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Structured High Resolution
Algorithms in the Solution of the
Euler Equations in the Two-
Dimensional Space

The present work compares the high resolution seBesh (1) Yee, Warming and Harten,
(2) Harten, (3) Yee and Kutler and (4) Hughson @&eatan applied to the solution of
aeronautical and aerospace problems. All schemesTMD flux difference splitting type
and are second order accurate in space. The Eutpragons in conservative form,
employing a finite volume formulation and a struetlispatial discretization, are solved in
two-dimensions. The time integration is performgdatdimensional splitting method and
is first order accurate. The steady state physprablems of the supersonic flows along a
ramp and around a blunt body configuration are $tdd In the ramp problem, the
Hughson and Beran scheme was the most critical Usscgresented the most intense
pressure field and the most intense Mach numbigh. fidoreover, this scheme predicts the
best value to the shock angle of the oblique shaole. The shock and the expansion fan
pressure distributions are better captured by tlee,YWarming and Harten and the Yee
and Kutler schemes. In the blunt body problem, Hlagten scheme presented the most
intense pressure field. The Harten scheme estimhiesest value to the stagnation

pressure on the configuration nose.
Keywords. Yee, Warming and Harten algorithm, Harten algonit, Yee and Kutler
algorithm, Hughson and Beran algorithm, Euler eqoas

Introduction

High resolution upwind schemes have been develgieck
1959, aiming to improve the generated solution iyayielding
more accurate solutions and more robust codeshifjireresolution
upwind schemes can be of flux vector splitting type flux
difference splitting type. In the former case, marbust algorithms
are yielded, while in the latter case, more acguriacobtained.
Several studies were performed involving high resoh algorithms
in the literature, as follows.

Roe (1981) presented a work that emphasized thatrade
numerical schemes for the solution of the hypethotinservation
equations were based on exploring the informatibtaioed in the
solution of a sequence of Riemann problems. It weaiied that in
the existent schemes the major part of this infdiona was
degraded and that only certain solution aspects welved. It was
demonstrated that the information could be preserbg the
construction of a matrix with a certain “U propértyAfter the
construction of this matrix, its eigenvalues cobkl considered as
wave velocities of the Riemann problem and theUd projections
over the matrix’s eigenvectors are the jumps witchur between
intermediate stages.

Harten (1983) developed a class of new finite diifiee
schemes, explicit and with second order of spa@iuracy for
calculation of weak solutions of the hyperbolic servation laws.
These highly non-linear schemes were obtained byafiplication
of a first order non-oscillatory scheme to an appietely modified
flux function. The so derived second order schemeshed high
resolution, while preserving the robustness propeftthe original
non-oscillatory scheme.

Yee and Kutler (1985) presented a work which extenthe
Harten (1983) scheme to a generalized coordinatemsy in two-
dimensions. The TVD (Total Variation Diminishinggheme was
applied to the physical problem of a moving shaukinging on a
cylinder. The numerical results were compared withe
MacCormack (1969) scheme, presenting good results.
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Hughson and Beran (1991) proposed an explicit, mbarder
accurate in space, TVD scheme to solve the Eulgatans in axis-
symmetrical form, applied to the studies of the esapnic flow
around a sphere and the hypersonic flow aroundiat flody. The
scheme was based on the modified flux function exipration of
Harten (1983) and its extension from the two-din@mea space to
the axis-symmetrical treatment was developed. Reswere
compared to the MacCormack (1969) algorithm’s sohg. High
resolution aspects, capability of shock capture aodustness
properties of this TVD scheme were investigated.

In this work, the Yee, Warming and Harten (1988 Harten
(1983), the Yee and Kutler (1985) and the Hughsod Beran
(1991) schemes are implemented, on a finite volgomext and
using an upwind and structured spatial discretiratio solve the
Euler equations, in the two-dimensional space. Tésults are
compared with each other and with analytical sohgi All schemes
are second order accurate in space and are appltbe solution of
the supersonic flows along a ramp and around atbhady
configuration. A spatially variable time step prdues is
implemented aiming to accelerate the convergentiesofchemes to
the steady state condition. This technique hasgot@xcellent gains
in terms of convergence ratio as reported in Ma2€05). The
results have demonstrated that the Hughson andnBg@91)
scheme yields the most intense and accurate reisulise ramp
problem, while the Harten (1983) scheme yieldsmiust accurate
and the most intense results in the blunt body Iprob More
complete studies, involving other different physipeoblems, are
aimed by this author with the intention of bettéghighting the
characteristics of these schemes.

