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The main objective of this work is to contribute to the development of a new tomographic
reconstruction method well suited for processing signals obtained from electrical or other
soft sensing field probes. The adopted approach consists in formulating the reconstruction

problemin terms of an error function, which assesses the difference between a prospective
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and the actual internal contrast distribution (3D image), and searching for its minimum
with the help of a specialized genetic algorithm (GA). Numerical simulations have been
performed to demonstrate the feasibility of the proposed reconstruction method, as well as
to emphasize the relation between the ill-posed nature of the problem and the topology of
the minimization hyper-surface, and the importance of considering this relation when
designing the numerical solution procedure. Results show that convergence is greatly
enhanced when a priori information isintroduced in the error function.
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Introduction

Industrial process tomography, and particularly ligppons
involving multiphase flows, should be based on pemsive and
sufficiently robust sensing techniques to be apple in
uncontrolled environments. For instance, despigedtality of the
images obtained with the use of X rays, positrorission and
nuclear magnetic resonance, the use of such eqotgméhe harsh
conditions of a fluidized coal combustor or an umdder petroleum
pipeline is highly problematic. The natural choicesually fall
within techniques based on electrical impedance soremments
(conductive, capacitive or inductive) or on acatatmeasurements
(transmission, scattering, time-of-flight), maintiue to their low
cost and robustness. The intrinsic problem relatethese sensing
techniques is that the acquired data are relatthieteensed medium
through strongly ill-posed differential/integral enators. In addition
to this, it is known that reconstruction techniqueased on
linearization or some other artificial regularizeti procedure
achieve stability at the cost of resolution andindggiishability, with
possible spurious artifacts which need to be ctetea posteriori
(Lanyi, 1998; Knowles, 1998 and Borcea, 2063).

One of the main purposes of this work is to contiébto the
development of new reconstruction algorithms waltesl for soft
field sensing techniques, and particularly for #leal impedance
tomography (EIT). Our basic idea is to start fronpraspective
contrast distribution of the sensing volume, bdsedhstance on the
qualitative images delivered by a direct imaginghba (Seleghim
and Hervieu, 2003), and to refine it iterativelytiithe predicted
variables match the corresponding experimental ureagents. In
an EIT problem this can be done by devising anrefuaction
assessing the difference between the actual andorbepective
electrical contrast distribution (conductance anm#ivity), through
the comparison of boundary measurements (elecuitet or
charge distribution respectively) with the corrasgiag predictions
from the model. The reconstruction procedure becorieis a
nonlinear minimization problem on the coefficientsf a
parameterized or a discretized version of the prctspe internal
contrast. Parameterization can be achieved acgprttin many
possible approaches such as, for instance, Fo@gderon, 1980;
Allers and Santosa, 1991) or wavelet basis (Dob$882). Another
possible alternative is to restrict the contras$triiution on a
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discretization grid of the sensing volume. Althowsghadaptive grid
would certainly be an optimal choice, as discudsgdCherkaeva
and Tripp (1996), an equidistant grid has the dttarestic of
distributing errors more evenly.

Another problem that we intend to approach in thisk is the
design of an efficient and robust numerical minimti@an procedure
for the nonlinear EIT problem. Even though existenand
uniqueness of solutions hold for a large classratfjical situations
(Kohn and Vogelius, 1984, Kohn and Vogelius, 19B&chman,
1988 and Nachman, 1996), if no a priori restrictisnmposed the
inverse relation between excitation-response and ititernal
contrast distribution is discontinuous (Hadamard,902).
Consequently, the problem becomes extremely seasiind
probably impossible to be solved within realistigperimental
conditions, where boundary values are not fully vnp
measurements are noisy, calculations are subjectedund-off
errors, etc. Numerical regularization techniquesthus mandatory
in order to palliate the intrinsic ill-posed mathatinal characteristic
of an EIT problem. There is, in fact, extensiveréture on such
numerical procedures which assure convergence coinstruction
algorithms by enforcing some a priori informatidsoat the internal
contrast, at the eventual cost of introducing spusiartifacts in the
images (Englet al., 1996). However, the question of which
regularization methods are more effective regardieggiven
practical situation in multiphase flow EIT problerosnstitutes an
open and interesting research area.

In addition to the high sensitivity to noise andimd-off errors,
the intrinsic ill-posed nature of the problem isahssociated with
irregularities on the optimization hyper-surfacdébe so-called
pathology of the optimization problem, which canskead or
restraint the convergence of the numerical proedémong such
pathological irregularities, which generally sumduthe global
minimum, are multiple local minima (which is chaextstic of void
fraction probes inverse calibration problems, ladighaped hyper-
channels, hyper-saddles or hyper-plateaus (Rolntk 8eleghim,
2002). Convergence to the correct solution in saehditions is
extremely difficult. For instance, the minimizatiggmocedure will
most likely converge to the wrong minimum, in ttese of multiple
local minima, if initial guesses are not close egtoto the global
solution. Or else, if the correct solution is lathtinside a helical
channel a marching type optimization procedure gaothverge only
if extremely small refinement steps are executedyhich situation
the overall computational time may become prohibitilt is
important to stress that both excitation/measurémtrategies and
the form of the error function, with or without rdgrization terms,

ABCM



A Specialized Genetic Algorithm for the Electrical Impedance Tomography of ...

have a major influence in these pathological festuCherkaeva
and Tripp, 1996; Figueroa and Seleghim, 2001).

