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Simultaneous Buckling and 
Fundamental Frequency Optimization 
of Frames under Uncertain Loadings1
This work presents the optimization of a frame under uncertain loadings when two design 
criteria are taken simultaneously into account. The uncertainty relates to the applied 
loading and is inherent to the operation of structures since real structures are designed to 
sustain a large variety of load cases of practical relevance. The design criteria considered 
are two of the most important from a practical point of view: buckling load and natural 
frequency. The technique developed is based in convex modeling where a load space is 
defined and all the elements of that load space have equal probability of occurrence. The 
outcome of the technique is an optimal design for which one loading or several loadings of 
the load space are the most dangerous or harmful to the structure. On the other hand, it is 
guaranteed that all the other loadings contained in the load space are conservative in the 
sense that they are less harmful to the optimal design. 
Keywords: multicriteria optimization, buckling, fundamental frequency, minimax strategy, 
uncertain loading 
 
 
 

Introduction 

Since there are hundreds or even thousands of load cases 
typically involved in practical structural design, one can admit that 
these load cases belong to a well-defined load space and then 
propose a strategy that optimizes the structure against the entire load 
space instead of a finite number of load cases. The proposed 
strategy would then be more conservative, because it would also 
subject the structure to loadings that were initially unspecified, i.e., 
that were not originally eligible load cases. 

The optimization of buckling and fundamental frequency is a 
major concern in the aeronautical industry (Kim, Grandhi and 
Haney, 2006; de Faria and de Almeida, 2005; Wang, Jiang and 
Zhang, 2004; de Faria, 2002; Akgun et al., 2001; Liu, Haftka and 
Akgun, 2000). The goal is to get maximum buckling load and 
maximum fundamental frequency. However, there is a lack of 
efficient techniques capable of optimizing both simultaneously and 
in the presence of uncertainties. In general, it is very hard, and 
usually impossible, to find a single point (or variable) that 
simultaneously maximizes these two objective functions. A 
combination of two techniques is proposed. The minimax strategy 
(Banichuk, 1976; Dem’yanov and Malozemov, 1974) addresses the 
problem of uncertainty, whereas two possible techniques to be 
presented address the multiplicity of design criteria. 

This work1 presents the optimization of a frame under uncertain 
loadings when two design criteria are taken simultaneously into 
account. The uncertainty relates to the applied loading and is 
inherent to the operation of structures since real structures are 
designed to sustain a large variety of load cases of practical 
relevance. The design criteria considered are two of the most 
important from a practical point of view: buckling load and natural 
frequency. 

The technique developed in this paper is based in convex 
modeling where a load space is defined and all the elements of that 
load space have equal probability of occurrence. The outcome of the 
technique is an optimal design for which one loading or several 
loadings of the load space are the most dangerous or harmful to the  
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structure. On the other hand, it is guaranteed that all the other 
loadings contained in the load space are conservative in the sense 
that they are less harmful to the optimal design. 

The uncertain loading representation discussed assumes its 
simplest form in the frame treated in this work and shown in Fig. 1. 
Two concentrated forces are applied simultaneously to the frame, 
but their magnitudes are assumed unknown and uncertain. The 
admissible load space in this case is spanned by these two 
concentrated forces through arbitrary linear, convex combinations. 
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Figure 1. Two-bar frame. 

Nomenclature 

h = vector of design variables, m  
K = stiffness matrix, N/m 
KG = geometric stiffness matrix, N/m 
l = number of individual initial stress states, dimensionless 
M = mass matrix, kg 
n = normal vector, dimensionless 
pi = loading parameters, dimensionless  
p = global vector of applied loads, N 
Pi0 = loading scaling factors, N 
q = displacement, m 
qp = prebuckling displacements, m 
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Greek Symbols 
δ = variational operator, dimensionless 
φ = auxiliary objective function, dimensionless 
λ = buckling load, dimensionless 
λ0 = buckling normalization parameter, dimensionless 
σ0 = initial stress state, N/m2

