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A Specialized Genetic Algorithm for 
the Electrical Impedance Tomography 
of Two-Phase Flows 
The main objective of this work is to contribute to the development of a new tomographic 
reconstruction method well suited for processing signals obtained from electrical or other 
soft sensing field probes. The adopted approach consists in formulating the reconstruction 
problem in terms of an error function, which assesses the difference between a prospective 
and the actual internal contrast distribution (3D image), and searching for its minimum 
with the help of a specialized genetic algorithm (GA). Numerical simulations have been 
performed to demonstrate the feasibility of the proposed reconstruction method, as well as 
to emphasize the relation between the ill-posed nature of the problem and the topology of 
the minimization hyper-surface, and the importance of considering this relation when 
designing the numerical solution procedure. Results show that convergence is greatly 
enhanced when a priori information is introduced in the error function.  
Keywords: Electrical impedance tomography, genetic algorithm, inverse problem, 
optimization, multiphase-flow 
 
 
 

Introduction 

Industrial process tomography, and particularly applications 
involving multiphase flows, should be based on inexpensive and 
sufficiently robust sensing techniques to be applicable in 
uncontrolled environments. For instance, despite the quality of the 
images obtained with the use of X rays, positron emission and 
nuclear magnetic resonance, the use of such equipment in the harsh 
conditions of a fluidized coal combustor or an underwater petroleum 
pipeline is highly problematic. The natural choices usually fall 
within techniques based on electrical impedance measurements 
(conductive, capacitive or inductive) or on acoustical measurements 
(transmission, scattering, time-of-flight), mainly due to their low 
cost and robustness. The intrinsic problem related to these sensing 
techniques is that the acquired data are related to the sensed medium 
through strongly ill-posed differential/integral operators. In addition 
to this, it is known that reconstruction techniques based on 
linearization or some other artificial regularization procedure 
achieve stability at the cost of resolution and distinguishability, with 
possible spurious artifacts which need to be corrected a posteriori 
(Lányi, 1998; Knowles, 1998 and Borcea, 2003). 1 

One of the main purposes of this work is to contribute to the 
development of new reconstruction algorithms well suited for soft 
field sensing techniques, and particularly for electrical impedance 
tomography (EIT). Our basic idea is to start from a prospective 
contrast distribution of the sensing volume, based for instance on the 
qualitative images delivered by a direct imaging probe (Seleghim 
and Hervieu, 2003), and to refine it iteratively until the predicted 
variables match the corresponding experimental measurements. In 
an EIT problem this can be done by devising an error function 
assessing the difference between the actual and the prospective 
electrical contrast distribution (conductance or permittivity), through 
the comparison of boundary measurements (electric current or 
charge distribution respectively) with the corresponding predictions 
from the model. The reconstruction procedure becomes thus a 
nonlinear minimization problem on the coefficients of a 
parameterized or a discretized version of the prospective internal 
contrast. Parameterization can be achieved according to many 
possible approaches such as, for instance, Fourier (Calderon, 1980; 
Allers and Santosa, 1991) or wavelet basis (Dobson, 1992). Another 
possible alternative is to restrict the contrast distribution on a 
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discretization grid of the sensing volume. Although an adaptive grid 
would certainly be an optimal choice, as discussed by Cherkaeva 
and Tripp (1996), an equidistant grid has the characteristic of 
distributing errors more evenly. 

Another problem that we intend to approach in this work is the 
design of an efficient and robust numerical minimization procedure 
for the nonlinear EIT problem. Even though existence and 
uniqueness of solutions hold for a large class of practical situations 
(Kohn and Vogelius, 1984, Kohn and Vogelius, 1985, Nachman, 
1988 and Nachman, 1996), if no a priori restriction is imposed the 
inverse relation between excitation-response and the internal 
contrast distribution is discontinuous (Hadamard, 1902). 
Consequently, the problem becomes extremely sensitive and 
probably impossible to be solved within realistic experimental 
conditions, where boundary values are not fully known, 
measurements are noisy, calculations are subjected to round-off 
errors, etc. Numerical regularization techniques are thus mandatory 
in order to palliate the intrinsic ill-posed mathematical characteristic 
of an EIT problem. There is, in fact, extensive literature on such 
numerical procedures which assure convergence of reconstruction 
algorithms by enforcing some a priori information about the internal 
contrast, at the eventual cost of introducing spurious artifacts in the 
images (Engl et al., 1996). However, the question of which 
regularization methods are more effective regarding a given 
practical situation in multiphase flow EIT problems constitutes an 
open and interesting research area.  

In addition to the high sensitivity to noise and round-off errors, 
the intrinsic ill-posed nature of the problem is also associated with 
irregularities on the optimization hyper-surfaces, the so-called 
pathology of the optimization problem, which can mislead or 
restraint the convergence of the numerical procedure. Among such 
pathological irregularities, which generally surround the global 
minimum, are multiple local minima (which is characteristic of void 
fraction probes inverse calibration problems, helical-shaped hyper-
channels, hyper-saddles or hyper-plateaus (Rolnik and Seleghim, 
2002). Convergence to the correct solution in such conditions is 
extremely difficult. For instance, the minimization procedure will 
most likely converge to the wrong minimum, in the case of multiple 
local minima, if initial guesses are not close enough to the global 
solution. Or else, if the correct solution is located inside a helical 
channel a marching type optimization procedure will converge only 
if extremely small refinement steps are executed, in which situation 
the overall computational time may become prohibitive. It is 
important to stress that both excitation/measurement strategies and 
the form of the error function, with or without regularization terms, 
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have a major influence in these pathological features (Cherkaeva 
and Tripp, 1996; Figueroa and Seleghim, 2001). 