Under these circumstances a reliable and effic@timization
procedure should be able to handle such problentagiclogical
features, which are a consequence of the ill-pos®dre of the
inverse EIT problem, and, also, of converging rptd the correct
solution if on-line application of the method isvesaged. A
possible strategy to obtain such performance idmbine the
qualities of a directional type method to the véuof a random
search method. The first is necessary to accelemteergence in
regular regions of the optimization hyper-surfasjle the last is
extremely important, for instance, to escape frogal minima, to
correct a wrong convergence trajectory or to pregiren a flat
region of the optimization hyper-surface. Importariasses of
optimization methods that comply with these perfance
requirements are the so-called evolutionary methebih, in a
certain way, mimic the biological evolution procemsd Charles
Darwin’s natural selection theory (survival of tigest) for solving
complex and/or high dimensional optimization profde In
agreement with these ideas a specialized genefizitdm (GA) is
proposed in this work to solve the inverse nonkrn€l problem.
Among many interesting characteristics, which casttiwith most
classical optimization methods, a GA requires ncallogradient
information and, since the search for the minim@rpérformed
within populations of possible solutions, it candassily parallelized
to handle multiple regularized variants of the erfanction.
Furthermore, as it will be shown in next sectioms,GA can
incorporate in very a straightforward manner a prioformation
about the problem, such as bounds on the optiroizgtarameters
(local contrasts), phase fraction (global contrasyymmetry, etc.
(Hsiao et al., 2001).

Statement of the Problem

The governing non-dimensional equations of an etedt
impedance tomography problem can be derived fronxwéd
equations according to the following:

i[@—oi(p) =0 in Q 1)
®EN) = Qoxe(E.) for (£,1)000Q &
Q(e.n) = -oloM|, for (£,n)00Q 3)

where @ represents the electric field; the medium’s contrast
(permittivity, conductivity or permeability¥exc(€,n) the excitation

0(%,Y,2) = O Pexc(€,0), QE.M) ] )

The dimensionality involved in the last expressionss
deliberately made explicit to stress the followpant: while in the
direct problem (4) a 2D profile and a 3D distrilouti generate
another 2D profile, in the inverse problem (5) t&D profiles
generate a 3D distribution. In other words, in direct problem the
information originally distributed over 5 dimensgis compressed
into 2 dimensions with expected degradation or.ld&sus, the
responseQ(§,n) can be seen as an imperfect projection of the
internal contrasti(x,y,z). In the inverse problem this imperfect
Q(&,n) is used to reconstruct the(x,y,z), and the problem is
clearly ill-posed.

This being, leto,,a be the actual electric contrast witinto
be reconstructed by refining a prospective (or ppreximated)
contrast distribution denoted spprox. The corresponding responses
to a common excitation profilgexc(§,n) are denoted respectively
Qapprox(§,n) and Qacwal(§,N) , the first being determined through a
numerical model of the problem and the later byedir
measurement. According to (4) this can be expressed
mathematically by the following

m

Qapprox(& , N) = D[ Qexc(& , I’]),Gappmx(X,y,Z)] (6)

QactuaI(E ’ n) eép D[ (pexc(z ’ n)xoactual(xxyvz)] (7)

The difference between,cya and oapprox (@S seen through a

particular perspective defined byexc) can be quantified through
the following error function

e= || Qactual™ Qapprox" (8)

In the above expressiong. . iS not known a priori an®@actual
must be determined by experimental measurementie V@pprox
can be formally calculated throudh (EQ. 6) SiNC&0approx @Nd @y
are both known. More preciselRapprox iS determined in two steps:

1 — calculate the electrical fielgdin Q by solving a numerical
version of Eq. 1 (finite difference, finite elementetc.) with
O = Oapprox and Pexc(§,n) imposed on the boundary according to
Eqg. 2 and

2 — use the solutiop and gapproxin expression (3) to calculate

voltage profile andQ(§,n) the measured profile (electric charges orQapprox(§,1) - ONce Qactwar @and Qapprox have been determined, the
current). The variablespex. and Q represent the stimulus anderror between them can be assessed through expré8ki

response respectively, and shall be used to detegmiand to
reconstruct the internal contraswithin the sensing volum@ . It is
also possible to adopt a Neumann sensing strategged on
injecting currents and measuring voltage profileeng the
boundary, but this usually produces data poorlyetated with the
internal contrast distribution.

In mathematical terms, stimulus and response amendeally
conjugated to the internal contrast through a foroperator O
(direct problem)

Q(EN) = U @exc(€.1),0(x,y,2)] (4)

The reconstruction problem can thus be interpratethverting
O with respect ta, that is (inverse problem)

Within this framework, the reconstruction procedeaensists
simply in searching for the approximated contrasirihution Gapprox
that minimizes the error (8), so that a good mdtetween Qactal
and Qapprox is achieved.

From a practical point of view, although theordtica single
pair of conjugated distribution®exc and Qacwal iS sufficient to

determine the corresponding contrast distributigr,, — theorem
5.1 in Nachman (1988) — the presence of noise araVaidable
experimental errors can produce inconsistent residpending on
the sense that the problem is being solved. Iditeet problem (4)
the errors are strongly damped and the result i gqose to the
correct one. On the other hand, in the inverselpmolf5), the errors
are greatly amplified and the reconstructed contlizribution may
be completely corrupted.
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This issue has been studied in previous works.ifkgtance, in
the problem of determining bubble sizes from pigrdength
histograms, Seleghim Jr. and Milioli (2001) adoptadsimilar
approach as the one adopted here and observaglttate errors of
less than 0.001% in the input data could distoet ¢alculations,
producing astonishing deviations of more 1000% ine t
reconstructed distributions. A plausible strategy Handle this
problem, already tested with success in ill-posgdgral equations
associated to inverse calibration problems (Sefeghdir. and
Schiavon, 2001), is to execute redundant measutsresmd to
consider them altogether in a same error functir. errors and
noise having a random ergodic behavior it is vékely that the
information degraded in one particular test may rbeovered

through other experiments. Let th{iglexc(5,n ,)fbr i=1,2...N, be
a sequence of different excitation profiles seqaéntapplied on

the boundary surface in a time interval that maycbasidered
negligible compared with the evolution of the castrdistributioro

due to the flow. To eackpiexc(E,r]) it is possible to associate two
response profiles by direct measurements and bunmasg a
COMMONO,ppr0x Synthetically this can be written as:

measurements i
actual

{dhrc)

