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The Influence of Loading on the Heat 
of Transformation in Shape Memory 
Alloys 
Standard caloric measurements on Shape Memory Alloys (SMAs) are usually carried out 
with the specimen in a state free of stress, by means of standard calorimeters. However, in 
its every application, the material is subjected to some load, being therefore necessary to 
investigate the influence of loading on the caloric behavior of SMAs, in order to take this 
into account when modeling their thermodynamic behavior. The present work investigates 
the influence of loading on the heat of transformation in SMAs. Experimental 
measurements were carried out on NiTi samples and a mathematical description of the 
observed behavior was developed. The theoretical results are in agreement with the 
experimental ones. 
Keywords: Shape memory alloy, heat of transformation, martensitic phase transformation 
 
 
 

Introduction 

As far as the thermomechanical characterization of Shape 
Memory Alloys (SMAs) is concerned, it is usual to explore three 
sets of well known basic curves: the Load-Strain Curve under 
different constant temperatures (Figure 1a), the Strain-Temperature 
Curve under different constant loads (Figure 1b), and the Load-
Temperature Curve under different constant strains, (Figure 1c).1 

 

 
 

 
 

 
Figure 1. a) Load-Strain Curves. b) Strain-Temperature Curves. c) Load-
Temperature Curves (Schematic). 
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Figure 1a shows two Load-Strain Curves at two different 
constant temperatures, denoted T1 and T2 and being T1< T2. It is 
observed that the higher the temperature, the higher the loading 
necessary to induce the direct and reverse phase transformations. 
Two Strain-Temperature Curves under two different constant loads 
P1 and P2, being P1 < P2, are shown in Fig. 1b. The curves show 
that the higher the constant load, the higher the temperature 
necessary to induce the phase transformations. And, in Fig. 1c, there 
can be seen two Load-Temperature Curves under two different 
constant pre-strains D1 and D2, being D1 < D2. The curves show 
that the higher the constant pre-strain, the higher the load under 
which the phase transformation in both directions takes place (Da 
Silva, 2000; Glasauer, 1996). This last observation is very important 
to understand the experiments and results hereby presented. 

It may be observed in the curves presented in Fig. 1 that the 
behavior of the SMA is always characterized by a hysteresis loop. 
This hysteretic behavior has been intensively investigated in the last 
decade (Xu, 1992; Glasauer, 1996). Xu (1992) investigated the size 
of the hysteresis, the temperature dependence on the hysteresis area, 
and the behavior inside the hysteresis loop within the elastic range 
in the Load-Strain diagram. He investigated Cu81.8Al14Ni (wt %) 
and Cu26Zn6.2Al (wt %) single crystals, and according to his work 
the size of the hysteresis does not depend much on the temperature, 
as long as the material undergoes a complete phase transformation 
in both directions (austenite to martensite and vice-versa). Glasauer 
(1996) investigated the quasi-plastic behavior under tension and 
compression, and the transition from quasi-plastic to pseudoelastic 
behavior of a Cu75Zn18Al sample (wt %). He observed that this 
alloy could present, at the same temperature, either a quasi-plastic or 
a pseudoelastic behavior, depending on the direction of the 
temperature change, that is, whether the intended test temperature 
was reached from a higher (after heating) or from a lower 
temperature level (after a cooling process). The reason for such a 
behavior has not been completely understood yet.  

These two cited works only point out the major focus of a great 
number of works about the thermomechanical behavior of SMAs 
that have been carried out in the last years. On the other hand, the 
caloric behavior of these alloys has received much less attention, 
hence some important unanswered questions in this field. One of 
them concerns the influence of loading on the heat of transformation 
of these alloys, since when put to use they are usually made to work 
under certain loads and not free of stress as in the standard caloric 
measurements. In this context, the knowledge about the influence of 
loading on the heat of transformation may be of great importance for 
the development of SMA models based on thermodynamic theories.  

Below the temperature Mf, the martensitic phase is the only 
stable one for SMAs. By heating an SMA sample up to a critical 
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temperature As, a phase transformation from martensite to austenite 
begins, finishing at Af. During this transformation a certain amount 
of heat is absorbed by the sample (endothermic reaction). By 
cooling the material down to another critical temperature Ms, a 
reverse phase transformation from austenite to martensite begins. 
The martensitic transformation finishes when the critical 
temperature Mf is reached. During this transformation the heat 
absorbed by the sample during heating is now released (exothermic 
reaction) upon cooling. This heat absorbed during heating and 
released during cooling is called heat of transformation. The 
question here is to investigate the influence of loading on the caloric 
behavior of SMAs, which means to investigate the caloric behavior 
when the material undergoes a phase transformation under load. 
There are few reports concerning this matter and from none of them 
one can have a clear idea about the influence of loading on the heat 
of transformation in SMAs.  