Nomenclature

a  =speed of sound, m/s

CFL = “Courant-Friedrichs-Lewy” number

e =total energy per unity volume, Jim

E. =inviscid flux vector (or Euler flux vector) indirection
Fe =inviscid flux vector (or Euler flux vector) indirection

H  =total enthalpy, J/Kg
p = static pressure, Nfm
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Q  =vector of conserved variables

R = matrix for construction of the dissipation fuioct

u = x component of velocity vector g, m/s

v =y component of velocity vector g, m/s

V = volume of a given computational cell®> m

Greek Symbols

a = attack angle, degrees, or projection vectors

4t =time step, s

y = ratio of specific heats, adopted 1.4 for atmesich
medium

A = eigenvalues of the Euler equations

¢ = entropy function

p  =density, kg/m

Subscripts

e =Euler

Euler Equations

The flow is described by the Euler equations, whégpress the
conservation of mass, of linear momentum and ofrggnef an
inviscid, non-heat-conducting and compressiblalflin the absence
of external forces. In the integral and consenreatiorms, these
equations can be represented by:

o/at [, Qav + [ (Ean, + Fen, Jds =0, @)
whereQ is written for a Cartesian systemjs a cell volumen, and
n, are the components of the normal unity vectortencell facesS
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The Yee, Warming and Harten (1982) algorithm, sdcorder
accurate in space, is specified by the determinaifahe numerical
flux vector at the(i+Yz,)) interface. The convective numerical flux
vector to thei+%%,j) interface is described by:

0}

|
Fiio «

= (Eint hx + Fir(1|t) hy int + O'SD\((I\)VH ’ (4)

with:

ED = 05(EY +EY) and FY = 05[FQ +FD),

int (5)
where ‘R” and “L” indicate right and left states, respectively; and
“I” varies from 1 to 4.

The Yee, Warming and Harten (1982) dissipation fion¢ to
second order of spatial accuracy, is constructedhiyfollowing
matrix-vector product:

{DYWH}Hllz,j :[R]i+1/2,j{('q (gi,j +9i+lj)“/’a)/ﬁti,j 6)

Jli+1/2,j - (

The various terms presented above are describedwbel
Following a finite volume formalism, which is madquivalent to a
generalized coordinate system, the right and left wlumes, as
well as the interface volume, necessary for coatdirchange, are
defined by:

V,

int

= 05(Vg +V, ).

The cell volume is defined in Maciel (2007a). Theeiface area

VR :\/i+l,j , VL =V and (7)

i

is the cell surface area ail andF, represent the components ofcomponentssS, i and S, j,, necessary to define the metric terms,

the convective flux vecto, E. andF. are represented by:

p Joy o
2
ou o +p ouv
Q= , E.= and F, = , (2)
o © ouvV € vl +p
e (e+ pu (e+p)v

being o the fluid densityu andv the Cartesian components of the,

velocity vector in thex andy directions, respectivelye the total
energy per unity volume of the fluid; apdhe static pressure of the
fluid.

In all solutions, the Euler equations were nondisi@malized
with respect to the freestream densjty, and with respect to the
freestream speed of sound,. The matrix system of the Euler
equations is closed with the state equation oflaaligas:

p=(y-Dle- 05p(u? +v?), ®
where y is the ratio of specific heats. The total enthalp
determined byH = (e + p)/p.

Yee, Warming and Harten (1982) Algorithm

are also defined in Maciel (2007a). The metric terto this
generalized coordinate system are defined as:

hy = Sx_int/Vint ) hy =Sy int /Vint and hy = S/Vip -

®
The properties calculated at the flux interfaces abtained

either by arithmetic average or by Roe (1981) ayerén this work,

the arithmetic average was used. The speed of satin@ interface

is determined bya, :\/(y—l)[Him —O.S(U%t +vi%t )J where Hiy,

Ut andvi, are the total enthalpy and the Cartesian compsnait
velocity calculated at the flux interface. The eigalues of the
Euler equations, in thé generalized coordinate direction, are given
by:

Ucont = uinthx +Vinthy 1)‘1 =Ucont_ainthnv )‘2 =)‘3 =Ucont

and Ay =U con; +84nchy - ©)

The jump of the conserved variables, necessary h® t
construction of the Yee, Warming and Harten (198&pipation
function, are detailed in Maciel (2006), as welltasa vectors on
the (i+%,j) interface. The Yee, Warming and Harten (1982)
dissipation function uses the matrix of the riglgeavector of the
Jacobian matrix in the direction normal to the ffage:

