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The objective of this paper is to study the vosteedding from a circular cylinder near a
moving ground; this is done using the Vortex Meth®anoving ground has been widely
used in the field of experimental vehicle aerodyicamespecially of high-performance
racing cars, to properly consider the ground effect the vehicles aerodynamic. In
experimental work as well as in numerical simulasipthe ground plane develops a
boundary layer that interferes with the body viscomake, leading to not so precise
results. A ground moving with the incoming flowoedl, however, does not allow the
development of a boundary layer. The results ofrmumerical simulations show that the
critical drag behavior is directly related to a dlal change in the wake structure of the
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Introduction

The flow around circular cylinders has been extexgistudied
due to its importance in many practical applicagiosuch as heat
exchangers, chimneys and off-shore platforms. lansific terms,
the flow around circular cylinders includes a vgrieof fluid
dynamics phenomena, such as separation, vortexdisigednd the
transition to turbulence. The mechanisms of vosteedding and its
suppression have significant effects on the varfuid-mechanical
properties of practical interest: flow-induced fes¢ vibrations and
noises, and the efficiencies of heat and massfaarfer example.
Cylinders having a two-dimensional structure argy\siitable for
restricting the complexity and thus observing thedamental
features of the flow.

The fluid flow around a circular cylinder closedglane wall is
governed not only by the Reynolds number but algahe gap
between the cylinder and the ground, h, charae®rtzy the gap
ratio h/d (d is cylinder diameter). The fundamergtiects of gap
ratio have been observed by Taneda (1965), Roshkh €975),
Bearman and Zdravkovich (1978), Burest and Lancid®79),
Angrilli et al. (1982), Grass et al1984), Zdravkovich (1985a),
Price et al(2002) and Lin et al. (2005).

The influence of the boundary layer that developsh® ground
and interferes with the body viscous wake is comped is still
unclear despite several intensive studies repatethr. Roshko et
al. (1975) measured the time-averaged drag and liffic@mts, G
and G, for a circular cylinder placed near a fixed wialla wind
tunnel at Re = 2.0 x fpwhich lies in the upper-subcritical flow
regime; they showed that,Capidly decreased and @creased as
the cylinder came close to the wall. ZdravkovicBg8b) observed,
in his force measurements performed at 4.8 4<Be <3.0x 19
that the rapid decrease in drag occurred as themgspreduced to
less than the thickness of the boundary |&ygron the ground, and
concluded that the variation of,@vas dominated by &father than
by the conventional gap ratio h/d. He also noted tihe € could be
significantly affected by the state of the boundamer, although it
was insensitive to the thickness of the boundaygrla

Zdravkovich (2003) reported the drag behavior fincudar
cylinder placed near a ground running at the sapeed as the
freestream for higher Reynolds number of 2.5 X, Mhich lies
within the critical flow regime rather than the sulcal flow
regime. The experiment by Zdravkovich (2003) showsainme
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cylinder in the ground effect. Comparisons withesipental data are encouraging.
Keywords. moving ground, near wake structure, aerodynamaxdk, vortex method

differences to all the above studies. First, pcatiff no boundary
layer was developed on the ground. Second, thesdserin drag
due to the decrease in h/d did not occur in hissoregnents. The
differences found were attributed to the non-eristeof the wall
boundary layer or the higher Reynolds number tl@ns to be
within the critical flow regime rather than withithe sub-critical
flow regime, or any other influencing factors.

Nishino (2007) presented experimental results ofiraular
cylinder with an aspect ratio of 8.33, with andheitit end-plates,
placed near and parallel to a ground running as#mee speed as the
freestream; on the ground surface almost none layynbtayer
development was observed. Measurements were camiedt two
upper-subcritical Reynolds numbers of 0.4 and 110°xThe results
produced new insights into the physics of the phee.
According to experiments for the cylinder with epldtes on which
the oil flow patterns were observed to be esséntialo-
dimensional the drag rapidly decreases as h/d deeseto less than
1.0, but become constant for h/d less than 0.8Bkauthe usually
observed results obtained with a fixed ground (dkhbe plotted
later in Fig. 6(a)).