ω  = fundamental frequency, Hz 
ω0 = fundamental frequency normalization parameter, Hz 
ξi       = nondimensional loading parameters, dimensionless 
Subscripts 
i relative to initial stress state 

Problem Formulation 

In problems related to the evaluation of buckling loads, the 
evaluation of the objective function is based on a prebuckling state 
and a linearized buckling problem that can be described in matrix 
form as: 

 
pKq =P , (1) 

 
0qKK =− )( Gλ , (2) 

 
where K is the stiffness matrix, qP are the prebuckling 
displacements, p is the global vector of applied loads, KG is the 
geometric stiffness matrix due to nonlinear displacements and q is 
the buckling mode associated with eigenvalue λ. 

The modeling of problems related to the evaluation of natural 
frequency in the presence of stress stiffening effects can be 
described in matrix form as: 

 
0qMKK =−− )( 2ωλ G

, (3) 
 

where matrix KG is linearly dependent on an initial stress state σ0. 
Therefore, if σ0 is represented by a linear combination of individual 
initial stress states, so is matrix KG. This linear combination is 
expressed in Eq. (4) considering that harmonic motion is possible. 

 

0qMKK =⎟
⎠

⎞
⎜
⎝

⎛
−− ∑
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ωξλ

l
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Gi

, (4) 

 
where l is the number individual initial stress states considered and 
KG

i is associated with the initial stress state σ0
i such that: 

 

∑
=

=
l

i

i
i

1
00 σσ ξ . (5) 

 
The nondimensional loading parameters ξi describe the 

contribution of σ0
i to the vibration problem. 

The two criteria, buckling and fundamental frequency are 
numerically computed by the finite element method. The Euler-
Bernoulli beam theory is used to describe the structural behavior of 
a two-bar frame commonly referred to as Lee’s frame shown in the 
Fig. 1. 

The Fundamental Frequency Surface 

The fundamental frequency surface is used in this work as a 
means to visualize how the lowest natural frequency varies as the 
loading parameters ξi vary. A sketch of the fundamental frequency 
surface is shown in Fig. 2, where ω is the fundamental frequency. 
Notice that no constraint is imposed on the sign of the loading 

parameters ξi. Moreover, depending on the initial stress state σ0
i, the 

related geometric stiffness matrix KG
i cannot be guaranteed to be 

positive-definite, although K and M are necessarily positive-
definite. 
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Figure 2. Fundamental frequency surface. 

 
In order to investigate properties of the fundamental frequency 

surface, a perturbation analysis is conducted. Assume that the ξi ´s 
are slightly perturbed by δξi. The eigenproblem stated in Eq. (4) is 
perturbed accordingly: 
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Subtracting Eq. (4) from Eq. (6), the first- and second-order 

equations can be written as 
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and 
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Premultiplication of Eq. (7) by qT, and considering that M, K 

and KG
i are symmetric matrices yield 

 

Mqq
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where qTMq is certainly positive. However, the numerator in Eq. (9) 
may be either positive or negative. Premultiplication of Eq. (8) by 
qT, considering that M, K and KG

i are symmetric matrices and using 
Eq. (7), allows one to write 
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Mqq
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The sign of δ 2ω2 is governed by the sign of the numerator in Eq. 

(10), since M is positive-definite and, therefore, qTMq > 0. Matrix  
 is positive semi-definite provided buckling 

has not occurred, because, in this situation, 
)( 2

1
MKK ωξλ −− ∑ =

l

i
i
Gi

)(
1∑ =

−
l

i
i
GiKK ξλ  is 

positive-definite. Therefore, from Eq. (10), it is concluded that δ2ω2 
≤ 0, what proves that the fundamental frequency surface is concave. 
This property of the fundamental frequency surface is of utmost 
importance when it comes to optimization procedures. 