1 1 0 1
R _ Uing — P@ing Uint - hy Ujne + @ (10)
\+12,] — ' ' ' '
e Vint _hyaint Vint hx Vine + hyaint
. . 2 5 . . . .
Hine = h><uintaint - hyVintaint 0'S(Uint +Vint) h><Vint - hyuint Hine + h><uintaint + hyVintaint
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where h, and hy, are metric terms also defined in Maciel (2006)Harten (1983) Algorithm

Two options of entropy condition are implementede Tirst is:

v =4t =2, ; (11)
W =ZF +025; (12)
and the second is:
|z,(], if |z)| = o
vi =1 osiz? +5%, if |2]<a; 4

where 17 varies from 1 to 4 (two-dimensional space) add
assuming values between 0.1 and 0.5, being 0.2 vdiae
recommended by Yee, Warming and Harten (1982).

The g numerical flux function, responsible to the secamder
of accuracy of the scheme, is a limited function aeoid the
formation of new extremes and is given by:

gi"j = signaj x MAX(0.0; MIN(

§i|+1/2,j‘v§i|—1/2,j xsignaﬂ)) ,(14)

wheresignal is equal to 1.0 ifﬁi'ﬂ,z’j 2 0.0 and -1.0 otherwise.
The g function at thei+%2,j) interface is defined by:

§' = o5y, -z2)' .

The @ term, responsible to the artificial compressibilivhich
enhances the resolution of shock waves and codisabntinuities,
is defined as follows:

), if

i |l [ -
if ‘O‘iwzj ‘ +‘ai_y2j‘ =00

(15)

|
Q12

| | | | |
|Gz~ ‘/Qaiﬂjzj‘ + Olisa/2j ‘ + Gi—:l/zj‘ #00

00

;(16)

The § parameter at thdi+%,)) interface is given by the
following expression:

B =10+ MAX (8! |, 6041;) . 17)

in which @y assumes the following valuesy = 0.25 (non-linear
field), a» = aw; = 1.0 (linear field) andwy, = 0.25 (non-linear field).
The ¢, function, the numerical speed of propagation &rimation
of the function g, at th@+%,j) interface is defined by:

¢ = {(gi'm -9l )/a' ,

0.0,

if o' #00

0 (18)
if a =00

The entropy function is redefined considerigg and (3 :

Z, =v, +B,¢,, and y, is recalculated according to Eq. (12) or to

Eqg. (13).

The time integration follows the dimensional spiigt method,
first order accurate, which divides the integrationwo steps, each
one associated with a specific spatial directioretaids of this
method are found in Yee, Warming and Harten (1982)Maciel
(2006) and in Maciel (2007b).
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The Harten (1983) algorithm, second order accuiratepace,
follows the Egs. (7) to (10). The next step is tigdinition of the
entropy condition, which is defined by Egs. (113 h3).

The g function at the(i+Y%,) interface is defined according to
Eqg. (15) and the g function of second order acguimgiven by Eq.
(14). The ¢; function at the(i+%2,j) interface is defined according
to Eq. (18)

The entropy function is redefined consideriggg: Z, =v| +¢, ,

and ), is recalculated according to Eq. (13). Finallye tHarten

(1983) dissipation function, to second order spatiecuracy, is
constructed by the following matrix-vector product:

{Drartedisvz =[Rlaz g + g _l‘lJa)/Ati,j}i+]_/2’j - (19)

Equations (4) and (5) are used to conclude the rinateflux
vector of the Harten (1983) scheme and the timegnation is
performed by the dimensional splitting method dafinin Yee,
Warming and Harten (1982), in Maciel (2006) and Nraciel
(2007Db).

Yee and Kutler (1985) Algorithm

The Yee and Kutler (1985) algorithm, second ordmugate in
space, follows Eqgs. (7) to (10). The next step st®$n determining
the @function of artificial compressibility:

| I
Q4112 _ai—1/2,j‘ i (a" i )¢ 00
—_ if \aj Ct a0 !
.= | | ’ i+1/2,] i-1/2,j
B'Ill Qiv12,) T Qi-1/2,j - (20)
00, if (0'i|+1/2,j +aiy j): 00
The « function at thei+%2,j) interface is defined as follows:

K =ysliramax(e! 6Ly, ) (1)