The aim of the present work is to investigate the influence of 
loading on the heat of transformation of a NiTi polycrystalline SMA 
by means of a standard calorimeter, and to mathematically describe 
the experimental results. In order to do so, a special specimen holder 
had to be developed. The calorimetric measurements were 
performed on a Ni50.2Ti (wt %) based SMA. The results were 
analyzed taking into account other thermomechanical experiments 
and the model for SMAs proposed by Achenbach-Müller (1982).  

Nomenclature 

A = Austenite phase, dimensionless 
Ac = Coherency coefficient, J/kg 
As = Austenite start temperature,°C 
Af  = Austenite finish temperature, °C 
c = Specific heat, J/kg.K 
D  = Strain, % 
d = Specific strain, D/m 
dA = Specific strain of the austenitic phase, dA/m 
dm = Specific strain of the martensitic phase, dm/m 
F = Free energy, J 
f = Specific free energy, J/kg 
fA = Specific free energy of the austenitic phase, J/kg 
fM = Specific free energy of the martensitic phase, J/kg 
m = Mass, kg 
M = Martensite phase, dimensionless 
M+ = Martensite variant favored in tension, dimensionless 
M- =   Martenste variant favored in compression, dimensionless 
Ms = Martensite start temperature, °C 
Mf = Martensite finish temperature, °C 
P = Load, N 
sA = Specific entropy of the austenitic phase, J/kg.K 
sM = Specific entropy of the martensitic phase, J/kg.K 
TR = Reference temperature, °C 
T = Temperature,°C 
uA = Specific internal energy of the austenitic phase, J/kg 
uM = Specific internal energy of the martensitic phase, J/kg 
z = Martensitic phase fraction, 1 
Greek Symbols 
α  = Specific elastic modulus, N/kg.m 
∆F = Coherency energy, J 
∆f = Specific coherency energy,J/kg 
∆s = sA – sM,, /J/kg.K 
∆s = uA – uM, J/kg.K 
εA = Specific internal energy of austenite at T = TR, J/kg 
εM = Specific internal energy of martensite at T = TR, J/kg 
Σ = Entropy production, J/K.s 
σ = Especific entropy production, J/K.kg.s 

ηA = Specific entropy of austenite at T = TR, J/kg.K 
ηM = Specific entropy of martensite at T = TR, J/kg.K 
Subscripts  
a relative to austenite 
m relative to martensite 

Experimental Setup and Measurement Description 

A Differential Scanning Calorimeter by Perkin Elmer (DSC7) 
was used to measure the heat of transformation. Due to the relative 
small dimensions of the calorimeter furnace (9.0 mm diameter and 
7.0 mm depth) a special specimen holder had to be developed under 
these restrictions, in order to place the specimen under load. In 
practical terms, it means to put the specimen under a constant strain. 
This was possible using the developed specimen holder shown in 
Fig. 2, which consists of a two-piece block of Aluminum. The upper 
part (1) has four holes without thread and the bottom part (2) four 
holes with thread. The pre-strained specimen is placed between the 
two parts and these are fixed together by means of four bolts (3). 
The specimens were pre-strained by means of a tension machine 
developed in the Institute of Thermodynamics at the University of 
Berlin. This machine was especially developed to work with small 
dimension specimens (Glasauer, 1996). The analyzed material was a 
Ni50.2Ti (wt %) wire of 0.29 mm diameter.  

The calibration of the calorimeter was performed following the 
standard procedure, but using two identical empty specimen holders 
instead of the standard capsules. After that, the calorimetric 
measurements were performed following the standard procedure. 
The specimens were heated and cooled within a temperature range 
from 10 to 120°C at 1°C/min. 

 

 
Figure 2. Developed Specimen holder. 

Experimental Results and Discussion 

In this section, some experimental results are presented and 
discussed. Figures 3 and 4 show the measured transformation 
temperatures As and Ms, respectively, under three different pre-
strains. For each considered pre-strain a set of at least 30 
measurements was carried out. The presented resulting values are 
average values for each set of measurements. 

It may be observed that the temperatures of transformation 
increase with an increasing constant pre-strain. 