Under these circumstances a reliable and efficient optimization 
procedure should be able to handle such problematic topological 
features, which are a consequence of the ill-posed nature of the 
inverse EIT problem, and, also, of converging rapidly to the correct 
solution if on-line application of the method is envisaged. A 
possible strategy to obtain such performance is to combine the 
qualities of a directional type method to the virtues of a random 
search method. The first is necessary to accelerate convergence in 
regular regions of the optimization hyper-surface, while the last is 
extremely important, for instance, to escape from local minima, to 
correct a wrong convergence trajectory or to progress on a flat 
region of the optimization hyper-surface. Important classes of 
optimization methods that comply with these performance 
requirements are the so-called evolutionary methods which, in a 
certain way, mimic the biological evolution process and Charles 
Darwin’s natural selection theory (survival of the fittest) for solving 
complex and/or high dimensional optimization problems. In 
agreement with these ideas a specialized genetic algorithm (GA) is 
proposed in this work to solve the inverse nonlinear EIT problem. 
Among many interesting characteristics, which contrast with most 
classical optimization methods, a GA requires no local gradient 
information and, since the search for the minimum is performed 
within populations of possible solutions, it can be easily parallelized 
to handle multiple regularized variants of the error function. 
Furthermore, as it will be shown in next sections, a GA can 
incorporate in very a straightforward manner a priori information 
about the problem, such as bounds on the optimization parameters 
(local contrasts), phase fraction (global contrast), symmetry, etc. 
(Hsiao  et al., 2001). 

Statement of the Problem 

The governing non-dimensional equations of an electrical 
impedance tomography problem can be derived from Maxwell 
equations according to the following: 
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where φ  represents the electric field, σ the medium’s contrast 

(permittivity, conductivity or permeability), ),(exc ηξφ  the excitation 

voltage profile and ),(Q ηξ  the measured profile (electric charges or 

current). The variables excφ  and Q represent the stimulus and 

response respectively, and shall be used to determineφ  and to 

reconstruct the internal contrast σ within the sensing volumeΩ . It is 
also possible to adopt a Neumann sensing strategy, based on 
injecting currents and measuring voltage profiles along the 
boundary, but this usually produces data poorly correlated with the 
internal contrast distribution.  

In mathematical terms, stimulus and response are canonically 
conjugated to the internal contrast through a formal operator ℑ 
(direct problem) 

 
[ ])z,y,x(,),(),(Q exc σηξφℑ=ηξ  (4) 

 
The reconstruction problem can thus be interpreted as inverting 

ℑ with respect to σ, that is (inverse problem) 

  [ ]),(Q,),()z,y,x( exc
1 ηξηξφℑ=σ −  (5) 

 
The dimensionality involved in the last expressions was 

deliberately made explicit to stress the following point: while in the 
direct problem (4) a 2D profile and a 3D distribution generate 
another 2D profile, in the inverse problem (5) two 2D profiles 
generate a 3D distribution. In other words, in the direct problem the 
information originally distributed over 5 dimensions is compressed 
into 2 dimensions with expected degradation or loss. Thus, the 
response ),(Q ηξ  can be seen as an imperfect projection of the 

internal contrast )z,y,x(σ . In the inverse problem this imperfect 

),(Q ηξ   is used to reconstruct the )z,y,x(σ , and the problem is 
clearly ill-posed. 

This being, let σactual be the actual electric contrast within Ω to 
be reconstructed by refining a prospective (or an approximated) 
contrast distribution denoted approxσ . The corresponding responses 

to a common excitation profile ),(exc ηξφ  are denoted respectively 

),(Qapprox ηξ  and ),(Qactual ηξ , the first being determined through a 

numerical model of the problem and the later by direct 
measurement. According to (4) this can be expressed 
mathematically by the following 
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The difference between σactual and approxσ  (as seen through a 

particular perspective defined by excφ ) can be quantified through 
the following error function 

 

approxactual QQe −=  (8) 

 
In the above expressions σactual is not known a priori and actualQ  

must be determined by experimental measurements, while approxQ  

can be formally calculated through ℑ (Eq. 6) since σapprox and φexc 
are both known. More precisely, approxQ  is determined in two steps:  

1 – calculate the electrical field φ in Ω by solving a numerical 
version of Eq. 1 (finite difference, finite elements, etc.) with 

approxσ=σ  and ),(exc ηξφ  imposed on the boundary according to 

Eq. 2 and  
2 – use the solution φ � and approxσ in expression (3) to calculate 

),(Qapprox ηξ . Once actualQ  and approxQ  have been determined, the 

error between them can be assessed through expression (8). 
Within this framework, the reconstruction procedure consists 

simply in searching for the approximated contrast distribution σapprox 
that minimizes the error (8), so that a good match between actualQ  

and approxQ  is achieved. 

From a practical point of view, although theoretically a single 
pair of conjugated distributions excφ  and actualQ  is sufficient to 

determine the corresponding contrast distribution σactual  – theorem 
5.1 in Nachman (1988) – the presence of noise and unavoidable 
experimental errors can produce inconsistent results depending on 
the sense that the problem is being solved. In the direct problem (4) 
the errors are strongly damped and the result is quite close to the 
correct one. On the other hand, in the inverse problem (5), the errors 
are greatly amplified and the reconstructed contrast distribution may 
be completely corrupted. 
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This issue has been studied in previous works. For instance, in 
the problem of determining bubble sizes from pierced length 
histograms, Seleghim Jr. and Milioli (2001) adopted a similar 
approach as the one adopted here and observed that relative errors of 
less than 0.001% in the input data could distort the calculations, 
producing astonishing deviations of more 1000% in the 
reconstructed distributions. A plausible strategy to handle this 
problem, already tested with success in ill-posed integral equations 
associated to inverse calibration problems (Seleghim Jr. and 
Schiavon, 2001), is to execute redundant measurements and to 
consider them altogether in a same error function. For errors and 
noise having a random ergodic behavior it is very likely that the 
information degraded in one particular test may be recovered 

through other experiments. Let thus }),({ exc
i ηξφ , for i=1,2...N, be 

a sequence of different excitation profiles sequentially applied on 
the boundary surface in a time interval that may be considered 
negligible compared with the evolution of the contrast distribution σ 

due to the flow. To each ),(exc
i ηξφ  it is possible to associate two 

response profiles by direct measurements and by assuming a 
common σapprox. Synthetically this can be written as: 
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Hence, a global error function can be constructed from the 

individual errors 
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and be expressed by 
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if the amplitudes are to be emphasized or, alternatively,  
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if both amplitudes and inclinations should be simultaneously 
considered. These types of  global error functions allow not only the 
solution of the inverse problem within realistic error conditions, but 
also contributes in regularizing some of the most negative features 
of the optimization surface, such as saddle points, sharp ridges, 
boundary minima, etc. These and other points will be illustrated by 
the numerical experiments presented in the sequel.  

