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Introduction

It is still common to find in the relevant literatu(Jameson and
Martinelli, 1998) works in which the magnitude bktdiscretization
error (Roache, 1998) is assessed only by presettimgiumerical
results obtained with two or three different grilevertheless, it is
already quite common to use Richardson extrapoidftichardson,
1910) to estimate discretization errors, as, fangsle, in Roy and
Blottner (2001). A variant of the Richardson exoiapion has also

been used, th&sCl estimator (Roache, 1994), for example, in

Cadafalch et al. (2002).

For each variable of interest, the error estimatiaade through
Richardson extrapolation uses numerical solutiobtined from
two or more different grids, i.e., grids with afdient number of
volumes, points or elements. Therefore, in a twuoatisional
problem, for example, the grids can be refinedegifimultaneously
or separately in both directionsgndy).

The purpose of this work is to present procedusegs$timating
the error of numerical solutions of multi-dimensabrproblems
when the apparent order (De Vahl Davis, 1983) ef ¢stimated
error is a monotone convergent one (Marchi andaSiR002). By
doing so, one can define the lower and upper lifotsthe true
error. Examples of uses are presented for problemving heat
transfer and fluid mechanics, which are solved hg finite
difference and finite volume methods. Furthermoves have
developed our work taking into account the follogvfactors:

1) The theory and the definitions adopted by Marchi an

Silva (2002), which deals only with one-dimensiopaiblems.

2) That the numerical error is caused only by trumcati
errors, i.e., it is either assumed that there aremors related to
iterations, round-off and due to programming (Marmhd Silva,
2002), or, rather, that these errors are very swiaéin compared
with truncation errors. In this case, the numererabr is called a
discretization error.

3) Estimates of discretization errors are of amosteriori
type and are based on Richardson extrapolationhéRison,
1910; Roache, 1994; Blottner, 1990; Oberkampf andcdno,
2002), which uses multiple grids.

4) That up to three spatial dimensiongyf) and one
temporal {) dimension are used.
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and when grid refinement in each dimension is separate from the remaining ones.
Examples of uses are presented for problems involving heat transfer and fluid mechanics,
which are solved by the finite difference and finite volume methods. It was found that, for
the situation in which the apparent order of the estimated error is a monotone convergent
one, two values of estimated error can be cal culated, which bound the true error.
Keywords: Discretization error, truncation error, CFD, numerical error, fluid flows

5) That the numerical approximations used for disziagi
the mathematical models are one-dimensional (Ferzgd Peric,
1999; Tannehill et al., 1997).

6) That the grids are uniform in each dimension.

7) Estimations of the discretization error can be igopto
the dependent variables of the mathematical modetooany
variable obtained from them through differentiafioriegration or
any other mathematical operation.

8) The exact analytical solutions are known for theakdes
of interest for the problems used as examples i;1wiork. One
can therefore compare the estimated error to theedrror.

9) The numerical method works in all the grids.

In the next sections a definition of multi-dimernsd
discretization error and a summary of the signiftcesults from
Marchi and Silva (2002) are presented. The proeedused for
estimating the true discretization error are shéovrgrids that are
simultaneously refined in all dimensions and for ewhthe
refinement is separate in each dimension. Nextmpies are
presented that include two-dimensional steady-stéteat
conduction, one-dimensional transient heat condoctind two-
dimensional incompressible Navier-Stokes flow. Themerical
solutions to such problems are obtained by finifeexdnce and
finite volume methods. Finally, a conclusion tosthiork is
presented.

Nomenclature

¢ = coefficients in the truncation error equation

C = coefficients in the discretization error equatio

E = true discretization error of the numerical solution

h = grid spacing or distance between two successigepgints

K = coefficients in the numerical solution uncertaietjuation

p. = asymptotic order of the discretization error

pu = apparent order of the uncertainty

r = grid refinement ratio

t=time

U = uncertainty or estimated error of the numericalisoh

Uc = uncertainty of the numerical solution by the wengent
estimator

Ugr = uncertainty of the numerical solution by the HRirdson
estimator

X, Y, Z = spatial coordinates

Greek Symbols

£ = truncation error
@ = numerical solution of the variable of interest
@ = exact analytical solution of the variable diirest
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@ = convergent numerical solution
@, = estimated analytical solution
A = dependent variable
Subscripts

fine grid

coarse grid

supercoarse grid

base grid

dimension (1x, 2=y, 3=z, 4=)

