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Numerical Simulation of the Wind 
Action on a Long-Span Bridge Deck
A numerical model to study the aerodynamic and aeroelastic bridge deck behavior is
presented in this paper. The flow around a rigid fixed bridge cross-section, as well as the 
flow around the same cross-section with torsional motion, are investigated to obtain the
aerodynamic coefficients, the Strouhal number and to determine the critical wind speed
originating dynamic instability due to flutter. The two-dimensional flow is analyzed
employing the pseudo-compressibility approach, with an Arbitrary Lagrangean-Eulerian
(ALE) formulation and an explicit two-step Taylor-Galerkin method. The finite element
method (FEM) is used for spatial discretization. The structure is considered as a rigid
body with elastic restrains for the cross-section rotation and displacement components.
The fluid-structure interaction is accomplished applying the compatibility and equilibrium
conditions at the fluid-solid interface. The structural dynamic analysis is performed using 
the classical Newmark’s method.
Keywords: Fluid-structure interaction, Finite Element Method (FEM), Large Eddy
Simulation (LES), aeroelasticity, aerodynamics

Introduction
Wind tunnel tests for assessment of aerodynamic and aeroelastic 

informations in the study of bridge girders performance are
numerically simulated in this work. The usual way to obtain these
informations is using representative models in a wind tunnel.
However, with the improvement in computers technology and
computational fluid dynamics (CFD) algorithms, many of these
problems can also be analyzed by numerical simulation.1

Long-span bridges, such as suspension bridges for example,
must be designed to support, from a static point of view, the mean
wind forces (using the drag, lift and pitching moment coefficients).
Besides, considering that such structures show low damping and
low stiffness, they are subjected to aeroelastic phenomena, such as
flutter, galloping and vortex shedding induced vibrations. Only the
first case will be studied in the present work.

The term aeroelasticity is used when the aerodynamic forces
produce some kind of structural instability as a consequence of the
interaction between these forces and the structural motion. The
flutter phenomenon is a type of aeroelastic instability that begins
when the effective damping (structural + aerodynamic) becomes
negative.

Kawahara & Hirano (1983) were one of the first authors to
analyze numerically the wind action on a bridge cross-section. They 
used the Finite Element Method (FEM) to obtain the aerodynamic
coefficients as functions of the angle of attack of the wind and the
Strouhal number. Kuroda (1997) employed two different numerical
procedures to study the approaching span of the Great Belt East
Bridge: the Finite Element Method and the Finite Difference
Method (FDM), and Large Eddy Simulation (LES) with the
Smagorinsky’s model for the turbulent flow. He also presented the
results referring to the aerodynamic coefficients for various angles
of attack and the Strouhal number for both numerical methods
employed in his analysis. Larsen & Walther (1997) analyzed several 
bridge decks observing their aeroelastic behaviour using a numerical 
code based on Discrete Vortex Simulation (DVS), presenting the
respective critical flutter velocity (using the flutter derivatives).
Recently, Selvam et al. (2002) applied a direct method for the flutter 
analysis. They used (FEM) and (LES).

In this work, the analysis of the flow of a slightly compressible
fluid in a two-dimensional flow domain was carried out using an
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explicit two-step Taylor-Galerkin method with an Arbitrary
Lagrangean-Eulerian (ALE) description. A similar Taylor-Galerkin
formulation was used by Tabarrok & Su (1994) and by Rossa &
Awruch (2001), but with a semi-implicit scheme. The (ALE) scheme 
was first presented by Hirt et al. (1974) in a numerical work. Since
this first paper many other authors used this description with the
same concepts. The classical Smagorinsky’s model, similar to that
presented by Kuroda (1997), was employed for the sub-grid scales
simulation. The finite element method was used for spatial
discretization. The structure was considered as a rigid body with
elastic restrains for the cross-section rotation and displacement
components. The coupling between fluid and structure was
performed applying the compatibility and equilibrium equations at
the interface. The structural dynamic analysis was accomplished
using the classical Newmark’s method (Bathe, 1996). Examples are
presented to illustrate the capability of the computational method.