—
Oactual ©)
equation[4] {
—
O gpprox

i
approx}

{dhoc)

Hence, a global error function can be constructexinfthe
individual errors

& = || Qia\ctual_QEapproxl , i=123..N (10)
and be expressed by
E = (11)
if the amplitudes are to be emphasized or, altereist
N
I (12

1LY

if both amplitudes and inclinations should be siawously
considered. These types of global error functaliev not only the
solution of the inverse problem within realisticarconditions, but
also contributes in regularizing some of the magative features
of the optimization surface, such as saddle poisitsrp ridges,
boundary minima, etc. These and other points velillustrated by
the numerical experiments presented in the sequel.

Numerical Simulations and Error Surface Analysis

To demonstrate the feasibility of the proposed metoiction
method let us consider the problem depicted inFigel, in which
the axes x y z describe the sensing vol@nand §,n) describes its

boundaryoQ. A discrete version of the governing Eq. 1 can b

derived in Cartesian coordinates, according to atrak finite
difference scheme:
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AQ k-1 +B@ 1k +Ctjk +D@ jk +EPaajk +FQ sk +GPjka = 0 (13)

where the coefficients are given by

2
A
A = [A_)Z(j (40i,j,k = 0i,jk+1 +O'i,j,k—1) (13.8)
A
B = (A;j (4011x =01 o1k + 011k (13.b)
C-= (40i,j,k = OisLjk +0'i—1,j,k) (13.c)
Ax ax\
D = -80i,jk l+( ] +[—j (13.d)
Ay Az
E = (40i,j,k = 0i-1,jk +0i+lj,k) (13.e)
Ax 2
F= (A—y] (401,1x = 01 -1k + 01 jak) (13.9)
A
G = [A)Z(j (40|]k —0j,jk-1 T 0j, ]k+1) (139)
The implicit notation is the following
@ik = (i =) ax,(j-D Ay, (k-1 22)] (14)
ok = ol(i -1, (j-1 Ay, (k -1 A2)] (14.2)
i=12..Nx, j=12..Ny e k=12..N; (15)

The limits in (15) where fixed alNx = 20,Ny = 20 andN; = 60
after a convergence analysis.

Figure 1. Representation of the simulated problem, Eq.13, under different
excitation or boundary conditions. The indexes m an d n represent the
position of the cubic inclusion on the vertical or on the horizontal search
planes.

Boundary conditions were adopted to simulate a comm
practical situation in which the longitudinal facase grounded
except in a single point where an excitation vatayf 10V is

pplied (Dirac excitation). Null flux conditionseaapplied on the
ransversal sections to limit the extension of se@sing volume.
The actual permittivity distribution was defined tepresent the
presence of a small 3D inclusion occupying a uyitaesh volume
at the position indicated in Fig.1. Contrast valwe=re chosen to
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model an air-water mixture, that i$acwa =1 within the inclusion

(air) and oaciial = 80 outside of it (water). To be able to exhibit the

irregularities of the optimization hyper-surface 2adimensional
problem was first studied. Different contrast apr@tions o approx
were generated by translating the prospective smmfualong the
horizontal and vertical planes, indicated in grayHig.1. These
contrast distributions were used in (4) (with tfreeme excitation
profile) to estimateQapprox(§,N)[mn ,» M and n defining the position
of the inclusion as indicated in Fig.1. Subsequergtror values
e(m,n) were calculated with (8), in whidacwa(§,n) was obtained
with the same excitation profile and the actualt@st distribution.
The results are shown in Fig.2.

Figure 2. Error surfaces calculated for a prospecti  ve inclusion being
translated along the horizontal (left) and vertical (right) planes indicated in
gray in Fig.1.

We can clearly observe that these error surfacésgbiexan
extremely pronounced minimum where the inclusioratcin each
other,i.e. when Oacwal = Gapprox, indicating that the reconstruction

can be accomplished by finding the global minimuim(&). This
approach has several advantages. First, there @reestrictive
hypotheses, such as the sensing field being 2-dimeal and
parallel, what is not likely to occur in high ccest flows even with
the use of confinement techniques (guard electjodesaddition,
this approach is virtually free of physical averapieffects and
intrinsically 3D, provided the modeled regions ugatm and
downstream from the excitation and measurementretbes are
sufficiently long. Furthermore, the formulation thie problem is so
that the introduction of additional information tleantributes to the
reconstruction process can be accomplished in
straightforward manner. This last point, probablye t most
promising implication, concerns the developmenttaf so called
multimodal tomography based, for instance, on giamgous
electrical and acoustical measurement, in whiclpothetically, an
object not seen by one would be captured be ther gtinsing field.