O T WN -

Multi-Dimensional Discretization Error

Let us consider the two-dimensional equation of lhe@
(Incropera and DeWitt, 1996):

2
+a/\:0
6y2

32N

1)
ax2
wherex andy are the independent variables ands the dependent
variable. This equation can be discretized witteatral difference
scheme (Ferziger and Peric, 1999) for each onts tdims, i.e.,

[az/\] _(Aw *+Ag —2Ap) -
0x* ), h%
02N (As + Ay - 2Ap)
2 — 7 3
90y° Jp hy
where
hy =Xp =Xy = Xg —Xp =...= constant 1 (4)
hy =yp —ys =yn —Yp =...= constant 2 (5)

In Egs. from (2) to (5), the subscripts refer t@.FL, in whichP
represents a generic node in the grid on which nigale
approximations are made, and/, E, S and N represent its
neighboring nodes. Other numerical approximatiars e found in
Ferziger and Peric (1999) and Tannehill, Andersod Rletcher
(1997).

Using a Taylor series (Kreyszig, 1999), one carifwéhat the

truncation errorsg) (Tannehill, Anderson and Pletcher, 1997) of the

numerical approximations given
respectively,

in Egs. (2) and (8)e,

2 4 h2 6 h4
5[—6 ’;] :_[_a ’:] - on e ®
0x° ) ox" Jg 0x” )
2| TTl5a] 12 1506 380
ay P ay P 12 ay P 360
Introducing Egs. (2) and (3) into Eg. (1), one oatain
(\w+Ae=2Mp) | As*An=2Mp) _ ¢ (g

hy h

In this case, the truncation error of Eq. (8) resirl the sum of the
values of Egs. (6) and (7). Thus, generalizing, #orfour-
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dimensional differential equatiorx,y,zt) that has many terms in
each dimension, with derivatives of several différerders, the
truncation error of the discretized differentialuation PDE), in
eachP node of the grid, results in

)3 ( Gig hy ”

i=1

4
£l
d=1

whered = 1, 2, 3 and 4 represents, respectively, the niéioasy, v,

z andt; hy represents the distance between two consecutivesnaf
the grid in eachd dimension;i represents each one of the terms of
the infinite series, as in Egs. (6) and (@); represents coefficients
that depend on the derivatives/®fin each node of the grid, but do
not depend oy, finally, p;4 are the true orders (Marchi and Silva,
2002) of the truncation error, which are integerd anositive
numbers. Comments on the different nature of spatid temporal
terms of Eq. (9) and about the own Eq. (9) candmnsn Roache
(1998), mainly on pages 125 and 126 and Roachet[199

£(DDE)p = ©

S N
hy
W p E ¥
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Figure 1. A two-dimensional grid, uniform in each d irection.

In analogy (Roache, 1998; Ferziger and Peric, 1989)he
truncation error equatiorg) of Eq. (9), it is possible to assume that
the true discretization erroE) of any variable of interesty is

given by
4 ©
Cighd
(El|:i§l( ha ”

in which gcan be the numerical solution of the dependenalker
(A\) in the differential equation, at a specific cdoede, its average
of the whole field, or any other variable obtairfesin A; and the
coefficientsC; 4 and the exponentsy may or may not be equal to
the coefficientsc 4 andp;4 of Eq. (9), depending om The true
discretization error of the numerical solutigp ¢an also be defined
by

E(g) = (10)

E@ = ® - ¢ (11)
Determining the true discretization error through. E10) or
(11) requires knowing the exact analytical solutidid).

Unfortunately, in practical problem® is unknown. In such cases,
the concept of estimated errtf)(is adopted, which is defined by

U@ = @ - ¢ (12)
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where ¢, represents an estimation @ To do so, one can use a
simplification of Eq. (10), retaining only the firderm of each
dimension, i.e., the term that prevails over theaiming ones ahy

- 0. Thus, one obtains

U@ = KyehP+Ky hyY +K,hP + K hP

(13)

in which the coefficient&y are assumed as constant, i.e., they d

not depend orhg; andp,, p,, p, andp; are the asymptotic orders
(Marchi and Silva, 2002) of the true discretizatierror of each
dimension. Generally speaking, the value of themeded error ()

is different from the true erroEf due to the simplification made
while moving from Eg. (10) to Eq. (13).

Obtaining @, andU in multi-dimensional problems is dealt in
this work but first, in the next section, the sfgant results of
Marchi and Silva (2002) are presented becauseateethe base for
the present multi-dimensional problems.