This paper describes a mesh-free method used twlatd
global as well as local quantities of a high Regsohumber flow
around a circular cylinder located near a movingugd. The two-
dimensional aerodynamic characteristics are ingasd at a
Reynolds number of 1.0 x %0due to this fact, even with such a
high Reynolds number value, no attempt for turbcgemodeling
were made once these aspects have a strong tineesional
component; see Alcantara Pereira et al. (2002).ugéethe Vortex
Method to analyze the influence of the ground anftbw and force
characteristics; with a ground running at the sapeed as the
freestream, no shear layer develops on its sudade therefore, no
vorticity generation is necessary except on theéndgr surface.
Comparisons are made with experimental resultsepted by
Nishino (2007).

Vortex Methods have been developed and applied tHer
analysis of complex, unsteady and vortical flowscduse they
consist of simple algorithm based on physics ofvfigkamemoto,
2004). Important features of the Vortex Method (fno1973;
Leonard, 1980; Sarpakaya, 1989; Lewis, 1999; Kanen004;
Alcantara Pereira et al., 2004; Stock 2007) are:

(i) It is a numerical technique suitable for thdusion of
convection/diffusion type equations like the Nav&tokes ones;

(i) It is a suitable technique for direct simutati and large-
eddy simulation;
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(i) It is a mesh free technique; the vorticityelfi is
represented by a cloud of discrete free vortices mhove with the
fluid velocity.

Vortex cloud simulation offers a number of advaetagver the
more traditional Eulerian schemes for the analg$ishe external
flow that develops in a large domain; the main ceasare:

(i) As a fully mesh-less scheme, no grid is neagss

(i) The computational efforts are directed ordythe regions
with non-zero vorticity and not to all the domainimis as it is done
in the Eulerian formulations;

(i) The far away downstream boundary conditian taken
care automatically, which is relevant for the siatign of the flow
around a bluff body (or an oscillating body) thasta wide viscous
wake.

Nomenclature

Act = Mean lift coefficient amplitude

C, = Drag coefficient

C, = Lift coefficient

C,. = Pressure coefficient

d = Cylinder diameter

f = Vortex shedding frequency

G = Green’s function

h = Gap between the cylinder and the ground
K = Biot-Savart kernell

n = Coordinate normal to solid surface
p = Pressure field

Re = Reynolds number

S = Domain boundary

S, = Body surface

S, = Ground surface

S, = Far away boundary

S, = Strouhal number

U = Uniform incoming flow

Moving grounnd —— ——
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u = Velocity field

ui = Velocity induced by the incident flow

ub = Velocity induced by the solid surfaces

uv = Velocity induced by the vortex cloud

Y = Specific work

Greek Symbols

B  =Panel angle

I' = Vortex strength

AS = Panel length

Gs = Vorticity Gaussian distribution

0 = Clockwise angle starting from the stagnation foin
= Kinematic viscosity

o = Core of a Lamb vortex

t = Coordinate tangent to solid surface

% = Random walk displacement

Y = Source strength per length

Q = Fluid domain

o = Vorticity field

® = Component of the vorticity field

Mathematical Formulation

Consider the flow around a circular cylinder imneets$n a large
fluid region bounded by a moving plane surfacestemwvn in Fig. 1.
A uniform incoming flow with freestream velocity Wom left to
right is assumed. The fluid is Newtonian with camstproperties
and flowing in a two-dimensional plane; the compileitity effects
are neglected. Figure 1 shows the domaif2 with
boundan5=5,0S, 0S,,, S being the body surface,, She
moving plane running at the same speed as theentiiow and
S, the far away boundary.

Figure 1. Flow around a circular cylinder near a moving ground.

Due to the no-slip condition, a shear flow is settlee cylinder
surface and, as a consequence, vorticity is gesterdthe vorticity
that develops in the body boundary layer is cardednstream into
the viscous wake; further developments of this waké be
influenced by the presence of the nearby movingmgo

As there is no shear flow on the surface of the imgpground,
no vorticity is generated as already mentioned. &i@w, it is worth
to mention the necessity of imposing the impermagphlsondition
on this surface. The fluid flow is governed by tdumtinuity and the
Navier-Stokes equations, which can be written enftrm:
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The above equations are non-dimensionalized insefirlJ and
d (cylinder diameter). The Reynolds number is defiby:

Re:U_d
L]
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where v is the fluid kinematic viscosity coefficient; the
dimensionless time is d/U.