Numerical Simulations and Error Surface Analysis 

To demonstrate the feasibility of the proposed reconstruction 
method let us consider the problem depicted in the Fig.1, in which 
the axes x y z describe the sensing volume Ω and (ξ,η) describes its 
boundary ∂Ω. A discrete version of the governing Eq. 1 can be 
derived in Cartesian coordinates, according to a central finite 
difference scheme: 
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where the coefficients are given by 
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The implicit notation is the following 
 

[ ])z)1k(,y)1j(,x)1i(k,j,i ∆−∆ −∆−φ=φ  (14) 
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The limits in (15) where fixed at xN = 20, yN = 20 and zN = 60  

after a convergence analysis. 
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Figure 1. Representation of the simulated problem, Eq.13, under different 
excitation or boundary conditions. The indexes m an d n represent the 
position of the cubic inclusion on the vertical or on the horizontal search 
planes. 

 
Boundary conditions were adopted to simulate a common 

practical situation in which the longitudinal faces are grounded 
except in a single point where an excitation voltage of 10 V is 
applied (Dirac excitation). Null flux conditions are applied on the 
transversal sections to limit the extension of the sensing volume. 
The actual permittivity distribution was defined to represent the 
presence of a small 3D inclusion occupying a unitary mesh volume 
at the position indicated in Fig.1. Contrast values were chosen to 
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model an air-water mixture, that is 1actual =σ  within the inclusion 

(air) and 80actual =σ  outside of it (water). To be able to exhibit the 

irregularities of the optimization hyper-surface a 2-dimensional 
problem was first studied. Different contrast approximations approxσ  

were generated by translating the prospective inclusion along the 
horizontal and vertical planes, indicated in gray in Fig.1. These 
contrast distributions were used in (4) (with the same excitation 
profile) to estimate nm,approx | ),(Q ηξ , m and n  defining the position 

of the inclusion as indicated in Fig.1. Subsequently, error values 
e(m,n) were calculated with (8), in which ),(Qactual ηξ  was obtained 
with the same excitation profile and the actual contrast distribution. 
The results are shown in Fig.2. 

 

 
Figure 2. Error surfaces calculated for a prospecti ve inclusion being 
translated along the horizontal (left) and vertical  (right) planes indicated in 
gray in Fig.1. 

 
We can clearly observe that these error surfaces exhibit an 

extremely pronounced minimum where the inclusions match each 
other, i.e. when approxactual σ≡σ , indicating that the reconstruction 

can be accomplished by finding the global minimum of (8). This 
approach has several advantages. First, there are no restrictive 
hypotheses, such as the sensing field being 2-dimensional and 
parallel, what is not likely to occur in high contrast flows even with 
the use of confinement techniques (guard electrodes). In addition, 
this approach is virtually free of physical averaging effects and 
intrinsically 3D, provided the modeled regions upstream and 
downstream from the excitation and measurement electrodes are 
sufficiently long. Furthermore, the formulation of the problem is so 
that the introduction of additional information that contributes to the 
reconstruction process can be accomplished in a very 
straightforward manner. This last point, probably the most 
promising implication, concerns the development of the so called 
multimodal tomography based, for instance, on simultaneous 
electrical and acoustical measurement, in which, hypothetically, an 
object not seen by one would be captured be the other sensing field. 

An analysis of Fig.2 also reveals the potential problems related 
to the topology of the error surface. In particular, the existence of 
saddle points, boundary minima and, above all, the nearly flat region 
surrounding the solution minimum (plateau), can seriously 
compromise the effectiveness of a numerical minimization methods. 
For example, a marching method based on the local inclination 
would inevitably stop if the optimization trajectory falls into this 
plateau. Otherwise, the same minimization procedure would 
converge to some point on the contour if the starting point had been 
set between the ridges and the external boundaries. This problem 
can be interpreted as the manifestation of the ill-posed nature of the 
inverse problem as defined by (5), according to the approach 
adopted here. There are some research work concerning these issues 
but good understanding of them has not yet been achieved.  

Previous experimental and numerical results have shown that 
the form of the excitation profile has a profound effect on the 
topology of the error surface (Cherkaeva and Tripp, 1996; Figueroa 

and Seleghim, 2001). In the case of classical Dirac excitation, the 
application of a punctual voltage and grounding of the rest of the 
boundary is ineffective because most of the sensing energy tends to 
flow out of the measurement volume through electrodes near the 
excitation site. This implies in an intrinsic lack of sensitivity, 
especially in the central regions of the domain, not adequately 
illuminated by the sensing energy, and is directly related to the 
plateau surrounding the solution minimum. A possible solution to 
this consists in constructing an excitation profile that induces the 
electric sensing field to cross the measurement volume. This can be 
accomplished by applying a voltage profile that varies gradually 
from a maximum to a minimum value occurring at opposite points: 
a current line will probably not be deflected because the regions 
neighboring its injection site have similar potentials. Different 
excitation profiles can be generated according to this principle. 
Starting from the classic Dirac profile (Fig.3a) a pyramidal 
distribution can be generated by varying the potential from its 
maximum value of 10V, at the center of the upper boundary surface, 
to a minimum value of zero occurring on the median segment of the 
opposed side (Fig.3b). Since the pyramidal distribution presents 
some practical difficulties to be put in practice, an alternative profile 
which roughly follows the principle mentioned above can be 
generated by translating the excitation site along the upper median 
segment. This profile will be denoted ridge-Dirac and is shown in 
Fig.3c. 
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A B C D A
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ξξξξ
ηηηη

ξξξξ
ηηηη

ξξξξ
ηηηη
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10 V

10 V

A B C D A

A' B' C' D' A'

 
Figure 3. Different excitation profiles: (a) classi cal Dirac, (b) pyramidal and 
(c) ridge-Dirac. Points A, B, C, D, A’, B’, C’ and D’ correspond to the 
vertices of the sensing volume indicated in Fig.1. 