One-Dimensional Discretization Error Estimation for

Convergent Apparent Order

TheRichardson Error Estimator for One-Dimension

For one-dimension, Eq. (13) reduces to

U@ = K.h™

(14)

where K_ is a constanth_ is the grid spacing ang_ is the

asymptotic order of the true discretization eriorEq. (14), instead
of usingp,, one can also use the concept of apparent opgefDe

Vahl Davis, 1983), i.e.,

U@ = KghP (15)
whereKy is a constant and
Iog[(p2 - %J
aA-%
= —= =7 16
Pu log) (16)
for a constant grid refinement ratig,(defined by
h h
po= w2 _ M 17)
h 1 h -

where @,
respectively, with the fine gridh(;), coarse grid K ;) and
supercoarse gridi ).

It was analyzed the estimate of discretization rerrfor the
situation where the apparent ordgx;)( converges monotonically
toward the asymptotic ordep ) ash, — 0. This happens in two
ways that are defined as subconvergent and supengsnt
intervals of the apparent ordempyf or simply denoted as
“convergent apparent order”. Within the subconvetgdeterval,py
converges monotonically to with smaller values thap, ash, -

0. Within the superconvergent intervp|, converges monotonically
to p_ with larger values thap_ ash, - 0.

If the apparent orderp() is monotone convergent, then the

exact analytical solutiond() will be bound betweeng(p.) and

@Apy), with
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@ and ¢ are the numerical solutions obtained,
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%(p) = @ + E= (18)
- @-%) 19
@ (py) a + 1) (19)

Equations (18) and (19) are the generalized Richerd
8xtrapolati0ns (Roache, 1994). Replacing them in @4§), one
obtains

_ (a-®)
Ug(a, = 72/ 20
ri (4, PL) P -1 (20)
Un(apy) = B-®) (21)
(r -

which represent the estimated errors of the numlesolution ¢

according to the Richardson error estimatddg), It was
demonstrated that
E(a1) E(a)

in which p, and p, represent the asymptotic ordes )( or the
apparent orderp()), depending on whethgy;, is subconvergent or
superconvergent. Within the convergent intervapgfthis relation
worked for all cases and variables of interesthtelgnear and non-
linear differential equations in fluid dynamics dhistized by the
finite difference method with uniform one-dimensabrgrids and
with six types of numerical approximations. Outsicienvergent
interval of py, this relation can or not works. One has not foand
procedure to estimata priori the beginning of the convergent
interval ofpy.

An estimated errol{) may be defined as reliable when the ratio
between estimated errdd) and true errorH) is larger or equal to
unity. According to Eqg. (22), the true discretipatierror of the
numerical solutiong, E(@), is bound by the estimated errors
Uri(@,p) andUg(@,pu). Therefore, if the objective is to obtain a
reliable estimated error, the numerical solutiontted variable of
interest @ should be presented or reported by

(23)

@ @ + Ur(a)

where
Ur (@) =s0(@t - @) Max{[U s (@1, p)|:|U s (@1 pu )|} (24)

with sg(@-@) representing the sign of the difference betwgeand
@, andMax{}, the maximum between the modulesW@(@,p.) and

Uri(#.Pu)-

The Convergent Error Estimator for One-Dimension

With the same numerical solutiong,(¢ and @) used to obtain
the estimated errors provided in Egs. (20) and, (213 possible to
reduce the true discretization error of the nunaérsolution,E(¢@),
through “The Convergent Numerical Solutiorgt), defined by

@ (PL) *+ @ (Pu)

> (25)

%
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where @ p) and @ py) are obtained by the Richardsonequation. However, they can be left free, i.e.ytban be obtained
extrapolation, Egs. (18) and (19). Fgy, the numerical solution of through the concept of apparent order (De Vahl §ali983).

the variable of interestj should be presented or reported by

= & = Uc) (26)

in which the estimated error @, Uc(@), is equal to the modulus

of half of the interval betweeg.(p,) and@.(py), that is,

_ () - @(py)

> (27)

Uc()

HereafterUc is called “The Convergent Error Estimator”.

Within the convergent interval g, it is advisable to use the
convergent numerical solutiongy instead of the calculated

numerical solution ) because the true discretization errorgsf
E(g@), is smaller than the true discretization errogoefE(@).