The Stability Surface 

Just as the concavity of the fundamental frequency surface was 
proved, it is possible to prove that the stability boundary surface is 
concave. Consider the buckling problem stated in Eq. (2) and define 
loading parameters pi = λξi such that the buckling problem can now 
be stated as 

 

.  (11) 
1

0qKK =⎟
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=

l
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Gip

 
As ξi vary parameters pi also vary. This behavior can be 

visualized in Fig. 3 where the stability surface is shown along with 
other useful geometric entities. At point C, the vector normal to the 
stability surface can be seen as well as plane β tangent to the 
surface. Once ξi

C and ξj
C are available parameters pi

C and pj
C can be 

obtained. Hence, in order to draw the surface presented in Fig. 3, 
one has to vary parameters ξi, evaluate the buckling load λ and 
compute parameter pi. This procedure results in a series of points, 
just like point C, that together compose the stability surface. 
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Figure 3. Stability surface. 

 
Consider now a point as close to point C as desired. This point 

has parameters pi
C + δpi + δ 2pi + … and pj

C + δpj δ 2pj + … and its 
buckling problem reads 
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where the superscript C has been abandoned. The first-order 
perturbation equation is, therefore, 
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Premultiplication of Eq. (13) by qT and use of Eq. (11) lead to 
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where vectors n and  δp are defined as 
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Equation (14) proves that vector n is normal to the stability 

surface. Consider now the second-order perturbation equation 
derived from Eq. (12): 
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Premultiplication of Eq. (16) by qT and use of Eq. (11) lead to 
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Premultiplication of Eq. (13) by δqT, recalling that KG

i are all 
symmetric matrices, leads to 
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Substitution of Eq. (18) into (17) yields 
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where 

 
T

lppp }...{ 2
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2
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22 δδδδ =p . (20) 
 
The first term in Eq. (19) is certainly nonnegative. Hence, 
 

02 ≤npTδ . (21) 
 
Equation (21) shows that the second order tangent vector to the 

stability surface, δ2p, and the normal vector n are orientated in 
opposite directions to each other. This can be visualized in Fig. 4. 
Therefore, from geometric arguments, it is concluded that the 
stability surface is concave with respect to the origin of the loading 
space pipj shown in Fig. 3. 
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Figure 4. Second order tangent vector. 
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The concavity of both the fundamental frequency and the 
stability surfaces is of utmost importance when it comes to 
optimization procedures, as discussed in the next section. 

Simultaneous Buckling and Fundamental Frequency 
Maximization 

Suppose it is required to maximize the fundamental frequency 
and buckling load obtained through solution of the eigenproblems 
given in Eqs. (4) and (11), respectively. In general, all the matrices 
involved K, M, KG

i depend somehow on a vector of design 
variables designated by h. These design variables may represent a 
thickness distribution over plates or shells, fiber orientations in 
composite laminates, location of stiffeners in reinforced panels, etc. 
If the loading parameters are held fixed, one optimal design and 
corresponding fundamental frequency will emerge from the 
traditional optimization whereby the best h is selected. On the other 
hand, if the loading parameters vary, the optimal design for a given 
h may not be optimal (and it may be in fact very poor) for another 
set of design variables h. In other words, the optimal design may be 
highly sensitive to variations in the loading parameters ξi. 

The idea to eliminate, or at least alleviate, the sensitivity 
problem implies in the reformulation of the traditional optimization 
problem where the loading parameters are directly involved in the 
optimization process. The reformulation consists in proposing a 
bilevel optimization procedure where the fundamental frequency 
and buckling load are simultaneously maximized with respect to h 
and minimized with respect to ξ = { ξ1 ξ2 ... ξl }. 
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Function φ defined in Eq. (22) may appear redundant at first 

instance. However, the discussion about the properties of the 
fundamental frequency and stability surfaces presented in the 
previous sections will be extremely useful when it comes to the 
computation of φ. 