 
These excitation profiles were used in the numerical simulations 

to generate error surfaces e(m,n), showed in Figures 4 and 5, for 
approximated contrast defined according to the previous example, 
indicated in Fig.1. In order to provide a good comparison and to 
have a precise idea of the kind of improvement that can be achieved 
through these optimized excitation profiles, the former results 
(Fig.2) corresponding to classical Dirac excitation were also 
included in Figures 4 and 5. Considering the implementation of a 
numerical minimization procedure capable of autonomously 
locating the solution global minimum, that is, of refining the 
approximate permittivity distribution so that actualapprox σ→σ , some 

main aspects concerning the nature of these error surfaces must be 
stressed out. First, the distinction between the solution minimum 
and the rest of the error surface has been significantly enhanced, 
what contributes to extending its attraction region. Second, the 
topology within these dominance regions have also been improved 
in the sense of being better distributed and assuring good 
convergence conditions for minimization methods that take the local 
inclination into account. It is also clear that some of the negative 
features concerning the convergence, such as the contour ridges, 
have been altered in a way that it is possible to find a minimization 
trajectory leading uniformly to the true minimum.  
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Classical Dirac excitation Ridge-Dirac excitation 

 

 
Pyramidal excitation    Classical Dirac excitation (bottom) 

 
  Ridge-Dirac excitation (bottom)   Pyramidal excitation (bottom) 

Figure 4. Error surfaces generated for the excitati on profiles shown in 
Fig.3 and for the prospective inclusion being displ aced along the 
transversal plane (axes indicate the displacement p arameters). 

 

 
Classical Dirac excitation  Ridge-Dirac excitation 

 

 
Pyramidal excitation Classical Dirac excitation (bottom) 

Figure 5. Error surfaces generated for the excitati on profiles shown in 
Fig.3 and for the prospective inclusion being displ aced along the 
horizontal plane  (axes indicate the displacement p arameters. 

 
  Ridge-Dirac excitation (bottom)  Pyramidal excitation (bottom) 

Figure 5. (Continued). 

 

All these error surfaces can be combined into the global error 
mfunction defined in Eq.11 and, by doing so, some of the negative 
features of its topology are improved. In what concerns the success 
of a numerical minimization procedure, probably the most important 
improvement was obtained on the plateau surrounding the solution 
minimum, within which the convergence rate is significantly 
reduced.  As it can be observed in Fig.6 this flat region has been 
averaged out and a uniform inclination around the solution was 
obtained. A much better enhancement of the inclination can be 
obtained through the error functional defined in (12), although 
multiple minima are introduced as it can be observed in Fig.7. 

 

 
Figure 6. Macro-error functional defined by (11) ob tained from the 
previous error surfaces (Figs. 4 and 5). 

 

 
Figure 7. Macro-error functional defined by (12) ob tained from the 
previous error surfaces (Figs 4 and 5). 

Genetic Algorithms and its Specialization to the EIT 
Problem 

A Genetic Algorithm (GA) is a stochastic search algorithm 
based on the concepts of evolutionary theory (Goldberg, 1989; 
Holland, 1975).  More specifically, solution candidates of the 
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optimization problem (individuals) compete among themselves for 
the opportunity of transmitting their characteristics to new 
generations of solution candidates generated from the old ones 
(reproduction). The best fitted individuals have better chances of 
reproducing, i.e. those for which the optimization function evaluates 
to more optimized values are more likely to reproduce (selection), 
so that good characteristics tend to be preserved in new generations 
(elitism). Reproduction is also affected by random changes 
occurring at a certain probability (mutation), which enables the 
emergence of new characteristics, not initially present in the parent 
generations, and their exploration through the survival or decline of 
the mutant individuals. The application of these concepts into a 
particular optimization problem requires a special formalism which 
will be described in the sequel for the EIT problem treated in this 
work. 

Considering the error function defined in (8) and the 
discretization proposed in (13) and (14), it is possible to establish 
that 

],}{[ee exck,j,i φσ=  (16) 
 
The excitation profile being fixed and imposed externally, the 

error depends only on the contrast vector which must be refined to 
minimize (16). In other words, Eq.16 will be chosen as the fitness 
function and the corresponding individuals (or chromosomes) will 
be defined as 

 
}g,...,g...,g,g{ Ni21=σ
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where N represents the total number of nodal points in Ω  
( zyx N.N.NN = ).The i-th contrast valueig  in (17) corresponds to a 

gene of a particular individual and is related to each nodal 
contrast k,j,iσ though the following expression 

 
 k,j,iNN)1k(N)1j(i yxxg σ=−+−+  (18) 

 
in which the indexes i, j and k vary according to (15). Depending on 
the representation of the genes the GA is referred to be binary-
coded, such as proposed by Holland (1975), or floating point-coded 
as employed by Michalewicz et al. (1994) and Cho et al. (2001) for 
dealing with EIT problems. Real-coding is more suited to 
multidimensional problems with non-trivial restriction and will be 
adopted in this work (Michalewicz, 1996). 

A generation is defined as a collection of M individuals 
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which will reproduce to form the succeeding generation, according 
to the corresponding values of the fitness function so that the best fit 
ones have better chances of reproducing. The reproduction process 
is accomplished by combining the genes of two or more parent 
individuals. This can be done by merging randomly defined genes 
segments (geometric crossover: Radicliffe, 1990; Spears and De 
Jong, 1991) or by summing them up according to specific weights 
(arithmetic crossover: Davis, 1991; Gen and Cheng, 1997; 
Mühlenbein and Schlierkamp-Voosen, 1993). 

In this work we adopted an extended arithmetic reproduction 
strategy with P parents combining to generate one descendent 
according to the following formula: 
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where the weightsiλ  vary randomly restricted to 

1
P

1i
i =λ∑

=
 (21) 

 
and δ  is a positive parameter governing the extension outside the 
hyper-polygon formed by the parents in which descendents can be 
generated. This procedure has an important advantage over standard 
weighted averaging (linear crossover) defined by  

 

∑
=

σλδ=σ
P

1i
ii
��

 (22) 

 
because in this last the descendents are no homogeneously 
distributed over the parents hyper-polygon. To better illustrate this 
point consider the 2D example in which the parents, given by 

)2.0,0.1(1 =σ
�

, )0.1,2.0(2 =σ
�

 and )2.1,3.1(3 =σ
�

, combine to 

generate 50000 descendents according to (20) and (22), with 
random weights satisfying (21) and 3.1=δ . The following figure 

shows the polygon formed by these three parents (triangle vertices) 
and the corresponding descendents (dots). 

 

 
 

 
Figure 8. Descendents generated by fuzzy crossover (left) and linear 
crossover (right) from three parents in the plane, with weights satisfying 
(21) and δδδδ = 1.3. 