An analysis of Fig.2 also reveals the potentiabpms related
to the topology of the error surface. In particuklie existence of
saddle points, boundary minima and, above allntaly flat region
surrounding the solution minimum (plateau), can iosesty
compromise the effectiveness of a numerical miratnn methods.
For example, a marching method based on the lowdination
would inevitably stop if the optimization trajecyofalls into this
plateau. Otherwise, the same minimization procedureuld
converge to some point on the contour if the stgrfioint had been
set between the ridges and the external bounddrhds. problem
can be interpreted as the manifestation of thpaied nature of the
inverse problem as defined by (5), according to #pproach
adopted here. There are some research work congdirése issues
but good understanding of them has not yet beeiessih

Previous experimental and numerical results hawevshthat
the form of the excitation profile has a profounifeet on the
topology of the error surface (Cherkaeva and Trig96; Figueroa
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and Seleghim, 2001). In the case of classical Dévagitation, the
application of a punctual voltage and groundingh#f rest of the
boundary is ineffective because most of the sensiteggy tends to
flow out of the measurement volume through ele@sodear the
excitation site. This implies in an intrinsic laa¥ sensitivity,

especially in the central regions of the domaint adequately
illuminated by the sensing energy, and is directiated to the
plateau surrounding the solution minimum. A possibblution to
this consists in constructing an excitation profit@t induces the
electric sensing field to cross the measurementrwel This can be
accomplished by applying a voltage profile thatiesrgradually
from a maximum to a minimum value occurring at apfgopoints:

a current line will probably not be deflected besmuhe regions
neighboring its injection site have similar potatdi Different

excitation profiles can be generated accordinghis principle.

Starting from the classic Dirac profile (Fig.3a) myramidal

distribution can be generated by varying the pdaerftom its

maximum value of 10V, at the center of the uppemulary surface,
to a minimum value of zero occurring on the mediagment of the
opposed side (Fig.3b). Since the pyramidal distigiou presents
some practical difficulties to be put in practiae, alternative profile
which roughly follows the principle mentioned abowan be
generated by translating the excitation site altregupper median
segment. This profile will be denoted ridge-Diraads shown in
Fig.3c.

Figure 3. Different excitation profiles: (a) classi
(c) ridge-Dirac. Points A, B, C, D, A, B, C' and
vertices of the sensing volume indicated in Fig.1.

cal Dirac, (b) pyramidal and

D’ correspond to the

These excitation profiles were used in the numesicaulations
to generate error surfaces e(m,n), showed in Figdrand 5, for
approximated contrast defined according to the iptesvexample,
indicated in Fig.1. In order to provide a good camgon and to
ave a precise idea of the kind of improvement ¢thatbe achieved
through these optimized excitation profiles, thenfer results
(Fig.2) corresponding to classical Dirac excitatiovere also
included in Figures 4 and 5. Considering the imgetation of a
numerical minimization procedure capable of autooasty
locating the solution global minimum, that is, dffining the
approximate permittivity distribution so tha&tpprox - Oactual, SOMe

main aspects concerning the nature of these eurfsices must be
stressed out. First, the distinction between tHatism minimum

and the rest of the error surface has been signilic enhanced,
what contributes to extending its attraction regi@econd, the
topology within these dominance regions have alenbimproved
in the sense of being better distributed and asgumgood

convergence conditions for minimization methods take the local
inclination into account. It is also clear that sowf the negative
features concerning the convergence, such as theworidges,
have been altered in a way that it is possiblénd & minimization
trajectory leading uniformly to the true minimum.
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Classical Dirac excitation Ridge-Dirac excitation (bottom) Pyramidal extiga (bottom)

Figure 5. (Continued).

aaSs
P
By ==

All these error surfaces can be combined into tlebaj error
mfunction defined in Eq.11 and, by doing so, sorhéhe negative
features of its topology are improved. In what @ns the success
of a numerical minimization procedure, probably thest important
improvement was obtained on the plateau surrountiagsolution
minimum, within which the convergence rate is digantly
reduced. As it can be observed in Fig.6 this fggfion has been
averaged out and a uniform inclination around tbkit®n was
obtained. A much better enhancement of the indtnatan be
obtained through the error functional defined ir2)(1although
multiple minima are introduced as it can be obstind=ig.7.

Ridge-Dirac excitation (bottom) Pyramidal eatibn (bottom)

Figure 4. Error surfaces generated for the excitati  on profiles shown in
Fig.3 and for the prospective inclusion being displ aced along the
transversal plane (axes indicate the displacementp  arameters).

o

Figure 6. Macro-error functional defined by (11) ob tained from the
previous error surfaces (Figs. 4 and 5).

Ridge-Dirac excitation

Figure 7. Macro-error functional defined by (12) ob tained from the
previous error surfaces (Figs 4 and 5).

Pyramidal excitation Classical Dirac excitationtfbm)

Figure 5. Error surfaces generated for the excitati  on profiles shown in . . . T .
Fig.3 and for the prospective inclusion being displ aced along the GenetchIgorlthmsand its SpeCIahzatlon totheEIT

horizontal plane (axes indicate the displacementp  arameters. Problem

A Genetic Algorithm (GA) is a stochastic search oalipm
based on the concepts of evolutionary theory (Gaiglb 1989;
Holland, 1975). More specifically, solution caralies of the
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optimization problem (individuals) compete amongntiselves for
the opportunity of transmitting their charactedsti to new

generations of solution candidates generated froen dld ones
(reproduction). The best fitted individuals havetérechances of
reproducing, i.e. those for which the optimizatfanction evaluates
to more optimized values are more likely to repamselection),
so that good characteristics tend to be preservesw generations
(elitism). Reproduction is also affected by randarhanges
occurring at a certain probability (mutation), whienables the
emergence of new characteristics, not initiallyspre in the parent
generations, and their exploration through theisahor decline of

the mutant individuals. The application of thesenaapts into a
particular optimization problem requires a spetiaimalism which

will be described in the sequel for the EIT problegeated in this
work.