Consider that a number of initial stress states can be applied 
to the structure. Each individual stress state has its own loading 
parameters ξi. These stress states are geometrically represented 
by dots in Fig. 5 on the ξiξj plane. Since the fundamental 
frequency and stability surfaces are both concave for a fixed 
design h, minimization of ω(h, ξ) and λ(h, ξ) with respect to ξ is 
simple, because the minimum is necessarily associated with one 
of the initial stress states on the polygonal dashed line drawn on 
the ξiξj plane. These initial stress states (on the dashed polygonal 
line) are said to be the convex hull of the set of all initial stress 
states. In Fig. 5, six out of thirteen initial stress states constitute 
the convex hull. 

 

 ω, λ 

ξi 

ξj 

fundametal 
frequency or 

stability surface

 
Figure 5. Convex hull of initial stress states. 

 
Since the fundamental frequency and stability surfaces are 

concave, every initial stress state that is given as a convex 
combination of the initial stress states belonging to the convex hull 
is guaranteed to yield a higher fundamental frequency or buckling 
load. The optimization procedure takes advantage of that property of 
the fundamental frequency and stability surfaces: when function φ is 
minimized with respect to ξ for ω or λ, it suffices to check for points 
on the convex hull and to select the worst among them. 

One difficulty that appears is the fact that function φ 
corresponds in fact to a two-criterion objective function. Therefore, 
it is absolutely necessary to normalize ω and λ so that they are 
directly comparable. One practical approach is to check for design 
requirements and try to obtain target values for buckling loads and 
fundamental frequency and to use these as normalizing factors. 
Mathematically, if maximum buckling loads are available from 
design considerations f1, f2, …, fl and a fundamental frequency ω0 is 
also specified, then the normalized objective function should be 
used with λi

* = λi / fi and ωi
* = ωi / ω0. The optimal designs obtained 

following this procedure is dependant on the normalization factors 
f1, f2, …, fl, ω0. For instance, if ω0 is set too low, then the 
fundamental frequency criterion is expected to be unimportant, since 
ωi

* would be high and probably one of buckling criteria λi
* would be 

the dominant one. Hence, it is the designer’s task to select 
reasonable normalization factors. On the other hand, one of the 
advantages of the present strategy is its ability to detect such 
discrepancies in the normalization factors and to automatically 
improve those design criteria, which are the most vulnerable. 

Numerical Results 

The structure chosen for optimization is the so called Lee’s 
frame shown in Fig. 1. Its material is aluminum with Young 
modulus of 70 GPa and mass density of 2600 kg/m3. The two bar 
frame has rectangular cross-section with same width (b) and length 
(L), but different thicknesses (h). The length and width are constant 
and equal to 2 m and 1 cm, respectively. The thickness is the project 
variable, i.e., bar one has thickness h1 and bar two has thickness h2. 

The concentrated forces are applied as shown in Fig. 1. Forces 
P1 and P2 are defined in Eq. (23): 

 

20221011 , PPPP ξξ == , (23) 
 

where P10 and P20 are scaling factors that reflect the maximum 
expected magnitude of each individual initial stress state. This work 
analyses two groups of scaling factors: 
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The loading parameters must be bounded such that a convex 

hull of the loading space is identifiable. In the present simulation, 
the relationship imposed on the loading parameters is 

 
1|||| 21 ≤+ ξξ  (25) 

 
Since the fundamental frequency and stability surfaces are 

concaves, it is sufficient to evaluate λ and ω only at the surfaces 
vertices. That gives the following load cases: 

 

1,0 )4
0,1 )3

1,0 )2
0,1 )1

21

21

21

21

−==
=−=

==
==

ξξ
ξξ

ξξ
ξξ

 (26) 

As buckling is associated to compressive loads and the 
fundamental frequency is lower when the frame is under 
compressive forces, only cases 3 and 4 are being considered. This, 
however, is not always true. For instance, in problems where shear 
loadings are important positive values of ξi should be considered. 
The frame is symmetric so it is expected that, for scaling factor 1 
(P10 = P20 = 800 N) and load cases 1−2 and 3−4, buckling and 
fundamental frequency results behave symmetrically. 