 
The reproduction scheme produces a steady convergence to the 

optimal solution but suffers from some drawbacks as, for instance, 
the trapping by local minima or the dramatic convergence decrease 
due to plateaus in the optimization hyper-surface. To avoid this, 
from time to time, at a given probability, some of the reproduction 
rules are intentionally broken in a way that the generated 
descendents may acquire new features not necessarily present in the 
parent individuals. This process, called mutation, also assures that 
no point in the optimization hyper-surface has a null probability of 
being considered as a solution candidate, which implies that 
reaching the global optimal is at least possible, independently of 
initial guesses or how complex the pathology of the problem is. 
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Mutation can be implemented according to different approaches 
depending on the coding of the chromosome (binary or real coded). 
The mutation strategy adopted in this work consists in selecting a 
random position in the chromosome and changing the corresponding 
gene by another number randomly chosen between predefined lower 
and upper limits (Cho et al, 2001). These limits correspond to 

1min =σ  and 80max =σ  representing respectively continuous air 

phase and continuous distillated water phase. 
A very important advantage of genetic algorithms in what 

regards their use in the solution of inverse ill-posed problems is the 
possibility of introducing additional restrictions representing 
information known a priori. As already mentioned, without this, the 
problem becomes extremely sensitive to experimental and round off 
errors, and probably unsolvable under realistic experimental 
conditions. In our case, it is possible to calculate from the signals 
delivered by a direct imaging probe, and appropriate calibration 
models, the instantaneous volumetric void fraction of the flow (α ), 
in addition to the initial guess contrast distribution within the 
sensing region. In mathematical terms this can be expressed as 

 

∫Ω
σ=α dzdydx)z,y,x()z,y,x(P  (23) 

 
where P stands for the calibration model. For the sake of simplicity 
we adopted P(x,y,z) ≡ 1 so that the void fraction becomes simply the 
volume integral of the internal contrast distribution. Thus, 
reproduction and mutation may be followed by an additional 
restriction operator which assures that all descendents comply with 
(23). This can be done by simply rejecting the unviable descendents 
(which is computationally inefficient) or by modification of the 
reproduction and mutation algorithms (which is not always 
feasible). We adopted a strategy based on reparation of the unviable 
descendents as described in Davis (1991), where an extensive 
survey on such procedures can also be found. 

The last relevant genetic operation is the selection of the best fit 
that will reproduce to form the next generation. There are several 
selection strategies, each with a number of possible variations 
depending on specific requirements or computational performance 
criteria. The most common strategy, called stochastic, consists in 
assigning selection probabilities according to the fitness function of 
each individual, in a way that the best fit ones have greater chances 
of being selected for reproduction. In this work we adopted the so 
called deterministic selection, which consists in ranking the 
individuals based on their fitness value and selecting a predefined 
number of the best ones (elitism). Both parents and descendents 
were considered in the ranking process to enhance crossover 
possibilities and to assure that a succeeding generation is never 
worst than the previous one.  

The basic implementation of our genetic algorithm can be 
summarized in the following steps: 

1. An initial generation of chromosomes is constructed with 
random contrast values in (19), each complying with an 
overall structure given by the signals of the direct imaging 
probe (initial guess).  

2. A priori information regarding the void fraction is enforced 
by reparation of the initial generation so that all individuals 
satisfy (23). These constitutes the first parent generation. 

3. The fitness function of each chromosome is evaluated: Eq.1 
is solved with the proper excitation condition given by (2), 
the corresponding response is calculated by means of (3) 
and its difference with respect to the correct measured 
response is assessed by (8). 

4. The best fit chromosomes are selected for reproduction, i.e. 
only those with the smaller values of (16), according to the 

rule given by (20). A small percentage of descendents suffer 
mutation at random positions in the chromosome.  

5. A priori information regarding the void fraction is enforced 
by reparation of the descendent chromosomes so that all 
individuals satisfy (23). The offspring generation is thus 
created. 

6. The fitness function of each offspring chromosome is 
evaluated as described in step 3 above. Convergence is 
achieved if the minimum fitness value is smaller than a 
predefined target and the solution is the associated 
chromosome. The algorithm is equally stopped if the total 
number of generations exceeds an allowable maximum.  

7. Both parent and offspring generations are ranked according 
to the corresponding fitness function and the best ones are 
selected for reproduction and mutation as describe in the 
step 5 above. 

8. Iterate steps 5 to 7 until convergence or the maximum 
number of generations is achieved. 

It is important to stress that the general performance of any 
genetic algorithm depends on a fine tuning of intrinsic parameters 
such as the number of individuals in the parent and offspring 
generations, number of combining parents and  overextension of the 
corresponding hyper-polygon (respectively parameters P and δ in 
Eq.20), mutation percentages and so forth. Intrinsic procedures such 
as the reproduction algorithm or the reparation strategy have also a 
strong influence on the overall performance and must be considered 
in detail. These points were cleared in this work by extensive 
numerical tests in which intrinsic parameters and procedures were 
set so guarantee the best convergence of the test case depicted in 
Fig.1. Whether this tuning is case-dependent or not and what would 
be a case-independent tuning implementation of a genetic algorithm 
is beyond the scope of this work and certainly represents an 
interesting and still open research topic. 

Numerical Tests and Results 

The error surface analysis described in previous section revealed 
important problematic characteristics of the optimization surfaces 
regarding the convergence of an optimization method to the global 
minimum. These characteristics, which define the so-called 
pathology of the optimization surface, were closely considered in 
the implementation and tuning of the genetic algorithm described in 
the previous section. Thus, two series of numerical tests were 
performed to demonstrate the ability of achieving convergence to 
the correct solution, that is, the contrast distribution shown in Fig.1. 
In the first series of tests only the position of the inclusion is 
unknown, being its shape, size and contrast values known by 
hypothesis. In the second series of tests all of this is unknown, 
except that there is an inclusion in a known search region contained 
in the sensing domain. The most important difference between these 
tests regards the dimensionality of the associated optimization 
problem: at maximum 3D in the first case while in the second case 
the dimension is equal to the number of discretization nodes 
defining the search region. In the first series of tests all the three 
excitation profiles given in Fig.3 were considered in order to 
demonstrate the influence of an improved excitation strategy. The 
corresponding results will be shown in the sequel. 