Governing Equations for the Flow Simulation
The governing equations, considering the pseudo-

compressibility approach in an isothermic process, Large Eddy
Simulation (LES) with Smagorinsky’s model for turbulent flows and 
an Arbitrary Lagrangean-Eulerian (ALE) description, are:

a) Momentum equations:
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global axis direction x and y, respectively.
b) Mass conservation equation:
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The boundary conditions of Eqs. (1) and (2) are the following:
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ii wv =  (i = 1, 2) on the solid boundary 
SvÃ (3)

v̂v =  on the boundary 
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In these equations, iv  and p  (the velocity components and the

pressure, respectively) are the unknowns. The viscosities
ñ

ìí =

and ñ
÷ë = , the specific mass ñ and the sound velocity c, are the

fluid properties. The eddy viscosity ñ
ìí tt =  depends of

derivatives of the filtered velocity components, of the element
dimensions and of the Smagorinsky’s constant SC . For a purely

Eulerian description, the mesh motion velocity w at each nodal
point, with components iw , is equal to zero. Now, for a purely

Lagrangean description, the mesh motion velocity at each nodal
point is equal to the fluid velocity, i.e. ii wv =  (i = 1, 2). Finally, in 

an Arbitrary Lagrangean-Eulerian formulation, 0≠w  and vw ≠ .
On the boundaries

avÃ and pÃ , prescribed values for velocity

and pressure, v̂  and p̂ , respectively, must be specified, while on

óÃ  the boundary force t̂  must be in equilibrium with the stress

tensor components ijó . In Eq. (5), jn  is the direction cosine

between a vector perpendicular to óÃ  and the axis jx .

Initial conditions for the pressure and the velocity components at 
t = 0 must be given.

The Algorithm for the Flow Simulation
Expanding the governing equations in a Taylor’s series up to

second order terms, the algorithm for the flow simulation contains
the following steps (Braun, 2002):
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where )( jjj wvr −=  and )( tv νν += .
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6) Calculate pÄpp nn +=+1  with:
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These expressions must be employed after applying the classical 
Galerkin technique into the finite element method (MEF) context.

As the scheme is explicit, the resulting system is conditionally
stable, with a stability condition given by:

i

i
i vc

xÄ
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+
<  (i = 1,..., NTE) (12)

where á (which is a real number less than one) is a safety
coefficient, ixÄ  and iv  are the i-th element characteristic

dimension and the velocity, respectively, and NTE is the total
number of elements.

Although variable time step could be adopted (Teixeira &
Awrucha, 2001), in this work an unique value of Ät will be used for 
the whole process, adopting the smallest one from those obtained by 
Eq. (12).

The Fluid-Structure Coupling
In the present work, the structure is idealized as a two-

dimensional rigid body. Displacement and rotations take place on
the plane formed by the axis x1 and x2; the body is restricted by
dampers and springs, as indicated in Fig. 1.

Figure 1. Structure model, formed by a rigid body restricted by springs
and dampers. Structure degrees of freedom: u1 = displacement in the
direction of axis x1. u2 = displacement in the direction of axis x2. è =
rotation around the axis x3 (perpendicular to the plane formed by the axes 
x1 and x2).
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The structural dynamic equilibrium equation is given by the
following matrix expression:

c
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where
S~

M is the mass matrix,
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C the damping matrix,
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stiffness matrix and
c
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c
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U,U and c
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U  the acceleration, velocity and 

generalized displacements, respectively. Finally, c

S~
Q is the load

vector.
The subscript S means that these matrices belong to the structure 

and the superscript C indicates that these values correspond to the
gravity center of the solid body. Equation (13) can be written as
follows:
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It must be noticed that the hypothesis of a rigid structure is
proper when deformations of the cross-section are small compared
to the rotation and displacement components.

At the solid-fluid interface, the compatibility condition must be
satisfied, or in other words, the fluid velocity and the structure
velocity must be the same at the common nodes of both fields. The
compatibility condition and the translation of variables evaluated at
the center of gravity of the body to a point located at the fluid-
structure interface may be written with the following expressions:
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where S and F are referred to the structure and the fluid,
respectively, and the superscript I is referred to the interface. It is

important to notice that the both vectors
I

S~
U  and I

F~
V  have two

components that correspond to the global axis direction. However,
c
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U  has three components, because it includes the rotation around

an axis perpendicular to the plane formed by x1 and x2. Values of
c

S~
U  can be transported to the solid-fluid interface (or to nodes

belonging to the structure boundary) through a translation matrix 
~
L ,

as given by Eq. (15), being l1 and l2 the distance components
between the gravity center of the body and the point under
consideration, measured in the global system. Considering Fig. 2, it
is observed that the distance components from a boundary point to
the body gravity center are functions of è, and it may be written as
follows:
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Deriving Eq. (15) with respect to time, taking into account
matrix

~
L  and equation (16), the following expression is obtained:
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Equation (15) and Eq. (17) are applied to each node at the
interface, where the equilibrium condition must be also satisfied,
that means that the load

~
S  acting on the structure at the interface,

must be equal to the load
~
S  given by Eq. (5), but with an opposite

signal (because here the fluid action on the structure is considered,
while Eq. (5) represents the boundary action on the fluid). 