Considering that the frame’s total mass is constant, so that the 
two bar thickness sum is 4 cm (h1 + h2 = 4 cm), it is possible to 
visualize the buckling and fundamental frequency dependence on 
the thickness. Figure 6 shows how buckling and the fundamental 
frequency vary with h1 for P10 = P20 = 800 N and load cases 3−4. 
Figure 7 shows how buckling and the fundamental frequency vary 
with h1 for P10 = 800 N, P20 = 400 N and load cases 3–4. 
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Figure 6. Two-bar frame fundamental frequency and buckling variation (P10 = P20 = 800 N). 
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Figure 7. Two-bar frame fundamental frequency and buckling variation (P10 = 800 N, P20 = 400 N). 

 
In the context of multicriteria optimization, the fundamental 

frequency and buckling load should be normalized so that a proper 
comparison can be made. This work explores two normalization 
possibilities. The first one normalizes only the fundamental 
frequency (since the buckling load λ computed in this work is 
nondimensional) and uses as normalization parameter the lowest 

admissible fundamental frequency value ω0. This type of 
normalization results in the active constraint definition. The second 
normalization possibility computes the optimal fundamental 
frequency and the optimal buckling load separately and uses these 
values as normalization parameters. This type of normalization 
allows for the identification of a region where the fundamental 
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frequency and buckling loads are better balanced. This region is 
named here as the optimal region. 

Minimax Finding the Active Constraint 

This approach takes advantage of the fact that buckling as used 
in this work (λ) is a nondimensional value and, therefore, only 
normalization of the fundamental frequency is required and can be 
done based on some lowest admissible frequency defined by project 
characteristics. Normalization of the fundamental frequency by the 
lowest admissible frequency (ω0) makes possible the identification 
of which restriction is active, that is, what criteria is dominant in the 
optimization process. In order to illustrate this point, two lowest 
frequencies will be adopted: ω0 = 13 Hz and ω0 = 3 Hz. 

The minimax strategy is composed of two steps as described in 
Eq. (22). In the first step, thickness values are randomly generated 
(satisfying the constant mass constraint) and the corresponding 
buckling and normalized frequency values are computed. This results 
in two buckling and two fundamental frequency values. Among these 
four values, the lowest is taken as the solution φ(h) in Eq. (22). 

The best design obtained from step 1 is taken as the starting 
point to the Powell’s method (Vanderplaats, 1984; Powell, 1964) 
in step 2. The objective function of this method is again φ(h) in 
Eq. (22b), so Powell’s method is employed to find the thickness that 
maximizes the minimum buckling and fundamental frequency. At the 

end of this process the optimum thickness and the corresponding 
buckling and normalized fundamental frequency values are obtained. 
These are shown in Table 1 for P10 = P20 = 800 N. If the minimum 
among the buckling and fundamental frequency values corresponds, 
for example, to buckling, then it is said that buckling is the dominant 
criteria. The same hold for the fundamental frequency. 

In Table 1, it is possible to see that frequency is the dominant 
criterion since it has the lowest value. Furthermore, it is shown that 
h1 = h2 = 2 cm is the best thickness configuration since it gives the 
greatest value among the minima. Fig. 6 can confirm this. 

In Table 2, it is possible to see that frequency is the criteria 
dominant since it has the lowest value, furthermore, it is shown that 
h1 = 1.7155 cm and h2 = 2.2845 cm are the best thickness 
configuration since they give the greatest value among the minima. 
Fig. 7 can confirm this. 

In Table 3, it is possible to see that buckling is the criteria 
dominant since it has the lowest value, furthermore, it is shown that 
h1 = h2 = 2 cm is the best thickness configuration since it gives the 
greatest value among the minima. Fig. 6 can confirm this. 

In Table 4, it is possible to see that buckling is the criteria 
dominant since it has the lowest value, furthermore, it is shown that 
h1 = 1.6517 cm and h2 = 2.3483 cm are the best thickness 
configuration since they give the greatest value among the minima. 
Fig. 7 can confirm this. 

Table 1. Active constraint for ω0 = 13 Hz and P10 = P20 = 800 N. 