In order to understand the results showed in Figures 3 and 4 one 
may analyze Load-Deformation Curves at different prescribed test 
temperatures, as shown in Fig. 5 for a Ni50Ti48Cu (wt %) sample at 
25°C, 65°C and 100°C. It is clear that the higher the test 
temperature, the higher the load needed to induce the 
transformations. Another helpful experiment for understanding the 
increase in the transformation temperatures is the Strain-



E. Paulo da Silva 

302 / Vol. XXVII, No. 3, July-September 2005 ABCM 

Temperature Curve under different constant prescribed loads. Fig. 6 
shows such curves for a Ni50.2Ti (wt %) sample under 4N and 12N. 
One may see that the higher the prescribed load, the higher the 
transformation temperatures. These two observations concerning 
Load-Deformation and Deformation-Temperature Curves are in 
accordance with the observed changes in the measured 
transformation temperatures obtained by means of the calorimetric 
measurements presented in Figures 3 and 4. 

As one may observe from experimental Deformation-
Temperature curves (under constant loads), the greater the 
prescribed strain, the higher the load under which the phase 
transformations take place (Figure 1c). From this observation one 
may conclude from Figures 3 and 4 that the greater the load, the 
higher the transformation temperatures. 

 

 
Figure 3. As for different pre-strains in Ni50.2Ti (wt %). 

 

 
Figure 4. Ms for different pre-strains in Ni50.2Ti (wt %). 

 

 
Figure 5. L-D Curves for Ni50Ti48Cu (wt %) for different temperatures (Da 
Silva, 2000).  

 
Figure 7 shows the experimental results obtained for the heat of 

transformation under different pre-strains. It is observed that the 
heat of transformation shows an initial increase and a subsequent 

decrease with an increasing pre-strain, or equivalently, with an 
increasing load. 

 

 
Figure 6. D-Temperature Curves for Ni51Ti (wt %) for different loads (Da 
Silva, 2000). 

 
To understand this result, the model for SMAs proposed by 

Achenbach and Müller (1982) is considered here. The model takes 
into account three possible phases, being two of them variants of 
martensite and denoted by M+ and M_. The other one is the 
austenite one and denoted by A. The two variants of martensite are 
thermodynamically stable below Ms. This means that when the 
material is cooled below Ms in a state free of stress, the two variants 
of martensite nucleate and grow statistically at the same proportion. 
Under these conditions the specimen will have 50% of martensite 
M+ and 50% of martensite M_ below Mf. This assumption is based 
on the self-accommodation nature of the martensitic phase 
transformation (Delaey, 1974). The austenite A is 
thermodynamically stable above As, which means that when the 
material is heated above As in a state free of stress, the austenite 
phase A will be the only stable one. Also, the martensite may be 
mechanically induced (Delaey, 1974). Below Ms the self-
accommodated martensite variants may be reoriented and above As 
the austenite phase may be transformed into martensite by means of 
loading (Delaey, 1974). The model proposed by Achenbach and 
Müller (1982) assumes that under tensile loads the formation of the 
variant M+ is favored. On the other hand, under compressive loads 
the formation of M_ is the favored one. When the specimen is 
subjected to a high enough tensile load below Ms the martensite 
variant M_ starts to reorient into M+. This transition continues as 
long as the load is high enough and until all M_ variants change into 
M+. After the unloading a quasi-plastic strain remains at 25°C, as 
shown in Fig. 5. 

The result presented in Fig. 7 was analyzed based on these 
considerations. Firstly, the Load-Deformation curves at different 
constant prescribed temperatures shown in Figure 8 were 
considered, with a strain range from 1.0% to 3.6%. In a state free of 
stress and strain (P   =   0 and D   =   0) at T   =   25oC the specimen 
is statistically composed of 50% of M+ and 50% of M_. The points 
A, B, C, D and E represent five quasi-plastic pre-strains 
corresponding to 0.5%, 1.0%, 2.0%, 3.0% and 3.6% respectively. 
The fractions of M+ and M_ given in Figure 8 are assumed 
considering the Achenbach and Müller model (1982), as described 
above.  