~
S  can be 

transported to the center of gravity of the body, obtaining:
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contains the two components of the fluid boundary force acting on
the structure at a point located on the structure surface ÃS  (ÃS
represents also the solid-fluid interface); these forces
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S  are given

by Eq. (5), but with an opposite signal.
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Figure 2. Rigid body motion. The subscripts “g” and “l” are referred to
quantities related to global and local axis, respectively.

To determine the coupling effects between the fluid and the
structure, in the finite element method (FEM) context, consider an
element belonging to the fluid domain in contact with the solid
body, as indicated in Fig. 3, where it can be observed that only
points 1 and 2 are in contact with the structure.
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Figure 3. Element of the fluid domain in contact with the solid body.

The momentum equations in its matricial form, at element level
(e), can be obtained by applying the Galerkin method to the Eq. (1),
writting:
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where
~

MM  contains the time derivative coefficients from the

velocity components
~
V ,

~
AD  contains the coefficients of advective

and diffusive terms,
~

GP  contains the coefficients of pressure

derivative terms with respect to x1 and x2 and, finally, 
~
S  is a vector 

containing the boundary integrals resulting from the integration by
parts of pressure and diffusive terms.

In Eq. (19),
I
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V  and I
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V  contain, respectively, acceleration and 

velocity components corresponding to nodes 1 and 2 of Fig. 3, while 
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V  and FV

~
 contain variables corresponding to nodes 3 and 4 of

the same figure. A similar remark can be made with respect to the
vectors of pressure gradients
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GP  and boundary forces
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MM  contains elements coming from the connection of node 1

with itself and with node 2, and the connection of node 2 with itself 

and with node 1. Matrix IF
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MM  reflects the connection between the 

nodes 1 with 4 and 2 with 3. Similar commentaries can be made

with respect to matrices II
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AD  and IF
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Regarding the structural analysis, only the first matricial
expression of Eq. (19) is necessary, because only this equation
contributes to the assembling of the overall dynamic equilibrium
equation. On the other hand, as the structural and the flow analysis
are performed in a sequential form in this work, the system
constituted by the solid body and fluid elements with one or more
sides common to the solid-fluid interface have prescribed values of

~
V  and

~
P  at nodes that do not have any contact with the structure

(they were calculated previously in the flow analysis). Referring to

Fig. 3, at nodes 3 and 4, the values F
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V  and F
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P  are known. All

these considerations lead to the elimination of the second expression 
of Eq. (19) when the governing equations which describe the solid
body motion are built, taking into account the solid-fluid coupling
effect. The first expression of Eq. (19) can be re-written as:
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Equation (15) with matrix
~
L  and Eq. (17) with matrix )è(L'

~
are considered for each node at the interface. Then, when an element 
side with two nodes and lying on the fluid-structure interface is
considered, Eq (15) and Eq. (17) are written in the following form:
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Referring again to Fig. 3, the matrices 
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T  and '
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T  are given by:
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The contribution from I
~
S , on the side 1-2 of the element (e), to 

the total load acting at the gravity center of the body, can be
calculated as:
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Considering Eqs. (14), (15), (17) and (20), with the last one
multiplied by ñ, the structural dynamic equilibrium equation, taking
into account the solid-fluid coupling effect, is given by:
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where NTL is the total number of fluid elements in contact with the
structure, having at least one straight segment common to the solid
body surface, forming the solid-fluid interface. The matricial Eq.
(24) is re-written as:

c
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c

S~S~

c

S~S~

c

S~S~
QUKUCUM =++ (25)
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As can be noticed,
S~

C  is a non-symmetric matrix, because it

contains the advective terms and




 )è('TMMT

~
II

~
T

~
. This last term

leads to the non-linearity of matrix 
S~

C .

