasoning, 1992, pp.
103-114.

[20] Silva, N.; Rocha, J.; Cardoso J. E-Business
interoperability through ontology semantic
mapping. Proceedings of Processes and
Foundations for Virtual Organizations,
2003, pp. 315-322.

[21] Sycara K.P.; Paolucci, M.; van Velsen, M.;
Giampapa J.A. The RETSINA MAS
Infrastructure. Journal of Autonomous
Agents and Multi-Agent Systems 7(1-2),
2003, pp. 29-48.

[22] Tello, A.L.; Gómez-Pérez, A.
ONTOMETRIC: A Method to Choose the
Appropriate Ontology. Journal on Database
Management 15(2), 2004, pp. 1-18.

[23] Wooldridge, M. Agent-based software
engineering. IEE Proceedings on Software
Engineering 144(1), 1997, pp. 26-37.

[24] Zambonelli, F.; Omicini, A. Challenges and
Research Directions in Agent-Oriented
Software Engineering, Autonomous Agents
and Multi-Agent Sytems 9, 2004, pp. 253–
283.

[25] Zambonelli, F.; Jennings, N.; Wooldridge,
M. Developing multiagent systems: The Gaia
methodology. ACM Transactions on
Software Engineering Methodology 12(3),
2003, pp. 417–470.