At T   =   100oC in a state free of stress and strain (P   =   0 and 
D   =   0) only the austenitic phase is stable. Under a heavy enough 
loading the austenite transforms into stress induced martensite. The 
points A', B', C', D' and E' represent the states for the prescribed 
constant pre-strains (prescribed at T   =   25oC) after the heating 
from 25oC to 100oC. In these states the phases A and M+ may 
coexist if the strain during the heating is held constant. Also, the 
fractions of austenite and martensite are also approximate values for 
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these states. The variant M_ transforms completely into austenite 
during the heating, independently of the prescribed deformation, so 
there is no variant M_ at points A', B', C', D' and E'. On the other 
hand, not all the M+ variant transforms into austenite. Due to the 
load it is submitted to, part of it transforms directly into the stress-
induced martensite M+ at 100oC. Under this condition the martensite 
M+ at 25oC contributes less or even not at all to the heat of 
transformation, once it is already in the martensitic state. Due to the 
fact that the fraction of martensite M+ at 25oC increases with the 
increasing prescribed pre-strain, its contribution to the heat of 
transformation decreases with the increasing load. This explains 
why the heat of transformation decreases with the increasing pre-
strain (load). 

 

 
Figure 7. Heat of transformation under the prescribed strains (under load) 
for the Ni50.2Ti (wt %) sample – Upon heating. 

 

 
Figure 8. Graphic interpretation of the calorimetric results – 
Ni50%Ti48%Cu (wt %) (Da Silva, 2000). 

 
If the prescribed strain at 25oC falls within the elastic range of 

the pseudoelastic curve at 100oC, approximately until 1.0%, then 
this analysis is not true. Within this range all martensite transforms 
into austenite upon heating. Therefore, the higher the pre-strain 
within this range, the greater the load under which the 
transformation takes place and the higher the heat needed to induce 
it. This explains the initial increase in the heat of transformation 
with an increasing load (Fig. 7).  

Mathematical Description 

The starting point of the mathematical description proposed here 
is the work presented by Huo et al (1993). Based on the 1st and 2nd 

laws of thermodynamics and considering a quasi-static process the 
entropy production Σ can be written as 

 
0≥−−=Σ FTSDPT , (1) 

 
where P is the load, D the elongation, S the entropy, T the 
temperature and F the Helmholtz free energy. For a mixture of 
phases one may in general represent its free energy as the sum of the 
individual free energies. In this work F was considered as the sum 
of the free energies FA and FM of the austenite and martensite, 
respectively. Therefore, for a specimen composed of austenite and 
martensite one may write the specific energy as follows: 

 
( ) ( ) ( ) fdzfdfzf MA ∆++−= 1 , (2) 

 
where f(dA)  =  FA/mA, f(dM)  =  FM/mM and z  =  mM/m. The masses 
of the phase A and M are mA and mM, respectively, m is the total 
mass and z is the martensite phase fraction. For z   =   1 there is only 
martensite and for z   =   0, only austenite. In the present description 
it is assumed that each interface contributes with the same amount to 
the coherency energy and that the number of interfaces is 
proportional to z(1 – z). This is a simple expression that satisfies the 
necessary requirement that ∆f   =   0 holds for either z   =   0 or z   =   
1. Thus, it is assumed that the specific coherency energy is given by 

 
( )zzAf c −=∆ 1 , (3) 

 
where Ac>0 is called the coherency coefficient, which is assumed 
positive so that there is a penalty for the formation of interfaces.  
Therefore, f is zero if either martensite or austenite is present. 

Analogously to expression (2), it is assumed that the specific 
elongation is given by the expression 

 
 ( ) MA zddzd +−= 1 , (4) 

 
where dA and dM are the elongations of A and M respectively. The 
equations (1), (2) and (4) provide the following expression for the 
specific entropy production σ : 
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Material Equations 

The specific values of the internal energies uA and uM and the 
specific entropies sA and sM of the phases A and M, respectively, 
may be written as 

 

( ) AAAA TcdT,du ε+∆+α= 2
2
1 , (6) 

 

( ) ( ) MdMMM TcdT,du ε+∆+∆−α= 2
2
1 , (7) 

 
( ) ( ) ARA TTcTs η+= ln , (8) 

 
( ) ( ) MRM TTcTs η+= ln , (9) 

 
where c and α are the common specific heat and elastic modulus of 
the phases A and M. TR is a reference temperature and ∆T   =   (T – 
TR). The ε´s and η´s are the values of u and s of the phases A and M 
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in the undeformed state at T   =   TR. The energy and entropy 
differences between the martensitic and austenitic phases at T  =  TR 
are denoted by AM εεε∆ −=  and AM ηηη∆ −=  respectively. ε∆  
and η∆  are negative because the phase change from M to A is 
endothermic. Thus, 

MA εε >  and 
MA ηη >  hold too. For the mixture 

of phases, one has: 
 

( ) MA zsszs +−= 1 . (10) 
 
From equations (6)-(10) one may write F   =   u   =   Ts and 
 

AAA TRTcdf η−ε+−∆+α= 2
2
1 ,  (11) 

 

( ) MMdM TRTcdf η−ε+−∆+∆−α= 2
2
1 , (12) 

 
where R   =   cTln(T/TR) and ∆d   =   (dM-- dA). 