The impermeability condition on the cylinder andowgnd
surfaces is given by:

u, =v,,atS ands,. (4)

The no-slip condition is imposed only on the cyéndurface:

u =v,,ats. ®)

In the equations abovey, and u, are, respectively, the fluid
normal and tangential velocities, ar] and v, are, respectively,
the solid boundary normal and tangential velociti®@se assumes
that, far away, the perturbation caused by the bawdg moving
ground fades as:

Y -1, atS,. (6)

The Numerical Method

The governing equation in Vortex Methods is thetiedy
transport equation, obtained by taking the curlttef momentum
equation. In two-dimensions, this equation reduoes

a—(L)+UEI]]co

p @)

L — D%
Re

wherew(x,t) = Oxu(x,t) represents the only non-zero component of

the vorticity field (observe that the pressure Bsemt from the
formulation). The Vortex Method proceeds by diseisy spatially
the vorticity field using a cloud of elemental vioes, which are
characterized by a distribution of vorticitg, (commonly called

the cut-off function), the circulation strength, and the core
sizeG; . Thus, the discretized vorticity is expressed by:

z

o"(xt)= 2T (t, (x-x(t)

i=1

olx,t)= ®)

where Z is the number of point vortices of the doused to
simulate the vorticity field.

In this paper, as the diffusion effects are sinadatising the
random displacement method, we assume that the sines are

uniform (o, =), and use the Gaussian distribution as the cut-off  uv;(x;,t) —Zchjk(x () —x(®)» i =1,2and j=1,Z.

function. This choice of the cut-off function leatts the Lamb
Vortices (Leonard, 1980); thus:

IXIZJ
Sall]

The velocity is obtained from the vorticity fielg Imeans of the
Biot-Savart law:

uv(x,t) = f(l] x G)(x -x )@(x ,t)dx' =
= [ Jofe o = (< w)c)

whereK = [OxG is the Biot-Savart kerneG is the Green’s function
for the Poisson equation, ahltepresents the convolution operation

9)

(10)
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The vorticity transport is simulated, in this disiized form, by
convecting the particles with the local fluid vdtgcand using a
random walk displacemeng; = (leng) to account for the diffusion

effects.
The convection of each vortex particle (j) is goest by the
equation:

dx.

—L=ulx ,t 11
o= ub) ()
and, according to the Random Walk Method (Lewis9Q9)9 the
diffusive displacement of each vortex particlegjpiven by:

Xj = (?(11"%21'):

where j = 1,Z,i*=-1, P and Q are random numbers between 0.0
and 1.0.

The velocity fieldu(x,t) can be split in three parts (Alcantara
Pereira et al., 2003):

4At

E|n(|%j[cos(zn Q)+isin(2z Q)]  (12)

u(x,t)= ui(x,t)+ub(x,t)+uv(x,t). (13)

The contribution of the incident flow is represahtey ui (x,t).
For a uniform incoming flow its components take fiwen:

ui, =1 andui, =0. (24)

The body and moving ground contribute wit(x,t), which can
be obtained, for example, using the Boundary ElenMathod
(Katz and Plotkin, 1991). The two components cawkten as:

NP
ub (x;,t) =Dy, () -%,) ,i=12andj=12Z (15)
k=1

where NPis the total number of flat source panels représgrihe
body and moving ground. It is assumed that thecgostrength per

length is constant such thai = const andc‘jk (X, —x, )is the .

component of the velocity induced, at vortex jawynit strength flat
source panel located at k.

Finally, the velocityuv(x,t) due to the vortex interactions has its
components written as:

(16)
k=1

s the i™

component of the velocity induced, at vortex j, dwnit strength
vortex located at k. As we use the Lamb vortex:

uk = —iill—ex;{—
2n 1,

is the induced velocity of the™wvortex in the
circumferential direction atth}vortex,

where ', is the k-vortex strength an«tiik (0 =%,

r2
5.02572’—2]1 17)

Oy

where uk
r, is the radial distance
between two general vortices, j and k, ang is the core radius of

these vortices defined by Mustto et al.(1998).
To the first order Euler scheme, the solution ta ELL) is

‘written as:
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X (t+A) =x;(O) +u;(x,)At, j=1,Z

(18)
y,t+A) =y, O +v,(x,nAt, j=1,Z.