Considering the error function defined in (8) anbet
discretization proposed in (13) and (14), it isgioe to establish
that

e = e[ {0ijk}, Pexc] (16)

The excitation profile being fixed and imposed exadly, the
error depends only on the contrast vector whichtrhesrefined to
minimize (16). In other words, Eq.16 will be chosenthe fithess
function and the corresponding individuals (or chogsomes) will
be defined as

6 ={01,92.,.9i ,....On } 17)
where N represents the total number of nodal pointsQ
(N =Nx.Ny.N;).The i-th contrast valug in (17) corresponds to a

gene of a particular individual and is related tacke nodal
contrasw; j though the following expression

Qi+ (j-)Nx+(k-)NxNy = Oijk (18)

in which the indexes i, j and k vary according18)( Depending on
the representation of the genes the GA is refetoetie binary-
coded, such as proposed by Holland (1975), orifigatoint-coded
as employed by Michalewicz et al. (1994) and Chale2001) for
dealing with EIT problems. Real-coding is more aditto

multidimensional problems with non-trivial restiat and will be

adopted in this work (Michalewicz, 1996).

A generation is defined as a collection of M indivals

Gi ={0;,95,..0y} fori = 12..,M (19)
which will reproduce to form the succeeding geriemataccording
to the corresponding values of the fitness funcsiorthat the best fit
ones have better chances of reproducing. The raptiod process
is accomplished by combining the genes of two oremparent
individuals. This can be done by merging randongfirced genes
segments (geometric crossover: Radicliffe, 1990ea8p and De
Jong, 1991) or by summing them up according toifpegeights
(arithmetic crossover: Davis, 1991; Gen and Chet§97;
Muihlenbein and Schlierkamp-Voosen, 1993).

In this work we adopted an extended arithmetic aépction
strategy with P parents combining to generate oescehdent

according to the following formula:

(20)

6=3

i=1

|:5)\i6'i +

where the weights; vary randomly restricted to
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A= 1 (21)

e

i=1

and d is a positive parameter governing the extensiaside the
hyper-polygon formed by the parents in which dedeats can be
generated. This procedure has an important adveuategy standard
weighted averaging (linear crossover) defined by

Ai Gi

v

G =95 (22)

i=1

because in this last the descendents are no hoeogsy
distributed over the parents hyper-polygon. Todrattustrate this
point consider the 2D example in which the paregisen by
01 = (10,02), 62 = (02,10) and 63 = (1.3,1.2), combine to
generate 50000 descendents according to (20) a@y (@th
random weights satisfying (21) anii=1.3. The following figure
shows the polygon formed by these three parengnde vertices)
and the corresponding descendents (dots).

' | i ' ' i
01 02 03 04 05 06

.
1,5

Figure 8. Descendents generated by fuzzy crossover (left) and linear
crossover (right) from three parents in the plane, with weights satisfying
(21) and 3= 1.3.

The reproduction scheme produces a steady convarderthe
optimal solution but suffers from some drawbacksfasinstance,
the trapping by local minima or the dramatic cogesice decrease
due to plateaus in the optimization hyper-surfabe.avoid this,
from time to time, at a given probability, sometioé reproduction
rules are intentionally broken in a way that thenayated
descendents may acquire new features not necgsseedent in the
parent individuals. This process, called mutatiaisp assures that
no point in the optimization hyper-surface has 4 probability of
being considered as a solution candidate, whichli@spthat
reaching the global optimal is at least possibhelependently of
initial guesses or how complex the pathology of fieblem is.
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Mutation can be implemented according to differapproaches
depending on the coding of the chromosome (binanga coded).
The mutation strategy adopted in this work condistselecting a
random position in the chromosome and changingaheesponding
gene by another number randomly chosen betweerfimed lower

and upper limits (Cheet al, 2001). These limits correspond to
Omin =1 and o, = 80 representing respectively continuous air 6.

phase and continuous distillated water phase.

A very important advantage of genetic algorithms what
regards their use in the solution of inverse ils@d problems is the
possibility of introducing additional restrictionsepresenting
information known a priori. As already mentionedtheut this, the
problem becomes extremely sensitive to experimemtdlround off
errors, and probably unsolvable under realistic eexpental
conditions. In our case, it is possible to calaulatbm the signals
delivered by a direct imaging probe, and approgriedlibration
models, the instantaneous volumetric void fractibthe flow (a ),
in addition to the initial guess contrast distribat within the
sensing region. In mathematical terms this carxpeessed as

a = IQP(x,y,z)o( X,y,z)dxdydz (23)

where P stands for the calibration model. For #ieef simplicity
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rule given by (20). A small percentage of descetslsuffer

mutation at random positions in the chromosome.

5. A priori information regarding the void fraction énforced

by reparation of the descendent chromosomes soathat
individuals satisfy (23). The offspring generatien thus
created.

The fitness function of each offspring chromosonse i
evaluated as described in step 3 above. Convergence
achieved if the minimum fitness value is smallearntha
predefined target and the solution is the assatiate
chromosome. The algorithm is equally stopped if tibtal
number of generations exceeds an allowable maximum.

7. Both parent and offspring generations are rankedrding
to the corresponding fithess function and the bests are
selected for reproduction and mutation as desdribthe
step 5 above.

8. lIterate steps 5 to 7 until convergence or the mawim
number of generations is achieved.