Adopting the indices m, n and o to define the position of the 
frontal lower left corner of the prospective inclusion, as indicated in 
Fig.1, the error function (16) can be written as 

 [ ]exco,n,mk,j,i ,}{e)o,n,m(e φσ=  (24) 

 

Allowing the prospective inclusion to move along the 
transversal plane used to construct the optimization surfaces of Fig.4 
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(vertical search), the corresponding optimization problem can be 
mathematically defined as: 

 

[ ])o,n,m(e}{ Min

fixedo
Nn1
Nm1

actualo,n,mk,j,i

y
x

=
≤≤
≤≤

⇒σ=σ  (25) 

 

Note that in (25) the total number of possible positions that can 
be occupied by the inclusion is Nx⋅Ny = 400, which corresponds to 
the number of times that the fitness function must be evaluated in an 
exhaustive search for the minimum. In other words, the genetic 
algorithm or any other optimization method should be capable of 
finding the solution in much less than this in order to be 
advantageous.  Similar tests were performed allowing the inclusion 
to move along the longitudinal plane (horizontal search, Fig.5), that 
is 

[ ])o,n,m(e}{ Min

z

x

No1
fixedn

Nm1
actualo,n,mk,j,i

≤≤
=

≤≤
⇒σ=σ  (26) 

 

in which case an exhaustive search would require Nx⋅Nz = 1200 
evaluations of the fitness function, and also inside the whole sensing 
domain (3D search), that is  

 

[ ])o,n,m(e}{ Min

60o1
20n1
20m1

actualo,n,mk,j,i
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≤≤

⇒σ=σ  (27) 

 

where the total number of evaluations of the fitness function is 
Nx⋅Ny⋅Nz = 24000. 

The solution of these problems, i.e. (25), (26) and (27), was 
accomplished through the procedure outlined in the previous 
section, with the following specific parameters and procedures: 

• Parent generation: 10 chromosomes randomly generated (the 
initial guess provided by the direct imaging probe is disregarded) 
and satisfying the internal contrast intrinsic limits (1 ≤ ig  ≤ 80) 

• A priori restrictions: void fraction is intrinsically satisfied 
because the size of the prospective inclusion is the same of the real 
inclusion, so there is no need for reparation 

• Reproducing population: the first and the second best fit 
chromosomes combining to generate 4 descendents.  

• Mutation: two individuals in each generation are forced to 
mutate; only a single gene gi is replaced by a random value 
satisfying the internal contrast intrinsic limits 

• Selection: 10 best fit chromosomes are selected out of 14 (4 
descendents plus 10 parents) according to their fitness function 
values 

• Target values: 1410− , which represents to the precision of the 
machine, or 300 generations 

The corresponding results are shown in Figures 9 to 11, being 
one for each type of search (vertical, horizontal or 3D). Each figure 
has three graphs for three different excitation profiles (classical 
Dirac, pyramidal and ridge Dirac). The fitness values of the best fit 
and of the worst fit individuals are plotted in each graph in order to 
assess the evolution of the population. These convergence results 
are summarized in table 1.  

Several interesting features of the problem can be understood 
from these results. First of all, in all three cases, the pyramidal 
excitation profile produced the fastest convergence to the correct 
solution. The ridge Dirac excitation profile also gives reasonable 
results, with the advantage of being considerably simpler to 
implement in practice. The worst results were obtained from the 
classical Dirac excitation profile, having even failed to converge 
after 1210 evaluations of the fitness function in the 3D problem 
(Fig.11 on top). It is also interesting to notice that convergence is 

achieved in proportionally less iterations for the 3D search cases, i.e. 
those for which an exhaustive search is probably prohibitive in 
practical applications. This confirms the ability of genetic 
algorithms in properly dealing with high dimensionality 
optimization tasks and sustains that they constitutes a good approach 
for solving EIT problems.  

Another important feature regards the so-called premature 
convergence, namely when the best and the worst fit chromosomes, 
and by consequence all the parent population, have virtually the 
same fitness value (the difference is smaller than the precision of the 
machine). This happens when all the reproducing chromosomes are 
located on the plateau around the global minimum of the 
optimization surfaces (see Figs. 4 and 5). Although an optimization 
method based exclusively on the local inclination would certainly 
fail, genetic algorithms rely on mutation to resume convergence 
after some generations, as can be observed for instance in Figs. 9, 10 
and 11. How many is “some” generations depends strongly on the 
pathology of the optimization surface: while premature convergence 
was never observed in the simulations with pyramidal excitation it 
was observed in all tests with the classical Dirac excitation profile. 
Also, comparing the classical and the ridge Dirac convergence 
curves (both exhibit premature convergence) it is possible to 
observe that the latter in all tests needed fewer generations to 
resume convergence. 

 

 
 

 
 

Figure 9. Convergence results of the vertical searc h problem (25) for three 
different excitation techniques (legend: worst fit = ���� and best fit = ����). 
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Figure 10. Convergence results of the horizontal se arch problem (26) for 
three different excitation techniques (legend: wors t fit = ���� and best fit = ����). 

 

 
Figure 11, Convergence results of the 3D search pro blem (27) for three 
different excitation techniques (legend: worst fit = ���� and best fit = ����). 

Figure 11, (Continued). 

 

Table 1. Total number of evaluations of the fitness  function in the solution 
of problems (25), (26) and (27), with three differe nt excitation techniques. 

vertical search horizontal search 3D search Excitation 
profile GA exhaustive GA exhaustive GA exhaustive 

Dirac 186 400 174 1200 > 1210 24000 
Ridge 
Dirac 

118 400 126 1200 378 24000 

Pyramidal 50 400 86 1200 174 24000 
 
As mentioned above, a second series of tests was carried out to 

investigate the performance of the genetic algorithm in the solution 
of a high dimensionality optimization problem. Aiming at limiting 
this dimension to a reasonable value, from a computational point of 
view, the inclusion was retrieved from a three-dimensional search 
region contained in the sensing domain. This search region, shown 
in Figure 12, corresponds to a 3 × 3 × 3 cube (in mesh steps) and 
comprises 64 nodes whose corresponding contrast values must to be 
determined. In this case, not only the dimensionality of the 
optimization problem is considerably higher, but also all the 64 
optimization variables may assume any values between σmin = 1 and 
σmax = 80. In mathematical terms this problem can be formulated 
according to 
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Figure 12. Search region in which the nodal contras t values 
(chromosome) are determined by solving the optimiza tion problem (28). 