To this solution, the diffusive displacement, se EL2), is
added. Hence, the position of each vortex at tham (t +At) is
given by:

X (t+At) = x,(0) +u,(x, DAt +y,;, j=1,Z
y,t+A) =y, () +v,(X, DAt +5,, j=1,2.1 (29)

With the vorticity field, the pressure calculatistarts with the
Bernoulli function, defined by Uhiman (1992) as:

7:p+u—22,u:|u|. (20)

Kamemoto (1993) used the same function, and stgfittm the
Navier-Stokes equations was able to write a Poisspration for the
pressure. This equation was solved using a firifferdnce scheme.

Here solution was obtained through the followingtegral
formulation (Shintani and Akamatsu, 1994):

HY, - [ YOG, (e,dS= ([ UG, fuxw)da +
S

(21)
—ij(mei x o) @,dS
Rey

where H = 1.0 in the fluid domain, H = 0.5 on tlmibdaries, G is a
fundamental solution of the Laplace equation axdis the unit

vector normal to the solid surfaces (Alcantara P&t al., 2002).
The drag and lift coefficients can be expresse(Rigci, 2002):

C, = —f 2(pk -p. )ASKsian =
k=1 (22)

NP
- C.ASsing,
k=1

NP

C = —z 2(pk -p, )ASKcosBk =

k=1

e (23)
- Z CpAScOoP,

whereAS, is the length anfy is the angle and both of th&-panel.

Simulations of Unsteady Flows past a Circular Cylider

Isolated Cylinder

As a preliminary study, the flow around an isolatgtinder in a
large fluid region was simulated using our numéricade. This
allows us to analyze its consistency and define esaramerical
parameters, as for example the number of panets tosdefine the
cylinder surface. For this particular configuratieove used NP = 300
flat source panels with constant density. The st was
performed up to 1000 time steps with magnititle: 0.05. The time
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increment was evaluated accordingMo= 2tk/NP, 0 < k < 1; see
Mustto et al. (1998).

The standard numerical strategy is to representdheity in the
fluid domain by a large number Z of discrete vasiavith strength
I;. The numerical analysis is conducted over a sefediscrete
time stepsAt for each of which a discrete vortex element with
strengthl’; is shed from each panel used to represent thadeyli
surface. The intensity’; of these newly generated vortices is
determined using the no-slip condition, see Eq, &d they are
placed at a distan@= 0, = 0.001 d on a straight-line normal to the
panel, see Ricci (2002).

The aerodynamic loads computations are evaluateueba t =
28.3 and t = 48.0, see Fig. 2. The results of timerical simulation
are presented in Tab. 1; the results of Blevins84)9are
experimental ones with 10% uncertainty and thosMuastto et al.
(1998) were obtained numerically using a slightiffedent Vortex
Method from the present implementation.

Table 1. Mean lift and drag coefficients for isolated circular cylinder.

Re=1.0x10 Co C, St Ac,

Blevins (1984) 1.20 - 019
Mustto et al. (1998) 1.22 - 0.22|
Present Simulation  1.25 0.07 0.4 ]1.06

The Strouhal number is defined as:

_1d
S = U (24)

where f is the detachment frequency of vortices.

The agreement between the two numerical methoegsrysgood
for the Strouhal number, and both results are closethe
experimental value. The present drag coefficierdwsha higher
value as compared to the experimental result. Gweald observe
that the three-dimensional effects are non-nedeggiffor the
Reynolds number used in the present simulation{Re0 x 16).
Therefore, one can expect that a two-dimensionaipeation of
such a flow must produce higher values for the @@afficient. On
the other hand, the Strouhal number is insensitivéhese three-
dimensional effects. The mean numerical lift caéfnt, although
very small, is not zero which is due to numeriggbr@ximations.