Simultaneous Refinement of a Grid in All Dimensions

Refinement is characterized as simultaneous refmémhen
the number of nodes, elements or control volumesalbffour

dimensions X, y, z t) vary among the grids used to estimate the

discretization error. In a three-dimensional probldor example,
this is done by refining of a grid from 10*10*10 th6*20*30
control volumes. In the next section, describes dhgse in which
grid refinement in each dimension is separate fittiat of the
remaining ones. Next, two situations will be examinwhen the
grid refinement ratio is variable in each dimensiand when it is
the same.

Variable Grid Refinement Ratio

With Egs. (12) and (13) designed for five differegrids, i.e.
with a different number of nodes, elements or adntolumes
among them in each dimension, indicatedhlpy, hy, hys, hq4 and
hys, and whose numerical solutions are, respectivgly®, @, @
andg, one can obtain

G-@ = K+ Kyhy +KGhfE + KR
@-® = K5+ K heY + K, hP5 + K h?
@-p = KehPS+Kyh'y +K,hP5 + Koh (28)
@ - = KehP$+ K h' +K,hPs + K hP
@-@ = KhPE+ Kot +K,hPz + K h%

In this system of equations, all valueshgfpy, @, @, @, @ and @
are known. The unknown values are the four consténand ¢..
After the solution of this system fop, is obtained, one can
determine with Eq. (12) the estimated error of each of the five
numerical solutions used in Eg. (28). Only fourtloree numerical
solutions are necessary, respectively, to obéairand to calculate
the estimated errors in steady-state three-dimeakiand two-
dimensional problems. In the one-dimensional cast, only two
numerical solutions one can obtai@, and U, as has been
demonstrated by Roache (1998, 1994), Marchi anc $2002) and
Blottner (1990).

In the system of Egs. (28), it is assumed thatasgmptotic

orders p,, p,, p, and p; are known based on the numerical

approximations used in the discretization of thdfedential
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Hence, in the four-dimensional case, there will foer other
unknown ones and nine numerical solutions will beded to obtain
@.. The one-dimensional case has been shown in MarzhiSilva
(2002).

Same Grid Refinement Ratioin All Dimensions

Let us consider two different grids, the first, mef one,
characterized b, 1, hy 1, h,; andh;,, and the second, a coarse one,
characterized bi, ,, hy,, h,, andh; . In a particular case of the grid
refinement ratior) being the same for all dimensions, i.e.

ho
hes

r = B - —

h

Y2 = = (29)
hy;l hz;l
wherer can take on real values greater than the uniteyatuis

possible to demonstrate that Eq. (13) results in

- PL Px—PL Py-PL
U@ = h't(ayh™ +ay h/ (30)
+a, hfz'PL +ay tht'PL)
where
pe = Min(py. py. Py Pt ) (31)

and thata,, a,, a, anda; are constantgy_ represents the minimum
value among the asymptotic orders of the four dsiwers,
according to Eqg. (31); anlg is the dimension of the grid related to
p.. Forh. - 0, Eq. (30) is reduced to Eqg. (14), which togetlih
Eqg. (15) represent precisely the one-dimensionale caf the
previous section. Hence, Egs. (14) to (27) candsel to obtain the
estimated error of numerical solutions in multi-dmsional
problems, as long as the grid refinement ratjaémains the same
in all the dimensions.

Separ ate Refinement of a Grid in Each Dimension

Refinement is characterized as separate refinembah each
(spatial and temporal) dimension is separatelyneefi from the
others, with asymptotic orderp § and grid refinement ratiog)(
being equal or different from each other in eacimedision. The
main reason that justifies using separate refinémsehe possibility
of obtaining error estimations with smaller griian those required
to carry out simultaneous refinement.

Separate refinement is also important because dviges
information on the contribution of each dimension the
discretization error. This information can helpdetermine if the
appropriate number of grid points have been usedeach
dimension. One wants the contribution to the diszaon error
from each dimension to be nearly the same.

In multi-dimensional problems, there are severalsjme ways
of carrying out separate refinement to estimate diseretization
error of a numerical solution, as can be seen ¢ Eifor a two-
dimensional problem. In this figurex3, x2 and x1 represent,
respectively, the number of nodes, elements orrgbmblumes in
the directionx, of the supercoarse, coarse and fine grids. The sa
applies toy3, y2 andyl in the directiory. The arrows indicate the
extrapolation process that allows one to obtain emigal solutions
in thex,, andy,, grids.