Partial Equilibrium 

Reversible processes are those in which the entropy production 
(5) vanishes for all values of T , Ad , Md  and z  (Huo et al., 1993). 
This means that the requirements for reversible processes are: 

 
Tfs ∂∂= , (13) 

 

( )dA
M

M

A

A dd
d
f

d
f

P ∆−α=α=
∂
∂

=
∂
∂

= , (14) 

 
( ) ( )zAffP cAMd 21−=−−∆ . (15) 

 
Equation (13) ensures the thermal equilibrium, which means that 

the temperature T is the same in every point of the specimen. 
Equation (14) ensures the dynamic equilibrium, which means that 
the load is equal in both phases A and M. And equation (15) ensures 
the phase equilibrium, that is, the material undergoes the phase 
transformation without hysteresis.  

However, experiments show that the hysteresis is indeed 
present, which means that the phase equilibrium is not established 
during the transformations. Therefore, when inserting (11) and (12) 
into (5), one obtains an expression for the entropy production in the 
form of 

 
( )[

( )] 0,21 ≥−−
η∆−ε∆−∆=σ

zzA
TdPT

c
 (16) 

 
which is the expression for the entropy production without phase 
equilibrium. 

Description of the P-T-Diagram 

In the Load-Deformation Diagram (P-T-Diagram) the specimen 
is firstly deformed in the martensitic state. The generated quasi-
plastic deformation dv is fixed and the body heated through the 
transformation temperatures TRB (Austenite start temperature) and 
TRE (Austenite finish temperature), and cooled through TFB 
(Martensite start temperature) and TRE (Martensite finish 
temperature). Figure 9 shows a schematic P-T-Diagram, whereby 
the dashed lines represent the phase transformation without phase 
equilibrium, and the thick lines show the phase transformation with 
phase equilibrium. Upon heating, the material tries to recover its 
original configuration, being then constrained by the specimen 
holder and thus exerting a force against it. 

 
Figure 9. Schematic P-T-Curve. 

Transformation Temperatures 

Considering the situation depicted in Fig. 9, the load in fully 
martensitic and austenitic phase are denoted by PM and PA 
respectively. According to Equation (14) the following equations 
hold: 

 
( )ddPM ∆−α=     (For the M phase), (17) 

 
dPA α=                 (For the A phase). (18) 

 
It is assumed that the phase equilibrium dominates the process at 

the beginning of the direct and reverse transformations. Hence, one 
may obtain PM and PA from the equation (15) with z  =  1 and z  =  
0, respectively: 

 
( )cRBdM ATP −η∆−ε∆= ∆

1 , (19) 
 

( )cFBdA ATP +η∆−ε∆= ∆
1 . (20) 

 
Eliminating PM from (17) and (19), and PA from (18) and (20), 

one obtains TRB and TFB, respectively, as functions of the pre-strain 
dV as follows: 

 
( )[ ]cVRB AdddT +ε∆−∆∆−α=

ε∆
1 , (21) 

 
( )cVFB AddT −ε∆−∆α=

ε∆
1 . (22) 

 
To calculate TFE and TRE it is still necessary to obtain the slope 

dP/dT of the dashed ascending and descending lines in Fig. 9. It is 
assumed that both of them are parallel to the phase equilibrium one 
(thick line), which is obtained without the coherency energy. 
Making Ac  =  0 in (15) results in: 

 
( ) ( )η∆−ε∆= ∆ TTP d

1 . (23) 
 
It follows for the direct and reverse transformations, 

respectively, that 
 

( ) ( )cdF ATTP +η∆−ε∆= ∆
1 , (24) 

 
and 

 
( ) ( )cdR ATTP −η∆−ε∆= ∆

1 . (25) 
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With PF   =   PM in (24) and PR   =   PA in (25) , it follows with 
(19) and (20), respectively, that 

 
( )cVRE AddT +ε∆−∆α=

η∆
1 , (26) 

 
( )[ ]cVFE AdddT −ε∆−∆∆−α=

η∆
1 . (27) 

 
One may see that TRB, TRE, TFB and TRE increase with dV. This 

agrees with the experimental results presented in Figures 3 and 4, 
whereby it is shown that the higher the pre-strain, the higher the 
phase transformation temperatures. 