Computed values for the drag and lift coefficieats plotted in
Fig. 2. The vortex shedding effect can be seeménoscillations of
the lift and drag coefficients. As soon as the niicaé transient is
over and the periodic regime is reached (from t & @n,
approximately) the lift coefficient oscillates betan -1.11 and 1.01,
approximately, with a dimensionless frequency ($ted number)
that is one half the frequency of oscillation oé ttirag coefficient
curve, as expected. The mean amplitude of thed#fficient curve

is indicated byA,_ in Tab. 1.
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300 T T T I

Deag Force

Lift Fosce

Aerodynamic Forces

200 1 | L
0.00

Time

Figure 2. Time history of drag and lift coefficients for isolated circular
cylinder.

Figure 3 shows plots of instantaneous pressuretiisbns on
the cylinder surface. Distributions A, B, C, D aBdare related to
instants A, B, C, D and E as indicated in Fig. 2.

Instant A is defined by a maximum value of the diftefficient.
At this moment, a large clockwise vortex struct(irefact a cluster
of vortices) is detaching from the upper surface moving towards
the viscous wake; see Fig. 4(a). As this clockwisgex structure
moves downstream, it pushes away an anti-clockatiseture that
was stationed behind the cylinder, and the draficmt increases.

Instant B is defined as the moment that the aoftilchise
structure detaches from the cylinder and is incatea into the
viscous wake; this process creates a low pressgioerr at the rear
part of the cylinder; see Fig. 3 and Fig. 4(b).

The above described sequence of events repeaisesllagain.
Therefore, the lowest value of the lift coefficiaatobserved when
another cluster, now rotating in the anti-clockwiection, leaves
the body surface, see point C in Fig. 3 and Fig,4(cd point D in
Fig 4(d).

Figure 3. Instantaneous pressure distribution on the surface of an isolated
circular cylinder.
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Gerrard (1966) has given an equivalent physicatnijgon of
the mechanics of the vortex-formation region. A Kagtor in the
formation of a vortex-street wake is the mutuaéiattion between
the two separating shear layers. It is postulatedsérrard (1966)
that a vortex continues to grow fed by circulatfioom its connected
shear layers, until it is strong enough to draw dpposing shear
layers across the near wake. The approach of dpposigned
vorticity, in sufficient concentration, cuts off rther supply of
circulation to the growing vortex, which is theredhand moves off
downstream.

(a) t = 39.4: Point A

(b) t = 40.6: Point B

(d) t =42.9: Point D

Figure 4. Near wake behavior for isolated cylinder at Re = 1.0 x 10°.

July-September 2009, Vol. XXXI, No. 3 /247



Computed value of the mean pressure coefficienhgalthe
cylinder surface is compared with other resultsilabke in the
literature. Figure 5 shows the mean pressure bligtan calculated
for an isolated cylinder to be compared with theeptal flow
pressure distribution, the pressure distributioespnted by Mustto
et al. (1998) and the experimental values presebiedlevins
(1984). The present result agrees very well with ¢ixperimental
ones, except in a small neighborhooddfl 75°. From the Fig. 5,
one can observe that the predicted separation pmioturs at
around® = 85°, while the experimental value (Blevins, 1981
around® = 82°. Another experimental investigation madeSmon
and Hanratty (1969) determined a value f= 78° for the
separation angle. A very interesting observatiors waade by
Achenbach (1968) for Re = 1.0 x ®1(sub-critical flow): it was
found that the laminar boundary layer separate® at78°. Just
before transition into the critical region at Re26 x 16, the
boundary layer is still laminar and separates aargle equab =
94°. Hence, separation takes place in the laminademas
experimentally expected for a sub-critical Reynoldamber
forming free shear layer. An immediate transiti@nttrbulence
close to the cylinder is observed accompanied byery short
recirculation region.