The example shown in Fig. 2 relates, as will segerlon, to the
case in which the apparent ordegmy)( of each dimension is
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calculated, in which case three grids are necessareach (Ag ~ o)
dimension, according to Egs. (16), (19) and (21it iB the case of Pod(Pug) = Ag * —— = (35)
using the concept of asymptotic ordegx)( only two grids are (g =D
necessary in each dimension, according to Eqs.a{i)20).
In Fig. 2, the simultaneous refinement, descrilmethé previous [%d — %dj
section, is characterized by the diagonal line the¢s the grids log — :
(x3y3), x2y2) and klyl), which represent, respectively, the Py = Ad ~ Pod (36)
numerical solutionsg, @ and ¢g. Using these numerical solutions d log(rg)
and the Richardson extrapolation, Eq. (14),can be determined,
which is represented by the gricl.f/.). hzq ho 4
rd = = = == (37)
ho g g
(x3,ye) (x2,yeo) (X1,yeo)
A L L with d = 1, 2, 3 and 4 representing, respectively, theedsions, v,
z andt; @4 @q and g4 are the numerical solutions obtained,
(Xo0,yo0) respectively, using a supercoarse ghigh), a coarse gridhg ) and a
/ fine grid (hy4) in each dimension, which are related throughgife
refinement ratiorq, in Eq. (37); pg and pyg represent the

asymptotic and apparent orders of edcliimension.

Let us suppose the apparent order of each dimerpiny) is
convergent, according to the definition of Marchd&Silva (2002),
then the true discretization error for the numerscdution ¢, which
is E(@), will be bound byJ,(@), that is,

(x3yl) === (x2yl) == (x1yl)====d(xc0,y1)

(0RBy2) == (2y2)==== (xly2)===> (x0,y2)

M < 1 < M (38)
E(a) E(®)

03y3) == (x2y3) (x1y3) > (x0,y3) whereU(@) can be obtained through Eq. (32) by substitubitax
for Min in Eq. (33), that is, by reaching the sum of thieimum
Figure 2. Possibilities for separate refinement in  a two-dimensional  Value of the estimated error in each dimensionthis case, the
problem. numerical solution of the variable of interegl (nust be presented

or reported by
TheRichardson Error Estimator for Multi-Dimensions 9 = @ + Upa) (39)

Holding Eq. (13) to be valid and taking the theofyarchi and
Silva (2002) for one-dimensional problems into édesation, the
discretization error estimation of the numericaluon can be
found for a multi-dimensional problem by using (Roe, 1994) For simultaneous refinement, carried out through. Egpm (25)

to (27), it has been shown that it is possible éduce the true
_ 4 _ discretization errorE) using the same set of numerical solutions
Up(@) = dzzl Ug() = (32) used to calculate the estimated ertdy. (This can also be done for
separate refinement when Eq. (38) holds true. ildhse, adopting
Ux@) + Uylg) + Uz(@) + Uila) the same numerical solutions which are used taiaEU, (@), that
iS, g, ®a and @y, it is possible to reduce the value of the true
discretization error of the numerical soluti@g), through

The Convergent Error Estimator for Multi-Dimensions

where ¢ represents the numerical solution obtained udirggrid
defined as “the base grid”. This grid should be #Hane one
involved in the refinements carried out in all thimensions. To the 4
example of Fig. 2, if the refinement in thedirection involves the M = @+t (D) (40)
grids &3y2), x2y2) and k1y2), and the refinement in the d=1

direction involves the gridsx2y3), x2y2) and k2,yl), the base
grid is k2,y2).

I

In Eq. (32), U,(@) represents the estimated error of the Un () = El(ucvd) (41)
numerical solutiong. The parameters that appear in Eq. (32) have
been calculated through where @) and Uy) are called, respectively, “The Convergent
Numerical Solution” and “The Convergent Error Esttor” for
|¢ d(pLd)_%|; multi-dimensional problems, and
Ud(%)zsg((/id ‘%d)MaX c (33)
: +
|¢’w,d(pu,d)‘%| @ = Feod (PLa) . %o d (PU ) 42)
#od(PLa) = Ag *+ w (34) @ea(pLa) = Boa(pug)
(rd Ld _1) UC,d = 2 (43)
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in which ¢, 4(p. ) and @.4(pu ¢) are provided by Egs. (34) and (35). and the average temperature of the field. In tise cd Problem 3,

Equations (40) and (41) are equivalent, respegtivelEqgs. (25)
and (27) used in simultaneous refinement. Bgr the numerical

solution of the variable of interesg)( should be presented or O up toy =%z atx = %.
The finite difference method was used for Problénasd 2, and
the finite volume method (Marchi and Maliska, 19%) Problem
In the three problems, the spatial derivativesrew given

reported by

= o * Uyn(am)

The techniques adopted for simultaneous refinemamd
separate refinement can be used together in trealkm mixed
refinement. In a transient two-dimensional probléxry,t), for
example, simultaneous refinement may be adoptetiarx andy
directions, while separate refinement is taken efvben X,y) and
the time ).