Theg numerical flux function is determined by:

g =signa|I><MAX(O.O;MINQO(!H,Z’J-‘,0(!_1,2j xsignaﬂ)), (22)

where signal assumes value 1.0 iﬂ!ﬂ,zj > 0.0 and -1.0

otherwise. Theg function, the numerical speed of propagation of
information, at thei+%2,j) interface is calculated by the following
expression:

I | I L
o = K (9i+],j ‘gi,j)/a' ; if 17' # 0.0. 23)
00, if a' =00
The ¢, function at thei+%2,j) interface is defined by:
¢ =(v) +0)? + 025, (24)

with 1y defined according to Eq. (11). Finally, the Yee dtutler
(1985) dissipation function, to second order spadiecuracy, is
constructed by the following matrix-vector product:

{DveeKune}iﬂ/zj ZMimz]‘ﬂK(g,j +gi+lj)_¢uJ/Ati,j}i+1/2j- (25)
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Equations (4) and (5) are used to conclude the rigatdlux
vector of Yee and Kutler (1985) scheme and the fimegration is
performed by the dimensional splitting method dedinin Yee,
Warming and Harten (1982), in Maciel (2006) and Nfaciel
(2007b).

Hughson and Beran (1991) Algorithm

Edisson Savio de Gées Maciel

Initial and Boundary Conditions

Initial Condition

Values of freestream flow are adopted for all prtipe as initial
condition, in the whole calculation domain, to tite/sical problems
studied in this work. Due to the nondimensional@at only the

The Hughson and Beran (1991) algorithm, second rord&eestream Mach number, the angle of attack and rétie of

accurate in space, follows Egs. (7) to (10). Thet s&ep consists in
determining the numerical flux function. To nondar fields ( = 1
and 4), it is possible to write:

duzidua)|

0f+1/zj0f—1/2j + .
|

|

a

| » TGz +0f—u21)
d; iz +8u2; #00. (26)

aq if (Ofwz;' +0{—ﬂ21)=00

For linear fieldsI(= 2 and 3), it is possible to write:

gi"]- = signa| x MAX(0.0, MlNUCﬁl_l/Zj‘vaiul/ZYl' X signaﬂD (27)

wheresigna| is equals to 1.0 ib(:_l,zyj > 0.0 and -1.0 otherwise.

After that, Equations (11) and (13) are employed tre g term at
the (i+Y%,j) interface is defined:

o = 0.5(4;4 —Z|2).

The ¢, function, the numerical speed of propagation o
information, at thei+%2,j) interface is defined by:

s

The entropy function is redefined considering tthe term:

(28)

if a' #00
if a' =00

O (gi|+lj - gil,j )/O‘I )
0.0,

(29)

Z, =v, +¢, and |, is recalculated according to Eq. (13). Finally,

the Hughson and Beran (1991) dissipation functiorsecond order
accuracy in space, is constructed by the followmatrix-vector
product:

{DHughsdrseraJiwz ,— =[Rhszjllota,; +9i+li)‘4”"j/ﬁi,jh+y2,- - (30)

Equations (4) and (5) are used to conclude the rioatdlux
vector of Hughson and Beran (1991) scheme and ime t
integration is performed by the dimensional spldti method
defined in Yee, Warming and Harten (1982), in Mh¢06) and
in Maciel (2007b).

Spatially Variable Time Step

The basic idea of this procedure consists in keppanstant the
CFL number in all computational domain, allowingnlee, the use
of appropriated time steps to each specific megioneduring the
convergence process. Details of the present impitatien can be
found in Maciel (2002), in Maciel (2006) and in Mel2007b).
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specific heats are necessary to initialize the $loWetails are found
in Maciel (2002), in Maciel (2006), and in Maci@0Q7b).

Boundary Conditions

The boundary conditions are basically of three syelid wall,
entrance and exit. These conditions are implemeintsgecial cells
named ghost cells. Details are found in Maciel @00n Maciel
(2006) and in Maciel (2007b).

Results

Tests were performed in a CELERON-1.2GHz and 12§tk
of RAM memory microcomputer. Converged results ol to 4
orders of reduction in the value of the maximumides. To all
problems, the attack angle was adopted equal fo 0.0

Ramp Physical Problem

To this physical problem, an algebraic mesh witR18D points
was used, which is composed of 5,940 rectangulamves and of
6,100 nodes, on a finite volume context. Figuremnd 2 show the
ramp configuration and the ramp mesh adopted fier phoblem,
Fespectively.

The freestream Mach number adopted for this sinmriaivas
2.0, characterizing a low supersonic flow regime.