In this work, a monolithic coupling between fluid and structure
was not considered. The analysis for both fields is made in a
sequential way. Firstly, Eq. (6) to Eq. (11) are solved, with the
smallest Ät calculated with Eq. (12) and applying the boundary
conditions given by Eq. (3) to Eq. (5). After, Eq. (25) is solved
using the Newmark’s method (Bathe, 1996). Although different
time steps may be used for the fluid and the structure, here the same
time step was adopted, because the computer time required by the
structure analysis is negligible with respect to the processing time
demanded by the flow analysis. Furthermore, compatibility and
equilibrium conditions are more accurately imposed if the same time 
intervals are employed.

Strouhal Number and Aerodynamic Coefficients Calculation

The Strouhal number (St) can be calculated with
0

0

V
Lf

St v= ,

where V0 is a reference velocity, L0 a reference dimension and fv is 
the shedding frequency of a pair of vortices. It depends of the
immersed prism cross-section, its oscillations, its superficial details,
the Reynolds number and the flow characteristics. Formulation to
calculate this number is presented in many publications and texts
(for example, Schlichting, 1979). When the Strouhal number of a
flow with a given immersed structure is known, it is possible to
obtain the velocity RV0 , which will produce the resonant

phenomenon on the vibrating body. It occurs when the shedding
frequency of a pair of vortices is approximately equal to the
structural natural frequency.

The drag coefficient CD is related to the acting forces on the
structure in the flow direction, while the lift coefficient CL is related 
to the acting forces on the structure in the transversal-to-flow
direction. Finally, the pitching moment coefficient CM is related to
the torsional moment acting at the gravity center of the immersed
prism. The three coefficients can be calculated using the following
expressions:
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where IS1  and IS2  are the forces in the directions x1 and x2,

respectively, acting on the structure at node i, located on the
interface. il1  and il2  are the projections in the directions x1 and x2,

respectively, of the distance between the gravity center and node i.
NTN is the total number of nodes located on the solid-fluid

interface. The forces IS1  and IS2  are the components of the force

vector I
~
S , given by Eq. (20). These forces are applied to the

structure on each fluid element side belonging to the interface.

The pressure coefficient at a point i, i
pC , located on the

interface, is related to the pressure acting at that point. This
coefficient can be calculated using the following expression:

2
0

0

2
1 Vñ

PP
C ii

p
−

= (27)

where Pi is the pressure at node i and P0 is a reference pressure (for 
example, the pressure in an undisturbed area of the flow). With the
instantaneous values of pressure coefficients, the time history may
be obtained and then the mean pressure distribution on the body
surface, for a given time interval, may be calculated.

The Automatic Mesh Motion Scheme
Taking into account that the immersed body in the fluid can

move and rotate in its plane and that the flow is described by an
Arbitrary Lagrangean-Eulerian (ALE) formulation, a scheme for the
mesh motion is necessary, establishing the velocity field w  in the
fluid domain, such that the element distortion will be as smaller as
possible, according to the following boundary conditions:

=erfaceintw I

E~
I

F~
UV = ;

~boundaries
externalw 0= (28)

In the present work, the mesh motion scheme is similar to that
used by Teixeira & Awruchb (2001). Considering that i is an inner
point in the fluid field and j is a boundary node, the mesh velocity
components at node i , in the direction of the axis xk, are given by:

∑
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1

1   (k = 1, 2) (29)

where NS is the total number of nodes belonging to the boundary
lines and aij are the influence coefficients between the inner points

and the boundary lines of the flow field, being ( )nij
ij

d
a 1= , where

dij is the distance between i and j, and 1≥n . The exponent n can be 
adjusted by the user. Although regions with purely Eulerian and
purely Lagrangean descriptions mat be used simultaneously with the 
ALE formulation, this alternative may result in more complex and
less efficient codes. It may also lead to more difficulties to control
mesh distortions.

Examples

Analysis of the Flow Around a Rectangular Prism

This example presents a prism with a rectangular cross-section
free to oscillate in the transversal-to-flow and rotational directions.
Through this problem, the program performance for large and
coupled motion is observed, even that this cross-section form is not
usually employed in bridge structures. In this study, special attention 
is given to the structural dynamic response in the two degrees of
freedom of the cross-section and to the finite element mesh motion,
remembering that a special scheme is employed for the non-linear
dependence with respect to the cross-section rotation in the
compatibility condition at the solid-fluid interface.