Results

In this section, numerical results to three protdeame shown
and described to illustrate how the theory exphiiie previous
sections is applied.

(44) 3.
approximated values through the central
(Ferziger and Peric, 1999). Equation (46) was disted through
the implicit Euler method (Ferziger and Peric, 1999 Problems 1
and 3, iterations were carried out until the iteraterrors reached
round-off level to minimize their effects on thesclietization errors.
The solution to Problem 2 was obtained with oneatien of the
TDMA method (Ferziger and Peric, 1999) at each ttep.

the variables of interest aveandyv, at the center of the domain, and
the mass flow rateM) that is circulating within the cavity from=

differermeheme

Same Grid Refinement Ratioin All Dimensions

Adopting simultaneous

refinement in
dimensional problems described above, the samdusioes were
reached as those reached in Marchi and Silva (2008)respect to

the three multi

one-dimensional problems. Some of the results amntented as
follows.

Table 1 presents the numerical solutions\@#2,%2) that were

Definition of the Problems

Problem 1 consists of a two-dimensional steadestatat
conduction (Incropera and DeWitt, 1996), describgdhe Laplace
equation (Kreyszig, 1999), Eq. (1). The boundamditions are of
the Dirichlet type at the four sides of a squarendim having one
unit side, withA(x,1) = sinfx) and A = 0 in the other three
contours. The analytical solution is

obtained in three different grids for Problemd.represents the
analytical solution of the variable of interesfattlis, the temperature
at the center of the solution domaig, @ and ¢ represent the
numerical solutions. The use of the Richardsorr @stmator (g),
which involves Eqgs. from (16) to (24), is showntire left-hand
column of Table 2, where the equation used to tatieueach

parameter is indicated. The true discretizatioorg) is calculated

sinh(rry)

AXy) = W

sin(7rx) (45)

Problem 2 consists of a transient one-dimensionaht h
conduction (Incropera and DeWitt, 1996), as defineg the
equation

32A

ax?

an
ot

(46)

The Dirichlet boundary conditions afg0t) = A(1t) = 0, and the
initial condition is given by\(x,0) = sinf). The analytical solution

Table 1. Numerical solutions for Problem 1, Eq. (1)

by using Eq. (11). The use of the convergent ezstimator J¢),
which involves Egs. from (25) to (27), is showntlre right-hand
column of Table 2.

, for A(Y2Y%).

grid (x*y) numerical solution other data
5*33 ¢ = 0.206809183 r=2
9*65 % =0.201144859 pL=2

17 *129 @ = 0.199736958 @ = 0.199268408

Results for many different grids are presentedin 8. In this

figure, for Problem 1, the estimated errttg(@) andUc(¢@) and

is the true discretization erroE(¢) andE(¢g) of the temperature at
the center of the domain are shown. The resulé&s tefgrids of 3x3

Axt) = 7t

sin(rrx) e” (47)
The solution to the problem is obtained for theansin timet = 0.1
s.

Problem 3 consists of a two-dimensional incompbésdilavier-
Stokes flow within a square cavity, having a uidesand with a lid
that moves, making the fluid flow along the insiofethe cavity.
This problem is modeled by the Navier-Stokes equatiand
described in section 2 of Shih, Tan and Hwang (198%e
mathematical model involves the mass conservatqmateon and
the x- andy-momentum equations, maintaining constant values fo
viscosity and mass density. A source term is addedbtain an
analytical solution to the problem for its thre&kmown values: two
being components of velocityu,(v) and the other pressure. The
analytical solution to this problem is provided Byih, Tan and
Hwang (1989).