1.00 -’-. T T T | T [ 7
- Potential Solution . ;
& Expenimental (Blevins, 1984) |

© Mustto et al. (1998)

# Present Simulation

000 —

-1.00 —

Cp

W6 C0C0s o oo

0 )
oo oo
4 o
; oo A

-300 | | L | | | 1 | 1
0.00 40.00 80.00 120.00 160.00 20000

9 |

Figure 5. Predicted pressure distributions for isolated circular cylinder at
Re = 1.0 x 10°,

Circular Cylinder near a Moving Ground

To study the mechanisms of the ground effect, veeauground
running at the speed of the freestream flow. Inndoso, no
boundary layer develops on the ground surfacettafare with and
to modify the viscous wake. The main features a$ ffow are
discussed in the experimental work of Nishino (20@fthough the
fundamental effects of the gap ratio (h/d) on tlevfand force
characteristics have been observed, the relatiotweeea the
destruction of the orderly Karman vortex street émel significant
drag reduction is still unclear.

For the numerical simulation we used the same 30tIs for
the cylinder surface plus 300 panels to representrtoving ground.
As already mentioned, no vorticity is generated tbe ground
surface which avoids the development of a viscaustdary layer.
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Table 2 presents values of the drag coefficientdocircular
cylinder placed at different values of the gapaa@ne can easily
observe three gap regimes: large-gap (h/d > In®grmediate-gap
(0.85 < h/d < 1.0), and small-gap (h/d < 0.85) mezs.

Nishino (2007) measured the drag coefficient at twyper-
subcritical Reynolds numbers (0.4 and 1.0 ¥.1According to him,
an essentially two-dimensional flow around a cyéinavith end-
plates was observed, which was confirmed analyiegsurface oil
flow patterns. Significant effects of the gap ratiere observed on
the near wake structure and also on the time-aedragrag
coefficient. For the large-gap regime, large-sdéé&man vortices
were generated just behind the cylinder, resultmdigher drag
coefficients of about 1.3. For the intermediate-gagime, the
Karman vortex shedding became intermittent, anccéehe time-
averaged drag coefficient rapidly decreased asvai&ireduced from
1.0 to 0.85. For the small-gap regime, the Karmamex could not
be observed and instead a dead fluid zone wasedreladunded by
two nearly parallel shear layers each producing/ amhall-scale
vortices. For the cylinder without end-plates, ba bther hand, no
such significant effects of h/d were observed eitrethe near wake
structure or on the drag coefficient.

Roshko et al. (1975) measured the time-averageg aind lift
coefficients for a circular cylinder placed nedixad wall in a wind
tunnel at Re = 2.0 x fpwhich lies in the upper-subcritical flow
regime, and showed that Glecreases rapidly while_Gncreases as
the cylinder came close to the wall.

Columns 5 and 6 of Tab. 2 present results obtainsidg
numerical methods. The results of Moura (2007) veértained using
the vortex cloud simulation with fixed ground at 4.0 x 16. The
present results, referred to as Bimbato (2008)ttHertime-averaged
drag and lift coefficients acting on a circular iogller in moving
ground are plotted in Fig. 6. The aerodynamic fx@@mputations are
evaluated between t = 40 and t = 60.

The following analysis for the drag behavior isdzhen Fig. 6.a.

The results from Nishino (2007), obtained with amimg
ground, show that the drag acting on the cylindénaut end-plates
increases and becomes more or less constant wheenlistance
between the cylinder and the ground is very smattylinder with
end-plates presents an almost constant value dadrdig coefficient,
but higher than the case when the end-plates dnesed; it is worth
to observe that in this situation, due to experitaledifficulties, he
was not able to perform the tests for small-gajmeg

The results presented by Roshko et al. (1975) sthaivdrag
decreases as the gap-ratio decreases, startingdwalror the
intermediate-gap regime; these results were olawith a fixed
ground.

The numerical results for the drag obtained wifixed ground
by Moura (2007) follows the experimental ones foe targe and
intermediate-gap regimes but does not reproduaa thell for the
small-gap regime.