ω0 (Hz) P10 (N) P20 (N) ξ1 ξ2 h1 (cm) h2 (cm) λ ω / ω0

800 800 −1 0 2.035517 0.688765 13 
800 800 0 −1 

2.0000 2.0000 
2.035517 0.688765 

 

Table 2. Active constraint for ω0 = 13 Hz and P10 = 800 N, P20 = 400 N. 

ω0 (Hz) P10 (N) P20 (N) ξ1 ξ2 h1 (cm) h2 (cm) λ ω / ω0

800 800 -1 0 2.616376 0.767070 13 800 400 0 -1 1.7155 2.2845 3.004458 0.767083 
 

Table 3. Active constraint for ω0 = 3 Hz and P10 = P20 = 800 N. 

ω0 (Hz) P10 (N) P20 (N) ξ1 ξ2 h1 (cm) h2 (cm) λ ω / ω0

800 800 -1 0 2.035517 2.984649 3 800 800 0 -1 2.0000 2.0000 2.035517 2.984649 
 

Table 4. Active constraint for ω0 = 3 Hz and P10 = 800 N, P20 = 400 N. 

ω0 (Hz) P10 (N) P20 (N) ξ1 ξ2 h1 (cm) h2 (cm) λ ω / ω0

800 800 -1 0 2.765086 3.389255 3 800 400 0 -1 1.6517 2.3483 2.764997 3.243125 

Minimax Finding the Optimal Region 

This approach uses the minimax strategy to find the 
normalization parameters. The procedure starts applying the 
minimax strategy in the two criteria individually, which corresponds 
to solving Eqs. (27) and (28). 

 

),(min)(

)(max),(minmax

0

0

ξhh

hξh

ξ

hξh

ωφ

φω

=

=
 (27) 

),(min)(

)(max),(minmax

0

0

ξhh

hξh

ξ

hξh

λψ

ψλ

=

=
 (28) 

These values (ω0 and λ0) are used as normalization parameters in 
Powell’s method and define the region where the discrepancies in 
the optimization criteria are smaller. The objective function here is 

again φ(h) in Eq. (22b), but the fundamental frequency and buckling 
values found in each step of Powell’s method are normalized by ω0 
and λ0, respectively. Thus, Powell’s method is employed to find the 
thickness that maximizes the minimum normalized buckling and 
fundamental frequency. 

For scaling factors 1 (P10 = P20 = 800 N), ω0 and λ0 are obtained 
for the same thickness (h1 = 2 cm). Hence, an optimal region is not 
defined, but, instead, an optimal point. This was confirmed by 
Powell’s method, as Table 5 shows. For scaling factors 2 (P10 = 
800 N, P20 = 400 N), ω0 is obtained for h1 = 1.7161 cm and λ0 for 
h1 = 1.6524 cm (Fig. 8). Hence, these two points define the optimal 
region and Powell’s method should find the optimum thickness 
inside this region. As Table 6 shows, Powell’s method found as 
optimum thickness for this case h1 = 1.6750 cm which is in between 
1.6524 cm and 1.7161 cm, or inside the optimal region. 

76 / Vol. XXXII, No. 1, January-March 2010   ABCM 



Simultaneous Buckling and Fundamental Frequency Optimization of Frames under Uncertain Loadings 

Table 5. Minimax strategy and Powell’s method results for P10 = P20 = 800 N. 

    Minimax Powell 
P10 (N) P20 (N) ξ1 ξ2 ω0 (Hz) λ0 h1 (cm) h2 (cm) 

−1 0 800 800 0 −1 
8.953811 2.035454 2.0000 2.0000 

 

Table 6. Minimax strategy and Powell’s method results for P10 = 800 N, P20 = 400 N. 

    Minimax Powell 
P10 (N) P20 (N) ξ1 ξ2 ω0 (Hz) λ0 h1 (cm) h2 (cm) 

−1 0 800 400 0 −1 
9.969874 2.763402 1.6750 2.3250 
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Figure 8. Two-bar frame fundamental frequency and buckling variation. 