[y

0.345m

207

0.15m 0.12m 0.15m

Figure 1. Ramp configuration.

Figures 3 to 6 show the pressure field obtainedtHey Yee,
Warming and Harten (1982), the Harten (1983), tlee ¥nd Kutler
(1985) and the Hughson and Beran (1991) schemspectvely.
The pressure field generated by the Hughson an@nBér991)
scheme is the most intense in relation to the otitbemes. It is
interesting to note that the Hughson and Beran X19hd the
Harten (1983) solutions present a larger high pmessegion than
the equivalent regions obtained by the Yee, Warnang Harten
(1982) and the Yee and Kutler (1985) schemes.
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Figure 2. Ramp mesh. Figure 5. Pressure field (YK/85).
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Figure 3. Pressure field (YWH/82). Figure 6. Pressure field (HB/91).
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Figure 4. Pressure field (H/83). Figure 7. Mach number field (YWH/82).
Moreover, the Yee, Warming and Harten (1982) arel Ylee Figures 7 to 10 exhibit the Mach number field getedt by the

and Kutler (1985) schemes present nearly identimltions. vee, Warming and Harten (1982), the Harten (1988, Yee and
Although differences exist between the algorithipsth schemes kytler (1985) and the Hughson and Beran (1991) rselse
have the same behavior in this example. Equati6} 4nd (17) respectively. The Mach number contours generatethédy{ughson
behave in the same way as Egs. (20) and (21), ceeply. The and Beran (1991) scheme shows the most intenskifieklation to
different ways of prOViding artificial CompreSSilbj'l have the same the other schemes. The Hughson and Beran (1991)[‘mﬂ|arten
effects in this problem to these schemes. (1983) schemes present, again, larger areas of Magth numbers
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(black area) than the Yee, Warming and Harten (1882 the Yee the H/83 and HB/91 solutions, but they do not pmesescillations

and Kutler (1985) schemes.
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Figure 8. Mach number field (H/83).
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Figure 10. Mach number field (HB/91).

Figure 11 shows the wall pressure distributionsi@lthe ramp
obtained by the Yee, Warming and Harten (1982), lteten
(1983), the Yee and Kutler (1985) and the Hughsod Beran
(1991) schemes. They are compared with the oblghezk wave
and the expansion wave Prandtl-Meyer theoriess Ipdssible to
note that the YWH/82 and the YK/85 solutions areosther than

100 / Vol. XXX, No. 2, April-June 2008

around the shock region, what characterizes bedutions, in
qualitative terms, than the H/83 and HB/91. They doing what
high resolution schemes are expected to do: presa@aotions of
second order schemes free of oscillations in shregions. In the
H/83 and HB/91 solutions, the shock presents algmeak, but the
shock is thinner and the expansion fan is less #imedo The HB/91
scheme is the only one which has the highest vafupressure
exactly at the beginning of the ramp, where theckhposition
should be. The YWH/82 and the YK/85 schemes alssent nearly
the same solution in terms of pressure distribution

F [
1E
2k !
E $
1.4:— |'
T HE f
E i }
= F —[THEOR‘E
% 15 — — — — ¥ee, Wanring 4nd Harten (1982}
& C ———._ . fHarten (1983)
16 — — — _ [Yesand Kuter [1985)
145— —w——-— dHugh=onand
12F J‘F‘
E #
10k Pl
HEEEENEEEE NN NN NN N N |
o0 005 010 015 0 0 030 03 0N
X

Figure 11. Wall pressure distributions.

One way to quantitatively verify if the solutionergrated by
each scheme are satisfactory consists in detergnthim shock angle
of the oblique shock wavel, measured in relation to the initial
direction of the flow field. Anderson (1984) (pag&s2 and 353)
presents a diagram with values of the shock arfgjlép oblique
shock waves. The value of this angle is determiaedunction of
the freestream Mach number and of the deflectiajieaof the flow
after the shock wavey To ¢ = 20° (ramp inclination angle) and to a
freestream Mach number equals to 2.0, it is posgiblobtain from
this diagram a value t equals to 53.0°. Using a transfer in Figures
3 to 6, it is possible to obtain the valueab each scheme, as well
the respective errors, shown in Tab. 1. The re$udislight that the
Hughson and Beran (1991) scheme is the most aecwfathe
studied schemes in this problem.

Table 1. Shock angle and percentage errors for the ramp problem.