Heat of Transformation 

Under the assumption that in the direct and reverse 
transformations the phase fraction z changes linearly with the load 
P, and taking into account (17) and (18), one has  

 

( )
d

P
d

d
zdzdP V

V ∆α
−

∆
=⇒∆−α= . (28) 

 
Inserting (24) and (25) in (28), the right side of (28) becomes an 

explicit linear function of T, and one may obtain the following 
relations: 

 

( ) ( ) zdddAzT VcF
211 ∆+∆α−+ε∆=

η∆η∆
, (29) 

 

( ) ( ) zdddAzT VcR
211 ∆+∆α−−ε∆=

η∆η∆
. (30) 

 
According to the second law of thermodynamics the specific 

heat flux is given by 
 

σ−= T
dt
dsTq . (31) 

 
Equations (8) through (10) and (16) give 
 

[ ]zAzAdPTcq c 2+−ε∆−∆−= . (32) 
 
The right side of (32) becomes a function of z and z  through the 

insertion of P in (28) and ( )zdT 2 η∆α=  in (29) or (30). Hence: 
 

[ ]

[ ]( ) .zAd

zAdddcq

c

cV

22
2
1

2

−∆α+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−ε∆−∆α−
η∆

∆α
=

 (33) 

 
To calculate q  during the heating (reverse transformation) the 

range from z  =  1 to z  =  zE is considered and during the cooling 
(direct transformation) from z  =  zE to z  =  1. The martensite 
fraction that forms upon heating is zE and it depends on the final 
temperature and on the pre-strain dV. Finally, one obtains: 

 

 BKddAdcQ VcF +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∆α−+ε∆+

η∆
∆α

=
2

, (34) 

 

B-
2

KddAdcQ VcR ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∆α−+ε∆+

η∆
∆α

−= , (35) 

where K   =   (1-zE) and B   =   (1/2α∆d2). The main term ∆ε < 0 is 
much greater than the other terms in (34). It is therefore clear that 
QF is negative, as expected, because the transformation A→M is 
exothermic. It is thus clear that QF   =   -QR holds too. 

Dependence of the Transformation Heat on dv  

The term (1 - zE) in (34) and (35) depends on dV as well as on 
the final temperature. It is then necessary to estimate the size of the 
phase fraction zE, which remains after the heating. For the NiTiCu 
alloy one may do so from Fig. 10: dV  =  0.5%: zE  =  0.0, dV  =  
2.0%: zE  =  0.3 and dV  =  3.6%: zE  =  0.8. To express these 
experimental values in an analytical form one may consider the 
idealized pseudoelastic hysteresis loop depicted by the straight lines 
in Fig. 10. 

 

 
Figure 10. P-D-Diagram for NiTiCu at 100°C. 

 
One then has: 
 

d
dd

z aV
E ∆

−
=      (for aV dd ≥ ), (36) 

 
0=Ez                 (for aV dd < ). (37) 
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Analyzing (38) and (39), one concludes that QR increases with 

dV while dV ≤ da, since only the term containing dV in (38) is not 
constant. When dV > da the term QR will decrease with dV, because 
in (39) the decreasing linear term with ∆ε is the main one. This 
result agrees with the experimental one presented in Fig. 7. 

Concluding Remarks 

The heat of transformation under loading on a Ni50.2Ti (wt %) 
Shape Memory Alloy was measured by means of a special specimen 
holder, which allowed the fixation of a constant pres-strain by 
standard calorimetric measurements. The pre-strains were 
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previously prescribed to the specimens with the use of a tension 
machine. The results showed that the temperatures of transformation 
increase with an increasing pre-strain. The heat of transformation 
also increases with the loading as long as the elastic range of the 
austenitic phase (upon heating) is not exceeded. Outside this range, 
a decrease of the heat of transformation with an increasing pre-strain 
(or load) was observed. By analyzing other curves such as the Load-
Deformation for different temperatures and the Deformation-
Temperature for different loads, and making some assumptions 
about the Achenbach-Müller model, one is able to understand the 
reasons for this behavior and to mathematically describe the 
observations. The theoretical results agreed with the experimental 
ones.  
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