In the present section, results obtained for a flow around a
rectangular prism with a Reynolds number equal to 1000 are
presented. The rectangular cross-section exhibits a height/width
relation (h/B) of 0.2. The geometry and the boundary conditions, in 
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a non-dimensional form, are shown in Fig. 4. In addition, initial
velocity and pressure field for the fluid-structure interaction
problem are those of a developed flow obtained with a fixed body.

Figure 4. Flow around a rectangular prism: geometry and boundary
conditions.

The finite element mesh has 5865 nodes and 5700 quadrilateral
bi-linear isoparametric elements and is shown in Fig. 5. A non-

dimensional time step ∗tÄ  = 1.0x10-4 was adopted. The fluid and
structural data are presented in Table 1.

Table 1. Rectangular prism: dimensionless data for the fluid and the
structure.

Rectangular Prism - Reynolds 1000
Specific mass (ñ) 1.0

Volumetric viscosity (ë) 0.0
Reynolds number (Re) 1000

Mach number (M) 0.06
Reference/inflow velocity (V0) 1.0Fl

ui
d 

da
ta

Characteristic dimension (D) 1.0
Dimensionless longitudinal stiffness (K*

11) 3x104

Dimensionless transversal stiffness (K *
22) 0.7864

Dimensionless torsional stiffness (K *
33) 17.05

Dimensionless longitudinal mass (M*
1) 195.57

Dimensionless transversal mass (M *
2) 195.57

Dimensionless torsional mass (M *
3) 105.94

Dimensionless longitudinal damping (C*
11) 1x107

Dimensionless transversal damping (C *
22) 0.0325

St
ru

ct
ur

al
 d

at
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Dimensionless torsional damping (C *
33) 0.0
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Figure 5. Rectangular prism: finite element mesh.

In Fig. 6 the time histories related to angular and vertical
displacements, velocities and accelerations are presented. It is
important to notice that the time used in these figures is
dimensionless. These results are very similar to those obtained by
Sarrate et al. (2001), using a different method.
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Figure 6. Rectangular prism: time histories of vertical and rotational
displacements, velocities and accelerations.
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Figure 6. (ontinued).

The streamlines and the pressure field are shown in Fig. 7, in
three instants (t* = 439, t* = 442 and t* = 448). It can be observed
the presence of high pressure gradients and large vortices alternating 
between the lower and the higher surfaces. The streamlines show
that the cross-section orientation with respect to the free flow
direction modifies the boundary layer form. This conclusion is the
same observed in bluff bodies, where the flux-ward dimension is
one of the parameters that determine the forms of the boundary layer 
and wake. In Fig. 8 it is verified the distortion of the mesh in an
instant where extreme structural rotation is reached.
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Figure 7. Rectangular prism: (I) pressure contours and (II) streamlines
contours; (a) t* = 439; (b) t* = 442 and (c) t* = 448.
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Figure 7. (Continued).
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Figure 7. (Continued).
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Figure 8. Rectangular prism: finite element mesh at t* = 448.

It can be observed that a satisfactory performance has been
obtained for this example. The ability of the code to study fluid-
structure interaction problems, where immersed bodies move due to
the flow action with large displacements and rotations was also
confirmed. In addition, the main characteristics of flows around
bluff bodies were well simulated. The analysis of this kind of
problem is only possible if a special Arbitrary Lagrangean-Eulerian
(ALE) description is used. Another important aspect that is the mesh 
motion model, used previously by Teixeira & Awrucha (2001), was
applied here with the same success.

Numerical Study of the Great Belt East Bridge Cross-section

In this section, results of the numerical simulation of the wind
action on a cross-section belonging to the Great Belt East Bridge are 
presented, including the aerodynamic and the aeroelastic behavior.
The studies are accomplished by fixed and oscillating sectional
models, according to the usual wind tunnel techniques.

The Great Belt East Bridge is located in Denmark, precisely in
the Great Belt Channel, an important international shipping route.
The design phase was initiated in 1989, being it opened to the traffic 
in 1998. It is a suspension bridge, with a superstructure constituted
by two approaching spans of 535 m (each one) and a central span of 
1624 m, which will be studied in this work. In Fig. 9, general
aspects of the bridge are shown. The pictures were taken from
Larsen & Walther (1997).

(a)

(b)

Figure 9. General characteristics of the Great Belt East Bridge: (a) cross-
section; (b) elevation.

Firstly, the fixed cross-section was analyzed and the
aerodynamic coefficients were obtained as functions of the angle of
attack of the wind direction. The Strouhal number was also
calculated. Finally, free oscillations of the cross-section in the
vertical and the rotational degrees of freedom were allowed in order
to carry out dynamic instability investigations.