 
The inclusion of supplementary a priori information is of crucial 

importance for the problem to be solvable in a reasonable number of 
iterations. Thus, in addition to the void fraction as expressed by 
(23), another a priori parameter will be considered: the symmetry 
degree (χ ) of the contrast distribution within the search volume (as 
proposed by Cohen, 1995), which is given by 
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∫Ω
σ=χ dzdydx)z,y,x()z,y,x(Pzyx  (29) 

 
To enforce the symmetry degree it is necessary to adapt the 

genetic operators so that every descendent comply with (29), as was 
done for the void fraction in the examples above, or the fitness 
function can be modified to include a penalty term such as 

 

])(1[QQe 2
approxactualapproxactual χ−χ+⋅−=  (30) 

 
which will penalize the individuals not complying with (29).  

In this second series of tests, the following situations were 
simulated in order to emphasize the importance of introducing 
additional a priori information: 1) no a priori restriction, 2) void 
fraction only, 3) symmetry degree only and 4) both void fraction 
and symmetry degree are enforced. Hence, the solution of problem 
defined by (28) was achieved with specific parameters and 
procedures as follows: 

• Parent generation: 200 chromosomes in which the 64 values in 
the 3D search region defined in Fig.12 are randomly generated 
satisfying the internal contrast intrinsic limits (1 ≤ ig  ≤ 80) 

• Void fraction: enforced through reparation of the 
chromosomes: a) if approxactual α>α  then randomly chosen 

genes kg in (28) are increased until (23) is satisfied and b) if 

approxactual α>α  then randomly chosen genes kg  in (28) are 

randomly lowered until (23) is satisfied 
• Symmetry degree: enforced through penalization of the fitness 

function according to (30), that is, the penalty is proportional 
to the difference between actualχ  and approxχ   

• Reproducing population: two chromosomes are randomly 
chosen from the first 20 best fit parents to generate 20 
descendents by arithmetic crossover (Eq.20 with 10=δ ) and 

20 descendents by geometric crossover  
• Mutation: each mutant chromosome has 20% of its genes 

randomly replaced by minσ  or maxσ , with equal chances. 
Each generation has 60 mutants. 

• Selection: the 200 parents and the 100 descendents are 
altogether ranked, the first 200 chromosomes are selected for 
the succeeding parent population 

• Target value: 410−  or 100 generations (approximately 10000 
evaluations of the fitness function). 

Pyramidal excitation was used in all cases aiming to enhance 
convergence. A Pentium III based computer (1.2GHz single 
processor with 1GB memory) was used for the calculations. In this 
machine, each evaluation of the fitness function takes approximately 
4 seconds,  mainly expended to solve the 24000N.N.N zyx =  linear 

equations given by (13). A modified version of the conjugate 
gradient method given in Press et al. (1992) was used to solve these 
equations (the problem matrix was assembled directly on the storage 
vectors). Other significant time consuming tasks are the generation 
of random numbers and the multiplications implied in the extended 
arithmetic reproduction strategy (Eq.20).  

Convergence results and the corresponding chromosomes are 
shown in Figure 13. It is clear from these graphs that the 
simultaneous enforcement of void fraction and symmetry 
restrictions significantly enhances the quality of the reconstructed 
chromosome (cf the correct one in Fig.12). After the same amount 
of evaluations of the fitness function the other simulations produced 
poor results, particularly when no a priori restriction is enforced. It 
is also interesting to notice that, in the void fraction only case, the 

solution has probably been trapped by a local minimum surrounded 
by a hyper-plateau such as the one in Fig.5 for classical Dirac 
excitation.  

Conclusions 

The application of electrical impedance tomography techniques 
in industrial processes is of great interest, particularly for those 
involving multiphase flow equipments due to the strong relation 
between their global performance and the characteristic organization 
of the flowing phases (flow regimes). Despite this, from an 
industrial point of view, there are still several issues to be 
considered, among which probably the most important one refers to 
consistency aspects of the final images.  

The approach adopted in this work consists in formulating the 
reconstruction problem (as defined by Eq.5) in terms of an error 
functional expressing the difference between an approximated and 
the actual contrast distribution (image), from which one has access 
only indirectly through measurements of the boundary charge 
distribution that results from given boundary excitation conditions.  

Numerical simulations have been carried out aiming to 
demonstrate the feasibility of our approach. The sensing volume 
was a 1:1:3 parallelepiped with voltage profiles imposed on its 
longitudinal boundaries (excitation) and no-flux condition imposed 
on the transversal boundaries. The flowing two-phase mixture 
corresponds to distillated water ( 80=σ ) with a small three-

dimensional air inclusion ( 1=σ ) placed as specified in Fig.1, 

which is obviously not a realistic situation (a cubic bubble) but 
represents a much more difficult measurement condition and, 
consequently, a more severe test to the proposed formulation of the 
reconstruction problem. Approximated contrast distributions are 
generated by translations of a prospective inclusion and the resulting 
electrical charge distributions, calculated with (3) and the 
appropriate boundary condition, are used in (8) to construct error 
surfaces (Figs. 4, 5 and 6).  

It is clear from these results that a close match between the 
actual and the approximated contrast distributions is associated with 
a pronounced minimum on the error surface, which indicates that, 
positively, a formulation as proposed in (8) allows the solution of 
the inverse problem (5) and to reconstruct the internal constitution 
of the sensed medium. This approach has several important 
advantages: the formulation is so that a true 3-dimensional 
reconstruction is achieved with no restrictive additional assumptions 
and free of averaging effects for sufficiently extended and dense 
mashing of the measurement volume. Another important advantage 
concerns the straightforwardness of introducing additional useful 
information for the reconstruction procedure (regularization, 
redundancy, etc.). A good example of the importance of this last 
feature is the development of multimodal tomographic techniques, 
in which objects faintly observable with one field presumably could 
be observed with other type of sensing field.  

Some drawbacks are also evident and will certainly demand 
research efforts to overcome them. Probably the most important one 
is that the procedure proposed here is intrinsically iterative, thus, in 
principle, not well suited for real time implementation.  In spite of 
the difficulties that may arise from this, the fact that direct imaging 
techniques may provide very good initial approximations of the 
actual image (thus demanding a few refinement iterations) and the 
exponentially growing computational power of most common 
platforms (processing speed, parallelization, etc.) will, in our belief, 
make this an irrelevant issue. 
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Figure 13. Convergence results and chromosomes of t he 3D search problem (28) for pyramidal excitation in function of the number of evaluations of the 
fitness function. 
 