It is important to stress that the general perforceaof any
genetic algorithm depends on a fine tuning of m#i¢ parameters
such as the number of individuals in the parent affdpring
generations, number of combining parents and atemsion of the
corresponding hyper-polygon (respectively paramsefrandd in
Eq.20), mutation percentages and so forth. Intipsocedures such

we adopted P(x,y,z 1 so that the void fraction becomes simply theas the reproduction algorithm or the reparatioatsty have also a

volume integral of the internal contrast distrilbati Thus,
reproduction and mutation may be followed by an itamihl
restriction operator which assures that all deseetsdcomply with
(23). This can be done by simply rejecting the ahle descendents
(which is computationally inefficient) or by modiétion of the
reproduction and mutation algorithms (which is nalways
feasible). We adopted a strategy based on reparatithe unviable
descendents as described in Davis (1991), wherexiensive
survey on such procedures can also be found.

The last relevant genetic operation is the seleaifathe best fit
that will reproduce to form the next generationeféhare several
selection strategies, each with a number of paessitariations
depending on specific requirements or computatigeaformance
criteria. The most common strategy, called stodtiasbnsists in
assigning selection probabilities according to fitreess function of
each individual, in a way that the best fit onegehgreater chances
of being selected for reproduction. In this work adgopted the so
called deterministic selection, which consists ianking the
individuals based on their fitness value and selgch predefined
number of the best ones (elitism). Both parents descendents
were considered in the ranking process to enhamossaver
possibilities and to assure that a succeeding ggaeris never
worst than the previous one.

The basic implementation of our genetic algoritham doe
summarized in the following steps:

1. An initial generation of chromosomes is constructégth
random contrast values in (19), each complying veéth
overall structure given by the signals of the diietaging
probe (initial guess).

2. A priori information regarding the void fraction éhforced
by reparation of the initial generation so thatiadlividuals
satisfy (23). These constitutes the first pareniegation.

3. The fitness function of each chromosome is evathidte.1
is solved with the proper excitation condition giviey (2),
the corresponding response is calculated by mear{8)o
and its difference with respect to the correct ms=$
response is assessed by (8).

4. The best fit chromosomes are selected for repraztydte.
only those with the smaller values of (16), acaagdio the
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strong influence on the overall performance andtrbasconsidered
in detail. These points were cleared in this wogk dxtensive
numerical tests in which intrinsic parameters anatedures were
set so guarantee the best convergence of thedsstdepicted in
Fig.1. Whether this tuning is case-dependent oandtwhat would
be a case-independent tuning implementation ohatgealgorithm
is beyond the scope of this work and certainly espnts an
interesting and still open research topic.

Numerical Tests and Results

The error surface analysis described in previousmserevealed
important problematic characteristics of the optation surfaces
regarding the convergence of an optimization mettoothe global
minimum. These characteristics, which define thecalted
pathology of the optimization surface, were closebnsidered in
the implementation and tuning of the genetic athamidescribed in
the previous section. Thus, two series of numertests were
performed to demonstrate the ability of achievimgwergence to
the correct solution, that is, the contrast distiitn shown in Fig.1.
In the first series of tests only the position &€ tinclusion is
unknown, being its shape, size and contrast vakresvn by
hypothesis. In the second series of tests all &f & unknown,
except that there is an inclusion in a known seaggion contained
in the sensing domain. The most important diffeechetween these
tests regards the dimensionality of the associaptimization
problem: at maximum 3D in the first case while e second case
the dimension is equal to the number of discrabmatnodes
defining the search region. In the first seriesasfts all the three
excitation profiles given in Fig.3 were considergd order to
demonstrate the influence of an improved excitastmategy. The
corresponding results will be shown in the sequel.

Adopting the indices m, n and o to define the pasiof the
frontal lower left corner of the prospective inglurs as indicated in
Fig.1, the error function (16) can be written as

e(m,n,0) = el.{oli,j,k}lm'nvo,(Pech (24)

Allowing the prospective inclusion to move alongeth

transversal plane used to construct the optimigatiofaces of Fig.4
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(vertical search), the corresponding optimizatioobfem can be
mathematically defined as:

{0k} (25)

= Oactual = Min [e( munvo)]
1<sm<Nyx
1< n<Ny
o=fixed

m,n,0

Note that in (25) the total number of possible fposs that can
be occupied by the inclusion is[M, = 400, which corresponds to
the number of times that the fithess function niagsévaluated in an
exhaustive search for the minimum. In other wortl& genetic
algorithm or any other optimization method shoukl dapable of
finding the solution in much less than this in ard® be
advantageous. Similar tests were performed allgwhe inclusion
to move along the longitudinal plane (horizontarsé, Fig.5), that

IS
{0iik}], ., = Oawa = Min [e(m.no)]  (26)
Y 1l<ms<Ny
n=fixed
1<0<Nz

in which case an exhaustive search would requif@l,N- 1200
evaluations of the fitness function, and also ieslte whole sensing
domain (3D search), that is

{0k} (27)

= Oacva = Min [e( mlnlo)]
1<m<20
1sn<20
1<0<60

m,n,o

where the total number of evaluations of the fisnésnction is
Ny®l, M, = 24000.

The solution of these problems, i.e. (25), (26) é2d), was
accomplished through the procedure outlined in previous
section, with the following specific parameters @ndcedures:

¢ Parent generation: 10 chromosomes randomly gewe(tte
initial guess provided by the direct imaging prabedisregarded)
and satisfying the internal contrast intrinsic isnfl< g; < 80)

¢ A priori restrictions: void fraction is intrinsidgl satisfied
because the size of the prospective inclusiondsstime of the real
inclusion, so there is no need for reparation

* Reproducing population: the first and the secondt Lig
chromosomes combining to generate 4 descendents.