The present results, obtained with a running groshow that
the drag remains an almost constant value for #rgel and
intermediate-gap regimes as predicted by the eaxpeetis of
Nishino (2007); the values are a little higher, keger. For the
small-gap regime, the drag decreases as the gapdeatreases and,
unfortunately, there are no experimental resultsaimpare with. It
is interesting to observe that the drag coefficiemverges to the
same value obtained experimentally by Nishino (300vithout
end-plates, for very small gap-ratio.
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200

1.00

Drag Force

0.00

-1.00

2.00

1.00

Lift Force

0.00

-1.00

Table 2. Summary of results for drag coefficient on the flow around a circular cylinder near a plane boundary.

h/d Nishino (2007) Nishino (2007) | Roshko et al.| Moura | Bimbato
without end-plates with end-plates| (1975) (2007) | (2008)
0.50 - - 0.795 - -
0.55 0.965 - 0.857 1.809 1.154
0.60 0.958 - - - 0.832
0.65 0.952 - 0.954 1.656 1.293
0.70 0.939 - - - 1.376
0.75 0.933 - 1.029 1.44( 1.406
0.80 0.930 - - - 1.393
0.85 0.931 - - - 1.415
0.90 0.922 - 1.136 1.364 1.421
0.95 0.926 1.311 - 1.453 1.403
1.00 0.924 1.323 - 1.49] 1.391
1.10 0.920 1.373 1.281 1.466 1.383
1.30 0.899 1.385 - 1.41( 1.362
1.40 - - 1.266 - -
1.50 0.881 1.375 - 1.384 1.346
2.00 0.854 1.337 - 1.346 1.277
2.30 - - 1.243 - -
2.50 0.845 1.304 - - 1.269
3.50 - - 1.234 - -
Figure 6(b) shows that the lift coefficient curvévtained
' \ ' numerically follows quite well the values obtainexperimentally,
@ except when 0.7 < h/d < 1.0, where the calculatatles are
° | smaller. For smaller values of the gap-ratio, there no
*%x*é%% ¥ % g ! experimental values available when the end-platesadded to the
, * DX = B : cylinder. However, it is worth to observe that thlé experimental
omoToo _ and numerical results indicate the same limitingueafor really
Ox eee e o small gap-ratio.

i

X Nishine (2007): with end-plates
— <Nishine (2007): without end-platcs
< Moura (2007)
r ORoshko et al. (1975)

#Present Simulation

0.80 1.20 1.60
h/d

(a) Drag force

2.00

% Nishino (2007): with end-plates

= < Nishino (2007): without end-plates
o Moura (2007)

— 0O Roshko et al. (1975)

# Present Simulation
B
<

%o
% Oo@gg?i # ¥ o
x*%*éﬁiﬁ

[+]

o]

0.80 1.20 1.60
Wd

(b) Lift force

200

Figure 6. Time-averaged drag and lift coefficients vs. gap ratio for different

end conditions.
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Figure 7 shows the instantaneous pressure distitaibn the
cylinder surface when the ground is moving; thisygke refers to
the gap-ratio h/d = 0.95. The pressure distrib&tianB, C, D and E
are related to points A, B, C, D and E indicated~ig. 8. At the
instant represented by the point A one can obsarkev pressure
distribution on the rear surface of the cylindeeading to a
maximum value of the drag curve; at the same tartgeigh pressure
distribution is found on the lower surface whichds to a high lift
value. The pressure distribution of instant B im@dt symmetrical
with respect to the x axis while maintaining lowlues at the rear
part, thus explaining the zero value of the liftn@ Similar
observations can be made about the pressure distrils and the
lift and drag curves behavior at the other instants

Figure 7. Instantaneous pressure distribution on the surface of a circular
cylinder using moving ground for h/d = 0.95.
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Some important features of the curves present&ibir8 are:

(i) As expected, the absolute value of the maxinadihe G
curve is bigger than the absolute value of the mmimh of
the same curve.

(i) The G curve oscillates at a frequency that is twice the !
frequency of the Ccurve.

(i) Due to the proximity of the moving ground &l@, curve,
in Fig. 8, presents a pair of small extreme val(spsall
departure of the maximum and minimum values from th
mean drag value) followed by a pair of large exttem
values (large departure of the maximum and minimum
values from the mean drag value).

(iv) As the gap-ratio diminishes, the small extrenvaues
become even smaller and eventually disappear. frere
the drag and lift curves oscillate at the sameufeagy.