For Problems 1 and 2, the two variables of intertstt is, the
variables for which the true errors and their eations are being

Table 2. Application of the Richardson and Converge
the numerical solutions shown in Table 1.

to 1025x1025 points, where= 2. In this figure, one can see the
significant advantage of usirg, instead ofg, for reducing the true
discretization error. It can also be verified ttiat estimated error by
both the Richardson estimatobt) as well as the convergent
estimator (¢) are reliable for anf,.

nt error estimators to

Richardson estimator

Convergent estimator

(Eq. 18)@(p.) = 0.199267658
(Eq. 16)py = 2.008358693

(Eq. 19)@{pu) = 0.199271266
(Eqg. 24)Uri(@) = - 0.000469300
(Eq. 11)E(@) = - 0.000468550
Ur(@) / E(@) = 1.0016

(Eq. 23):

@ =0.199736958 - 0.00046930

(Eq. 2% =0.199269462

(EQ. 27)Uc(¢z) =+ 0.000001804
(Eq. 1B(g) = - 0.000001054

Uc(@) I E() = 1.71

Uc(@) / Ur(@) = 0.00384

Uri(@) / Uc(z) = 260

(Eq. 26):

@=0.199269462 0.000001804

E(q) /E(@) = 445

analyzed are the temperature at the center of dhetiecn domain
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Table 3 shows the numerical solutionsufi2,%2) obtained from asymptotic orderp) is also shown, which is obtained from the
three different grids for Problem ®. represents the exact analyticaltruncation error inferred with the Taylor expansiseries on the
solution of the variable of interest, that is, tuenponent of velocity discretized mathematical model, as shown in Egsaig@ (7). The
in the x direction in the center of the solution domais. @ e ¢ Size of the grids displayed in Table 5 refer teéingrids. Hence, to
represent the numerical solutions. The use of tithaRdson error calculate the apparent ordep), through Eg. (16), two coarser grids
estimator (Jg), which involves Egs. from (16) to (24), is shoin were used in each case. For example, for Problethe3grids
the left-hand column of Table 4, where the equatimed to 256*256, 128+128 and 64*64 were used.
calculate each parameter is indicated. The trueretigation error
(E) is calculated by using Eq. (11). The use of thevergent error
estimator (¢), which involves Egs. from (25) to (27), is shown
the right-hand column of Table 4.

Separ ate Refinement of a Grid in Each Dimension

The numerical solutions of Problem 2, Eq. (46), stiewn in
Table 6, for the temperature in the center of train. In this case,
seeing as it is a two-dimensional problem, the utaton of the

Table 3. Numerical solutions for Problem 3 for u (%2 _ X . . it i
estimated errorl,) involves numerical solutions obtained in five

).

grid (x*y) numerical solution other data different grids. In this example, the grid 65*75@swchosen as the
4% 4 @=-0.172578576 r=2 grid common to both dimensions, that is, it is tizse grid, hence,
8*8 @ =-0.226911929 pL=2 B=Bx= G
16 * 16 @ =-0.243644223 D=-Y

Table 4. Application of the Richardson and Converge

nt error estimators to

Table 5. Apparent orders ( py), for r = 2, and asymptotic orders ( p.) for
simultaneous refinement.

the numerical solutions shown in Table 3. Problem variable grid pu p.
- - - 1 centralA 1025 * 1025 1.999984 2
Richardson estimator Convergent estimator 1 averageh 1025 * 1025 1.999903 2
(Eq. 18)@(pL) = - 0.249221654 (Eq. 2% = - 0.250155835 2 centralA 4097 * 2048 1.000004 1
(Eq. 19)@(pu) = - 0.251090015 | (Eg. 1E(¢) = 0.000155835 3 central 256 * 256 1.996552 2
(EQ. 24)Ur(@) = - 0.007445792 | Uc(g) / E(@) = 5.995 3 central 256 * 256 1.982185 2
(Eg. 11)E(@) = - 0.006355777 Uc(@) / Ur(@) = 0.125 3 mass flow rate 256 * 256 2.012358 2

Uri(q) / E(@) = 1.171

(Eq. 23):
@=-0.243644223 - 0.00744579

URi(@) /Uc(@) =7.97
(Eq. 26):
, ¢ = -0.25015583% 0.000934181

Through analyzing the truncation errors of the nucaé
approximations used to discretize Eq. (46), it Watermined that

[ E() /E(@) =-40.8

their asymptotic orders apg, = 2 andp,; = 1. In this example, the
. . refinement ratio of the grid in thedimension , = 2) is different
In Tables 2 and 4 one can see the key informagnthe  m thet dimension (, = 1.5). Through Egs. from (33) to (3).x
estimated error by the Richardson estimalgg)(is reliable, seeing , anq with the numerical solutions given in Tabl®®6e can reach
asUr(@)/E(@) > 1, and it is accurate becausg(@)/E(@) = 1; (i) the results presented in Table 7. With these msialtturn, one can
the relationship of Eq. (22) is met ongs(p.) and @.(py) bound®;  se the Richardson error estimatok)( through Eqs. from (32) to
and (iii) both the estimated error as well as thee terror of the (37) and (39), to find the results shown on théeeind column of
convergent numerical solutiong{ are much smaller than the Tgple 8. It should be noted tHag(@)/E(g@) > 1, in other words, the
calculated numerical solution @) since Uc(@)/Ur(@) and estimated erroby() is reliable for it overestimates the true error
E(@)/E(@) << 1. E(g), and it is quite accurate, seeind.aé@)/E(s) = 1.