Analysis of the Flow Around the Fixed Cross-Section

The computational domain and the boundary conditions used in 
this example, are illustrated in Fig. 10. As can be noticed, the inflow 
boundary conditions are functions of the angle of attack of the wind 
direction. Four different values of the angle of attack were studied: -
10º, -5º, 0º e +5º. The initial pressure and velocity were assumed
equal to zero.

Figure 10. Great Belt East Bridge: geometry and boundary conditions for
the fixed cross-section.

The finite element mesh employed in this problem has 8175
bilinear isoparametric elements with 8400 nodes, and is shown in
Fig. 11.
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Figure 11. Great Belt East Bridge: finite element mesh.
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The Reynolds number used in the four cases is 3.0x105. The
other constants used in the analysis are presented in Table 2. From
the well-known Courant stability condition, the time step is Ät =
1.15x10-4 s.

Table 2. Great Belt East Bridge: data used to determine aerodynamic
coefficients.

Constants
Great Belt East Bridge -

Reynolds 3x105

Specific mass (ñ) 1.32 Kg/m3

Volumetric viscosity (ë) 0.0 m2/s
Kinematic viscosity (í) 5.78x10-4 m2/s

Sound velocity (c) 337.0 m/s
Reference/inflow velocity (V0) 40.0 m/s
Smagorinsky’s constant (CS) 0.2

Charact. dimension/cross-section(D) 4.40 m

The investigated mean coefficients, obtained from the time
histories, are plotted in Fig. 12 as functions of the angle of attack,
and compared with the experimental results given by Reinhold et al.
(1992) and the numerical results obtained by Kuroda (1997).
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Figure 12. Great Belt East Bridge: numerical and experimental results for
aerodynamic coefficients as functions of the angle of attack.

The Strouhal number, obtained from the vertical velocity
component time history V2 at a point located a distance 0.2 B behind 
the cross-section (with zero angle of attack), is 0.18. Comparisons of 
some of the results obtained for Strouhal number of the referred
bridge are shown in Table 3.

Table 3. Strouhal number for the Great Belt East Bridge.

Reference
Strouhal number 
- Reynolds 3x105

Present work 0.180
Larsen et al. (1998) (numer.) 0.170

Wind tunnel tests (from: Larsen et al. (1998)) 0.160

The streamlines observed for the different angles of attack are
presented in Fig. 13 and are similar to those obtained by Kuroda
(1997).
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Figure 13. Great Belt East Bridge: streamlines contours for different
angles of attack.

Aeroelastic Analysis: Flutter

In this work, Flutter analysis is accomplished in two different
ways: a) direct method, presented by Selvam et al. (2002), and b)

using the flutter derivative *A2 , introduced by Scanlan & Tomko
(1971), being this coefficient related to the aerodynamic damping
due to torsional rotations. Both methods have the same experimental 
procedure and are based on the observation of the structural
response to cross-section rotations for various wind velocity values.
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In Selvam et al. (2002), it is shown a method in which the
growth/decay rate is determined from the structural response,

observed in several reduced wind velocities given by
Bf

VV 0=∗ ,

where V0 is the inflow velocity, B is the bridge deck width and f is
the natural structural frequency. These values of the growth/decay

rate are calculated with kkk
d/g y)yy(ã 1+−= , where yk and yk+1

are the peak values in the same oscillation period. After, they are
transported to a chart in function of the reduced wind velocity, and
the critical velocity corresponds to the point where the curve crosses 
the velocity axis (growth/decay rate = 0).

In the flutter derivatives method (Scanlan & Tomko, 1971), the

experimental damping exp
èæ  and the natural frequency exp

èù  for

each reduced wind velocity are obtained from the structural
response. These values are introduced into an expression,
representing the aerodynamic damping and given by: 
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where I is the mass moment of inertia, ñ is the specific mass of the
fluid, B is the bridge deck width, èæ  is the structural critical

damping and èù  the structural natural frequency. Eq. (30) may be

also written, by experimental considerations, in a reduced

expression in terms of the logarithmic decrement expexp ðæä 2≅  as
follows:
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Thus, a curve of this coefficient *A2  in function of the reduced

wind velocities is built. The critical flutter velocity is obtained by a
critical condition expressed by:

Bñ
æIA è* 4

2 = (32)

So, when BñæIA è
* 42 >  the aerodynamic damping is greater

than the structural damping, originating negative damping and
oscillations with growing amplitudes.

