Acessibilidade / Reportar erro

Building 3D frameworks of accessory aquatic systems

We consider a mathematical framework for spatially describing accessory aquatic systems that belong to a major hydric complex like a large reservoir created by damming a river. The central purpose is to provide a precise and complete mathematical covering of short-scale or localized water bodies, with typical lengths between 1 to 10 km, that are laterally attached to the main river. Such bodies may deserve a more detailed mathematical representation due, for instance, to their tendency to develop stagnant like hydric behaviors. The proposed framework may work as an infrastructure for developing and/or installing dynamic water quality models. It can generate tetrahedrizations of the aquatic system in question by working according to a procedure which builds, successively, reliable candidates for the following entities: (a) Free Surface Triangular Mesh; (b) Submerged Terrain Triangular Mesh; (c) Three Dimensional Partition of the Domain; (d) Basic Tetrahedrization of 3D Partitions; and (e) Refinement of the Basic Tetrahedrization through a Multi-Layer Tetrahedrization Algorithm. The required input for this procedure is only composed by terrain contour data and 3D located points. We present example applications including a real scenario belonging to a recent flooded system in Brazil.

3D Mesh; tetrahedrization; water reservoir; water quality


Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM Av. Rio Branco, 124 - 14. Andar, 20040-001 Rio de Janeiro RJ - Brazil, Tel.: +55 21 2221-0438, Fax: +55 21 2509-7129 - Rio de Janeiro - RJ - Brazil
E-mail: abcm@abcm.org.br