1

102 O/O Table 6. Numerical solutions for Problem 2, Eq. (46 ), for Ainx=%andt =
10° 0.1.
10° oy
10° o Sl refinement inx refinement int other data
: o2 2 (rx=2) (r.=1.5)
10 e grid 33*750: grid 65*500: Px= 2
=3 10 o @x=0.373245017 | @,=0.373144380
5 107 —o—E(g) grid 65*750: grid 65*750: pL=1
w 10° I @x=0.373023555 @ = 0.373023555
10° /ﬁ URi(¢)1) grid 129*750: grid 65*1125: @ =0.372707839
et P.4 —o0—E(g) @,=0.372968193 | @, = 0.372942967
11 M —X U ((0 )
10 c\7c
104 -E/ . Table 7. Calculation of the components of the estim  ated error for separate
-3 -2 . 0 refinement in Problem 2.
10 10 10" 10
h Equation refinement ir refinement irt
L Eq. (34) @Pox(PLx) = 0.372949739  @.(pLy) = 0.372862379
Figure 3. Modules of the estimated error (U) and of  the true error (E) for Eq. (36) pux = 2.000091205 pus= 0.998836779
NA(%2%2) in Problem 1. Eq. (35) Pox(Pux) = 0.372949741  @,i(puy) = 0.372781563
Eq. (33) Ux(@) = - 0.000073816  U(@) = - 0.000241992

Table 5 displays the values obtained for apparsferop,) of
the variables of interest in Problems 1, 2 andsBygisimultaneous
refinement and the grid refinement ratio= 2. The expected

The use of the convergent error estimatdy)(is shown in the
right-hand column of Table 8. To do so, Egs. freid)(to (44) were
used based on the same numerical solutions of éroBl given in
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Table 6 and adopting the parameters provided ineTabOne can

the convergent numerical solutiog-) and its respective convergent

see in Table 8 thaty(@i)/E(@) = 1.00228, that is, the estimatederror estimatorc); and, outside of the convergent interval of the

error Uy(@y) is reliable for it overestimates the value of thee
error E(¢). Moreover, there have been significant reductions
both the estimated error as well as the true @fdhe convergent

apparent orderp()) there is no guarantee as to validity of the two
previous conclusions.
The conclusions reached for simultaneous refineraksat hold

numerical solution ¢,) with respect to the calculated numericaltrue for separate refinement provided: the appacedeér fy) of

solution (@) seeing at)u(@)/Un(@) andE(@1)/E(@) << 1.

Table 8. Application of the Richardson and Converge  nt error estimators to

the numerical solutions shown in Table 6.

Richardson estimator
(Eq. 32):

Un(¢ga) = - 0.000315808
(Eg. 39)¢ = 0.373023555
-0.000315808

(Eq. 11):

E(¢) = - 0.000315716
Un(@) / E(¢) = 1.00029

Convergent estimator
(EQ. 42) @ = 0.372949740

(EQ. 43)Ucy = + 0.000000001
(Eq. 42) @, = 0372821971

(Eq. 43)c; == 0.000040408
(Eq. 40)g = 0.372748156
(Eg. 41)Un(gm) =+ 0.000040409
(Eq. 44):
= 0.372748156 0.000040409
(Eq. 11)E(¢) = - 0.000040317
Uwm(g) / E(gar) = 1.00228
Un() / Un(g@) = 0.128
Un(g) / Um(ga) = 7.82
E(¢) / E(q) = 7.83

Conclusion

Two procedures were presented to estimate the esfor
numerical solutions in multi-dimensional problenioth of the
procedures are based on Richardson extrapolatiecchwhakes use
of multiple grids. In the first procedure, the nuenbof nodes,
elements or control volumes of all four dimensi¢rsy, z, t) vary
among the grids used to estimate the discretizadiwar. In the
second procedure, each (spatial and temporal) dimoenis
separately refined from the others, with asymptotigers ) and

each dimension is of the monotone convergent tyetlaat there is
one grid (a base grid) common to all of the refieata carried out
in all of the dimensions.
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