The geometry as well as the finite element mesh employed in
the determination of the critical velocity of flutter is the same that
was used previously (Fig. 10 and Fig. 11). Initially, a fixed cross-
section with an inclination of 1.8º was taken. After 30000 time
steps, the load boundary conditions at the body surface were
computed, and then, the body motion was allowed. The outflow
boundary conditions were kept identical to the case where the body
remains fixed with zero angle of attack, with exception to the inflow 
velocity, which changes in order to obtain the desired curves.

The physical properties and design values of the structure,
employed in the experiments, are found in Table 4. The structure is
idealized such that only torsional rotations are allowed (because it
was verified that coupling vertical displacements and rotations will
not modify significativelly the critical velocity of flutter).

The problem was analyzed for four reduced velocities: 2, 4, 6
and 10. These values correspond to the following inflow velocities:
16.86 m/s, 33.73 m/s, 50.59 m/s and 84.32 m/s, respectively. The
flow was analyzed with Re = 105.

Table 4. Great Belt East Bridge: structural data used in the flutter analysis.

Great Belt East Bridge – Reynolds 105 – Structural data 
Longit. and transv. stiffness (K11, K 22) 3x109 N/m.m

Torsional stiffness (K 33) 7.21x106 N.m/rad.m
Longit. and transv. mass (M1, M 2) 2.27x104 N.s2/m.m

Torsional mass (M 3) 2.47x106 N.m.s2/rad.m
Longit. and transv. damping (C11, C 22) 3x104 N.s/m.m

Torsional damping (C 33) 0.00 N.m.s/rad.m
Vertical natural frequency (fh) 0.099 Hz
Angular natural frequency (fè) 0.272 Hz

Critical damping (æ) 0.002

In Fig. 14, time histories related to the angular displacement are
presented for each reduced wind velocity. From the rotation time
histories, the growth/decay rate as well as the logarithmic decrement 
for each reduced velocity were obtained. In Table 5 all these values
are presented.
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Figure 14. Great Belt East Bridge: angular displacement time histories for
the studied reduced wind velocities.
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Figure 14. (Continued).

Table 5. Great Belt East Bridge: numerical results for flutter analysis.

Great Belt East Bridge - Reynolds 
105Results

V* = 2 V* = 4 V* = 6 V* = 10
Growth/decay rate 0.131 0.270 0.311 -0.500

Logarithmic decrement 0.176 0.205 0.291 -0.403

In Fig. 15 the curves to obtain the critical velocity of flutter by
the direct method of Selvam et al. (2002) and by the flutter

derivative *A2  (Scanlan & Tomko, 1971), respectively, are

presented.
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Figure 15. Flutter analysis: (a) by the flutter derivative *
2A  and (b) by the

direct method for the Great Belt East Bridge.

From Fig. 15, the reduced critical velocity obtained by the direct 
method is 8.18, corresponding to a velocity of 69 m/s. By the flutter 

derivative method, considering the critical condition as A*
2 ≥

1.62x10-2, yields a reduced velocity equal to 8.66 which corresponds 
to a critical velocity equal to 73 m/s. In Table 6 below, comparisons 
of the critical velocity obtained by this work and by other authors
(through numerical and experimental works) are shown.

Table 6. Flutter velocity for the Great Belt East Bridge.

Great Belt East Bridge – Flutter velocity
Reference Vcrit (m/s)

Present work – direct method 69
Present work – flutter derivative 73

Selvam et al. (2002) (num.) 65-72
Larsen et al. (1997) (num.) 74

Enevoldsen et al. (1999) (num.) 70-80
Wind tunnel tests (from: Larsen et al. (1998)) 73

Conclusions
A model for the numerical simulation of the wind action on

bridges was described. The computational code was validated
through the analysis of a rectangular cross-section and studies of the 
aerodynamic and aeroelastic behavior of the Great Belt East Bridge
cross-section. The results show good agreement with those obtained 
by other authors. In future works, it is expected to explore other
bridge decks, considering details such as cables, guardrails and
aerodynamic appendages. It is also expected improvements in the
efficiency in processing time, mainly in turbulent flows. An
alternative is to use time integration with subcycles (Teixeira &
Awrucha, 2001), optimizing the time step on the computational
domain. Another possibility is to use semi-implicit schemes for the
flow analysis.
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