Conclusion 

Structural projects are generally concerned with buckling and 
fundamental frequency optimization, and it is very important that 
the optimization of one does not harm the other. In this context, 
the demand for strategies capable of dealing with two criteria 
simultaneously is growing. The proposed strategy takes advantage 
of the fact that the interest is in maximizing these two criteria and 
reformulates the optimization strategy proposing a bilevel 
optimization procedure. Furthermore, the fact that the fundamental 
frequency and stability surfaces are concave represents a great 
reduction in the problem complexity and computational cost. 

The multicriteria optimization needs ω and λ to be normalized 
for comparison purpose. This paper explores two distinct 
normalization ways. The first way permits one to identify which 
criteria is dominant in the optimization process. The second way 
permits one to define a region where the discrepancies in the 
optimization criteria are small. 

The proposed optimization approaches proved satisfactory for 
the two bar frame under the load cases and scaling factors 
analyzed. This methodology can be applied in structural 
optimization problems with more than one project variable, like a 
two-bar frame with variable thickness or a plate. An important 
extension of this methodology is to include in the optimization a 
criterion that should be minimized, like compliance, and develop 
or apply a method capable of dealing with this kind of 
multicriteria optimization. 

 

Acknowledgments 

This work is financed by the Brazilian agencies FAPESP (grant 
no. 06/60929-0) and CNPq (grant no. 304060/2006-2). 

References 
Akgun, M.A., Haftka, R.T., Wu, K.C., Walsh, J.L., and Garcelon, J.H., 

2001, “Efficient structural optimization for multiple load cases using adjoint 
sensitivities”, AIAA Journal, Vol. 39, No. 3, pp. 511-516. 

de Faria, A.R., “Buckling optimization and antioptimization of 
composite plates: Uncertain Loading Combinations”, Int. J. Numer. Meth. 
Engng, Vol. 53, Nov., 2002, pp. 719, 732. 

de Faria, A.R., de Almeida, S.F.M., “The maximization of fundamental 
frequency of structures under arbitrary initial stress states”, Int. J. Numer. 
Meth. Engng., Vol. 65, Aug., 2005, pp. 445-460. 

Banichuk, N.V., 1976, “Minimax approach to structural optimization 
problems”, Journal of Optimization Theory and Application, Vol. 20, No. 1, 
pp. 111-127. 

Dem’yanov, V.F., Malozemov, V.N., 1974, “Introduction to Minimax”, 
John Wiley & Sons, New York, Chap 3. 

Kim, W., Grandhi, R.V., and Haney, M., 2006, “Multiobjective 
evolutionary structural optimization using combined static/dynamic control 
parameters”, AIAA Journal, Vol. 44, No. 4, pp. 794-802. 

Liu, B., Haftka, R.T., Akgun, M.A., 2000, “Two-level composite wing 
structural optimization using response surfaces”, Struct. Multidisc. Optim., 
Vol. 20, Oct., pp. 86-96. 

Powell, M.J.D., 1964, “An efficient method for finding the minimum of 
a function of several variables without calculating derivatives”, Computer 
Journal, Vol. 7, No. 2, pp. 155-162. 

Vandeplaats, G., 1984, “Numerical Optimization Techniques for 
Engineering Design: With Application”, McGraw-Hill, New York, Chap. 3. 

Wang, D., Jiang, J.S., Zhang, W.H., “Optimization of support positions 
to maximize the fundamental frequency of structures”, Int. J. Numer. Meth. 
Engng., Vol. 61, pp. 1584-1602. 

 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2010 by ABCM January-March 2010, Vol. XXXII, No. 1 / 77 


	A. R. de Faria
	Introduction
	Nomenclature
	Greek Symbols
	Subscripts

	Problem Formulation
	The Fundamental Frequency Surface
	The Stability Surface
	Simultaneous Buckling and Fundamental Frequency Maximization
	Numerical Results
	Minimax Finding the Active Constraint
	 
	Minimax Finding the Optimal Region
	Conclusion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