¢ Mutation: two individuals in each generation arecém to
mutate; only a single gene gi is replaced by a gandalue
satisfying the internal contrast intrinsic limits

¢ Selection: 10 best fit chromosomes are selectecbbttt (4
descendents plus 10 parents) according to theiedit function
values

« Target values10™**, which represents to the precision of the

machine, or 300 generations

The corresponding results are shown in Figures 81tobeing
one for each type of search (vertical, horizontaB@). Each figure
has three graphs for three different excitationfile® (classical
Dirac, pyramidal and ridge Dirac). The fitness ealwf the best fit
and of the worst fit individuals are plotted in leagraph in order to
assess the evolution of the population. These cgenee results
are summarized in table 1.

Several interesting features of the problem carumgerstood
from these results. First of all, in all three sthe pyramidal
excitation profile produced the fastest convergettceéhe correct
solution. The ridge Dirac excitation profile alsoves reasonable
results, with the advantage of being considerabiypker to
implement in practice. The worst results were oladi from the
classical Dirac excitation profile, having evenlddi to converge
after 1210 evaluations of the fitness function lie 3D problem
(Fig.11 on top). It is also interesting to notitwtt convergence is

J. of the Braz. Soc. of Mech. Sci. & Eng.  Copyr

ight O 2006 by ABCM

achieved in proportionally less iterations for 8i2 search cases, i.e.
those for which an exhaustive search is probabbhipitive in
practical applications. This confirms the abilityf @enetic
algorithms in  properly dealing with high dimensibtya
optimization tasks and sustains that they conetatgood approach
for solving EIT problems.

Another important feature regards the so-calledmptare
convergence, namely when the best and the worshiftmosomes,
and by consequence all the parent population, Wateally the
same fitness value (the difference is smaller tharprecision of the
machine). This happens when all the reproducingrabsomes are
located on the plateau around the global minimum tioé
optimization surfaces (see Figs. 4 and 5). Althoagloptimization
method based exclusively on the local inclinatioould certainly
fail, genetic algorithms rely on mutation to resueenvergence
after some generations, as can be observed fanicestin Figs. 9, 10
and 11. How many is “some” generations dependsgiycon the
pathology of the optimization surface: while preamatconvergence
was never observed in the simulations with pyramidaitation it
was observed in all tests with the classical Deacitation profile.
Also, comparing the classical and the ridge Diranvergence
curves (both exhibit premature convergence) it assible to
observe that the latter in all tests needed fewanmegations to
resume convergence.

1.0E+01 dirac excitation

\

98 110 122 134 146 158 170 182
# evaluations

1.0E+00
1.0E-01
1.0E-02
1.0E-03
1.0E-04
1.0E-05

1.0E-06
1.0E-07

fitness

1.0E-08
1.0E-09

14 26 38 50 62 74 86

1.0E+01 ridge dirac excitation
1.0E+00 1
1.0E-01 -
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1.0E-03 1
1.0E-04
1.0E-05
1.0E-06
1.0E-07 1

fitness

1.0E-08
1.0E-09

14 22 30 38 46 54 62 70 78 8 94 102 110 118

# evaluations

1.0E-05 pyramidal excitation

L

1.0E-06
1.0E-07
1.0E-08
1.0E-09

fitness

1.0E-10
1.0E-11

1.0E-12
1.0E-13
1.0E-14
1.0E-15

14 18 22 26 30 34 38 42 46 50

# evaluations

Figure 9. Convergence results of the vertical searc
different excitation techniques (legend: worst fit

h problem (25) for three
=mand bestfit= ).
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three different excitation techniques (legend: wors
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Figure 11, Convergence results of the 3D search pro  blem (27) for three

different excitation techniques (legend: worst fit

=mand best fit= ).
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1.0E-05 pyramidal excitation
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fitness
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1.0E-12
1.0E-13
1.0E-14

1.0E-15
14 54 94 134 174

Figure 11, (Continued).

Table 1. Total number of evaluations of the fitness function in the solution
of problems (25), (26) and (27), with three differe  nt excitation techniques.

Excitation vertical search horizontal search 3D search

profile GA | exhaustive GA exhaustive GA exhaustiye
Dirac 186 400 174 1200 >121 24000
Ridge 118 400 126 1200 378 24000
Dirac
Pyramidal 50 400 86 1200 174 24000

As mentioned above, a second series of tests weedcaut to
investigate the performance of the genetic algorith the solution
of a high dimensionality optimization problem. Amgi at limiting
this dimension to a reasonable value, from a coatjmumal point of
view, the inclusion was retrieved from a three-disienal search
region contained in the sensing domain. This seeggton, shown
in Figure 12, corresponds to ax3x 3 cube (in mesh steps) and
comprises 64 nodes whose corresponding contrastvahust to be
determined. In this case, not only the dimensitpatf the
optimization problem is considerably higher, busocakll the 64
optimization variables may assume any values betwgg = 1 and
Omax = 80. In mathematical terms this problem can hbenédated
according to

Oactual = Min [e(01.92...0k ~-964)| (28)
Ok omin :Omax]

g13_g14_g15_g16
997 g12”

o
17 g2 g3 g4~

1

4 964

g9
|
g9
| -
9
|
9

_g56
49—g50—g51—052

/

contrast
80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64
node

Figure 12. Search region in which the nodal contras t values
(chromosome) are determined by solving the optimiza  tion problem (28).

The inclusion of supplementary a priori informatierof crucial
importance for the problem to be solvable in aorable number of
iterations. Thus, in addition to the void fractias expressed by
(23), another a priori parameter will be considertbg symmetry
degree { ) of the contrast distribution within the searchuvoe (as

proposed by Cohen, 1995), which is given by
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X = | xyzP(x,y.z)0(x,y,z)dxdydz (29)

To enforce the symmetry degree it is necessarydaptathe
genetic operators so that every descendent comifty(20), as was
done for the void fraction in the examples abovethe fithess
function can be modified to include a penalty teuch as

e = HQactuaI_QapproxH ml+(Xactual_Xapprox)2] (30)
which will penalize the individuals not complyingtiv(29).