5.00 i 0 ; : :

- Drag Force

Lift Fozee

Acrodvnamic: Forces

=100 —

_._._._._.___._._._._._._.'-'_._.k-_._"._.é;_.ﬁ

200 | 1 : | i |
000 3000 40,00 G0.00
Time

Figure 8. Time history of drag and lift for circular cylinder using moving
ground for h/d = 0.95.

Figure 9(a) shows the near field flow pattern atant A; at this
instant, we observe a maximum value of thecGrve and a “small”
maximum value of the £curve. The analysis of the flow pattern at
instants right before and after the instant A shtvet a cluster of (d) t =50.1: Point D
vortices is moving on the upper side of the cylinsierface (leading
to a high value of the lift) and pulls the anti-cfwise vortex
structure toward the viscous wake. This vortexcitne is deformed Figure 9. Near wake behavior using moving ground for hid = 0.95 at
and somehow stretched by the presence of the neadyng Rre=1.0x10°
ground, leading to a “small” maximum value of thragicurve.

A similar analysis can be done for all the othestamts
identified in Fig. 8; the near field flow patterarfthose instants are
shown in Fig. 9. For instance, in Fig. 9(b), theaméeld flow . . o .
pattern at instant B is depicted. At this instantlockwise vortex Figure 10 shows the time variation of the drag difd
structure is observed at the rear part of the dglinsurface; this COefficients for h/d = 0.55. From this figure onancobserve the
clockwise structure is deformed when it pulls thei-alockwise —tendency to the cessation of the periodic vortedeing due to the
structure away from the body surface. This configon is the one Presence of a plane wall placed in the close vicioi the cylinder.
responsible for a “small” minimum value of thg Gurve and a zero After all, the gap between the lowest point of dyéinder and the
value of the € curve. Figures 9(c) and 9(d) are associated t8@llisequalto 0.05d.
instants C and D at which the extreme values ofGhare “large”;
observe that the near field vortex structures dadeform.
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3.00 T T T

Drag Force —

.......... Lift Force
2.00 [ N

Aerodynamics Forces

a0 b . | . | . |
0.00 20.00 40.00 £60.00
Time

Figure 10. Time history of drag and lift for a circular cylinder using moving
ground for h/d = 0.55.

Just for the sake of illustration, the flow pattetrinstant t = 62
is shown in Fig. 11 for two gap-ratios [(h/d) = B.8nd (h/d) =
0.95]. For really small gap, Fig. 11(a), the vorsfvedding becomes
intermittent, which might be an explanation for fhet decay of the
time-averaged drag coefficient as observed in ¥pe@ments from
Nishino (2007). For a not so small gap, Fig. 11{bg wake seems
to be formed by a series of “mushroom” type of errstructure,
which will be destroyed far away by the moving grdu

Conclusions

The main conclusions that can be drawn are:

(i) As already used in the experimental work deghmvith the
aerodynamic of high speed racing cars, the moviogirgd
model used in the numerical simulations (althougth &
simple geometrical form body) is able to predia tain
features of the flow around a body in close prognaf a
flat surface.

(i) The experience gained with the present worllestito the
ones from previous one, in which the ground wag feed,
allows one to analyze complex situations, wheratina
motions between bodies are present. These extead th
applicability of the numerical code.

(i) The use of global as well as local quantitesnbined to the
near field flow pattern observations can be used to
understand the complex mechanisms that lead theand
the time evolution of the aerodynamic loads. The
methodology developed in this paper is greatly $ifiad by
the utilization of the Vortex Method.

(iv) The instantaneous pressure distribution on tyénder
surface allows one to follow, in time, its evolutioThis
feature can be of importance when the body is lasiciy
near a ground plane and in many other situationsaaftical
interest. It becomes obvious that one has a polerdl if
the time evolution of the pressure distributionaizalyzed
simultaneously with the integrated loads (lift aiveg).

(v) Further analyses are necessary to fully undedsthe drag
behavior as well as the wake development when tily 5
brought close to a ground. Fig. 11 gives us oniyesaints.

'A@F\&JM&JJLJ\_. .

(a) h/d = 0.55

a2 ARESEN

(b) h/d = 0.95

Figure 11. Final position of the vortices for the flow past a circular cylinder in moving ground at Re = 1.0 x 10°,
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