Acknowledgements 

Support to this work was provided by FAPESP through grants 
98/12921-1 and 99/02821-2. 

References 

Allers A.; F. Santosa, 1991, “Stability and resolution analysis of a 
linearized problem in electrical impedance tomography”, Inverse Problems, 
vol. 7, pp. 515–33. 

Borcea L., 2003, “Electrical impedance tomography”, Inverse Problems, 
vol. 18, no. 6, pp. R99-R136.  

Calderon A.P., 1980, “On an inverse boundary value problem”, Seminar 
on Numerical Analysis and its applications to Continuum Physics – Brazilian 
Society of Mathematics, pp. 65–73. 

Cherkaeva E. and A. Tripp, 1996, “Inverse conductivity problem for 
noisy measurements”, Inverse Problems, vol. 12, pp. 869–883. 

Cho K.H., S. Kim and Y.J. Lee, 2001, “Impedance imaging of two-
phase flow field with mesh grouping method”, Nuclear Engineering and 
Design, vol. 204(1-3), pp. 57- 67. 

Cohen L., 1995, “Time Frequency Analysis”, Prentice-Hall, Englewood 
Cliffs, 320p. 

Davis L., 1991, “Handbook of Genetic Algorithms”, Van Nostrand 
Reinhold, 385p. 

Dobson D.C., 1992, Estimates on resolution and stabilization for the 
linearized inverse conductivity problem, Inverse Problems, vol. 8, pp. 8 71–
881. 

Engl H.W., M. Hanke and A. Neubauer, 1996, “Regularization of 
Inverse Problems (Mathematics and its Applications)”, Kluwer Academic 
Publishers, vol. 375, 321p. 

Figueroa T.P. and P. Seleghim Jr., 2001, “Sensitivity Analysis of 
Different Sensing Strategies for Electrical Impedance Imaging of Two-Phase 
Flows”, Journal of Electronic Imaging, vol. 10, no. 3, pp. 641-645. 

Gen M. and R. Cheng, 1997, “Genetic Algorithms & Engineering 
Design”, Wiley  Interscience Publication, 432p. 

Goldberg D.E., 1989, “Genetic algorithms in search, optimization, and 
machine learning”, New York: Addison-Wesley, 432p. 

Hadamard J., 1902, “Sur les problèmes aux dérivées partielles et leur 
signification physique”, Bulletins of the University of Princeton, vol. 13, 
pp.49-52. 

Holland J.H., 1975, “Adaptation in Natural and Artificial Systems: An 
Introductory Analysis with Applications to Biology”, Control, and Artificial 
Intelligence, The University of Michigan Press, 211p. 

Hsiao C.T., G. Chahine and N. Gumerov, 2001. “Application of a 
Hybrid Genetic/Powell Algorithm and a Boundary Element Method to 
Electrical Impedance Tomography”, Journal of Computational Physics, vol. 
173,  pp.433–454. 

Knowles I., 1998, “A variational algorithm for electrical impedance 
tomography”, Inverse Problems, vol.14, pp. 1513–1525.  

Kohn R.V. and M. Vogelius, 1984, “Determining conductivity by 
boundary measurements”, Communications on Pure and Applied 
Mathematics, vol. 37, pp. 113–123. 

Kohn R.V. and M. Vogelius, 1985, “Determining conductivity by 
boundary measurements:  2. interior results”, Communications on Pure and 
Applied Mathematics, vol. 38, pp. 643–867. 

Lányi S., 1998, “Analysis of linearity errors of inverse capacitance 
position sensors”, Measurement Science and Technology, Vol. 9, pp.1757-
1764. 

Michalewicz Z., 1996, “Genetic Algorithms + Data Structures = 
Evolution Programs”, New York: Springer-Verlag Berlin Heidelberg, 387p. 

Michalewicz Z., T. Logan and S. Swaminathan, 1994, “Evolutionary 
operators for continuous convex parameter spaces”, Proceedings of the 3rd 
Annual Conference on Evolutionary Programming, A.V. Sebald and L.J. 
Fogel (editors), World Scientific Publishing, pp.84-97. 

Mühlenbein H. and D. Schlierkamp-Voosen, 1993, “Predictive Models 
for the breeder genetic algorithm I. continuous parameter optimization”, 
Evolutionary Computation, vol. 1, pp. 25-49. 

Nachman A.I., 1988, “Reconstructions from boundary measurements”, 
Annals of Mathematics, vol. 128, pp. 531–576. 



A Specialized Genetic Algorithm for the Electrical Impedance Tomography of ... 

J. of the Braz. Soc. of Mech. Sci. & Eng.     Copyr ight  2006 by ABCM      October-December 2006, Vol. XXVIII, No. 4 / 389 

Nachman A.I., 1996, “Global uniqueness for a two-dimensional inverse 
boundary problem”, Annals of  Mathematics, vol. 143, pp. 71–96. 

Press W.H., B.P. Flannery., S.A. Teukolsky W.T. and Vetterling W. T., 
1992, “Numerical Recipes in Fortran”, Cambridge University Press, 966p. 

Radicliffe N., 1990, “Genetic neural networks on MIMD Computers”, 
Ph.D. thesis, University of Edinburgh, UK, 90p. 

Rolnik V.P. and P. Seleghim Jr., 2002, “On site calibration of a phase 
fraction meter by an inverse technique”, Journal of the Brazilian Society of 
Mechanical Sciences and Engineering, v.24, n.4, p.1 – 14. 

Seleghim Jr. P. and E. Hervieu, 1998, “Direct imaging of horizontal gas-
liquid flows”. Measurement Science & Technology, vol.9, no.8,  pp.1492-
1500. 

Seleghim Jr. P. and F. Schiavon, 2001, “On-site calibration of a phase 
fraction meter by an inverse technique”, Proceedings of the 4th International 
Conference on Multiphase Flow, New Orleans – USA (2001). 

Seleghim Jr. P. and F.E. Milioli, 2001, “Improving the determination of 
bubble size histograms by employing wavelet de-noising techniques”, 
Powder Technology, vol. 115, pp.114-123. 

Spears W. and K. De Jong, 1991, “On the virtues of parameterized 
uniform crossover”, Proceedings of the Fourth International Conference on 
Genetic Algorithms, San Mateo – USA, pp. 230 – 236. 

 