In this second series of tests, the following ditmes were
simulated in order to emphasize the importance ntfoducing
additional a priori information: 1) no a priori tastion, 2) void
fraction only, 3) symmetry degree only and 4) betlid fraction
and symmetry degree are enforced. Hence, the aolofi problem
defined by (28) was achieved with specific paramsetand
procedures as follows:

¢ Parent generation: 200 chromosomes in which theaBi#es in
the 3D search region defined in Fig.12 are randayalyerated
satisfying the internal contrast intrinsic limits< gi < 80)
Void fraction: enforced through reparation of
chromosomes: a) ifdtactual > O approx then randomly chosen

genesgk in (28) are increased until (23) is satisfied apdfb
O actwal > O approx then randomly chosen genes in (28) are

randomly lowered until (23) is satisfied

Symmetry degree: enforced through penalizatiomeffithess
function according to (30), that is, the penaltypisportional
to the difference betweeRactwa and X approx

chosen from the first 20 best fit parents to gemeer20
descendents by arithmetic crossover (Eq.20 With10) and

20 descendents by geometric crossover

randomly replaced byomin Or omax, With equal chances.
Each generation has 60 mutants.

Selection: the 200 parents and the 100 descendmeats
altogether ranked, the first 200 chromosomes dexteel for
the succeeding parent population

evaluations of the fithess function).

Pyramidal excitation was used in all cases aimmgrhance
convergence. A Pentiumlll based computer (1.2GHzgles
processor with LGB memory) was used for the cdliaunla. In this
machine, each evaluation of the fitness functidesaapproximately
4 seconds, mainly expended to solve MeNy.N, =24000 linear

equations given by (13). A modified version of thenjugate

gradient method given in Press et al. (1992) was 03 solve these
equations (the problem matrix was assembled djrectithe storage
vectors). Other significant time consuming tasks tae generation
of random numbers and the multiplications impliedhe extended
arithmetic reproduction strategy (Eq.20).

Convergence results and the corresponding chronesare
shown in Figure 13. It is clear from these graphst tthe
simultaneous enforcement of void fraction and sytnyne
restrictions significantly enhances the qualitytiog reconstructed
chromosome (cf the correct one in Fig.12). After fame amount
of evaluations of the fitness function the othenidations produced
poor results, particularly when no a priori restois is enforced. It
is also interesting to notice that, in the voidcfian only case, the
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solution has probably been trapped by a local miminsurrounded
by a hyper-plateau such as the one in Fig.5 foss@tal Dirac
excitation.

Conclusions

The application of electrical impedance tomogratgghniques
in industrial processes is of great interest, paldirly for those
involving multiphase flow equipments due to theosy relation
between their global performance and the charatiteorganization
of the flowing phases (flow regimes). Despite thispm an
industrial point of view, there are still severadsies to be
considered, among which probably the most imporbaet refers to
consistency aspects of the final images.

The approach adopted in this work consists in féatmg the
reconstruction problem (as defined by EQq.5) in &emh an error
functional expressing the difference between arrapmated and
the actual contrast distribution (image), from whime has access
only indirectly through measurements of the boupdeharge
distribution that results from given boundary eatign conditions.

Numerical simulations have been carried out aimiteg

thedemonstrate the feasibility of our approach. Thesisg volume

was a 1:1:3 parallelepiped with voltage profilespawed on its
longitudinal boundaries (excitation) and no-fluxhddion imposed
on the transversal boundaries. The flowing two-phasixture
corresponds to distillated watero(=80) with a small three-

dimensional air inclusion ¢ =1) placed as specified in Fig.1,

which is obviously not a realistic situation (a mulbubble) but
represents a much more difficult measurement cimmdiind,
consequently, a more severe test to the proposetlfation of the

Reproducing population: two chromosomes are ramgomfeconstruction problem. Approximated contrast distions are

generated by translations of a prospective inctuaitd the resulting
electrical charge distributions, calculated with) (&nd the
appropriate boundary condition, are used in (8¢dostruct error
surfaces (Figs. 4, 5 and 6).

It is clear from these results that a close matetween the
actual and the approximated contrast distributierassociated with
a pronounced minimum on the error surface, whidkcates that,
positively, a formulation as proposed in (8) allothe solution of
the inverse problem (5) and to reconstruct thertigtieconstitution
of the sensed medium. This approach has severabriam

Target value:10™ or 100 generations (approximately 10000advantages: the formulation is so that a true 3edsional

reconstruction is achieved with no restrictive &iddial assumptions
and free of averaging effects for sufficiently exded and dense
mashing of the measurement volume. Another impbddmantage
concerns the straightforwardness of introducingitamdhl useful
information for the reconstruction procedure (regahtion,
redundancy, etc.). A good example of the importaoic¢his last
feature is the development of multimodal tomograpiichniques,
in which objects faintly observable with one figitesumably could
be observed with other type of sensing field.

Some drawbacks are also evident and will certaddéynand
research efforts to overcome them. Probably the mgmrtant one
is that the procedure proposed here is intrinsigtgfative, thus, in
principle, not well suited for real time implemetida. In spite of
the difficulties that may arise from this, the faicat direct imaging
techniqgues may provide very good initial approxiowd of the
actual image (thus demanding a few refinementtiterg) and the
exponentially growing computational power of mosimenon
platforms (processing speed, parallelization, etdl) in our belief,
make this an irrelevant issue.
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