Algorithm B (°) | Error (%)
Yee, Warming and Harten (1982)  54{2 2.26|
Harten (1983) 53.9 1.70
Yee and Kutler (1985) 53.¢ 1.51
Hughson and Beran (1991) 53|2 0.38]

Blunt Body Physical Problem

To this physical problem, an algebraic mesh witt8xi®0
points or composed of 10,098 rectangular volumed 40,300
nodes was used. The flow entrance and exit boueslarére located
at 20 times the curvature ratio of the blunt bodysen An
exponential stretching of 5% was implemented in #ghdirection.
Figures 12 and 13 exhibit the blunt body configioragnd the blunt
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body mesh, respectively. The freestream Mach nuratiepted for
this simulation as initial condition was 5.0, chaeaizing a high
supersonic flow regime.

M
1=50m

Figure 12. Blunt body configuration.
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-850 -6.0 -d.0 -0 [0] FA ] 40
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Figure 13. Blunt body mesh.

Figures 14 to 17 show the pressure field generayethe Yee,
Warming and Harten (1982), the Harten (1983), tlkee ¥nd Kutler
(1985) and the Hughson and Beran (1991) schemspectvely.
The pressure field generated by the H/83 scherteimost intense
in relation to the others schemes. Good symmetopeties are
observed in all solutions.

-4.0

-an L]

-

I

Figure 14. Pressure field (YWH/82).
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Figure 15. Pressure field (H/83).
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Figure 16. Pressure field (YK/85).
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ko
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on o 40

Figure 17. Pressure field (HB/91).

Figures 18 to 21 exhibit the Mach number field oted by the
Yee, Warming and Harten (1982), the Harten (1988), Yee and
Kutler (1985) and the Hughson and Beran (1991) rselse
respectively. The Mach number fields are practycdile same, with
small qualitative differences.
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Figure 18. Mach number field (YWH/82).
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Figure 19. Mach number field (H/83).
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Figure 20. Mach number field (YK/85).

Figure 22 shows the -Cp distribution around thenblbody
geometry obtained by all four schemes. There aremeaningful
differences among the solutions generated by therses, with all
solutions obtaining the same value to the Cp pebkthe
configuration nose (Cp = 1.68).
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Figure 22. -Cp distribution on the blunt body surface.

The aerodynamic coefficients of lift and drag anewsn in Tab.
2 to each scheme. Due to the symmetry of the bhlhody
configuration in relation to the y axis and duethe zero angle of
attack, the expected value to the lift coefficién) is zero. As can
be seen the best value is obtained by the Hughsdmaran (1991)
scheme.

Table 2. Aerodynamic coefficients of lift and drag for the blunt body
problem.

Algorithm o} Cp
Yee, Warming and Harten (1982)  3.99%1D 4.82x10"
Harten (1983) 1.30x10| 4.82x10"

Yee and Kutler (1985) 3.99x70| 4.82x10"
Hughson and Beran (1991) 1.26510 4.81x10"

Another possibility for quantitative comparisonadf schemes is
the determination of the stagnation pressure oncthdiguration
nose. In that region the shock wave presents a aloshock
behavior and the stagnation pressure jump can tzéneld from the
tables encountered in Anderson (1984). With thas ipossible to
determine the ratiopro/ pr., , wherepr, is the stagnation pressure

in front of the configuration angbr, is the freestream pressure
(equal to 1y for the adopted nondimensionalization).
For this problemM, = 5.0 corresponds tq)ro/ pr, = 32.65

and remembering thar,, = 0.714, it is possible to conclude that
pro = 23.31. Table 3 exhibits the values obtainedHey dtagnation
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pressure to each scheme and the respective pegeeeateors. As
can be observed, the Harten (1983) scheme preskatsnost
accurate value.

Table 3. Stagnation pressure for the blunt body problem.

Algorithm pro Error (%)
Yee, Warming and Harten (1982) 20.80 12.9
Harten (1983) 20.39 12.5
Yee and Kutler (1985) 20.30 12.9
Hughson and Beran (1991) 20.35 12.7

For the ramp and blunt body results, two schemeshar best in
relation to the others. The solution generatedhey Hughson and
Beran (1991) scheme in the ramp problem, in therdenation of
the shock angle, is the most accurate, althoughvdges Warming
and Harten (1982) and the Yee and Kutler (1985¢s&s present
better wall pressure distribution. In the blunt pogroblem, the
solution generated by the Harten (1983) schenteeisriost accurate
with respect to shock jump conditions.

Table 4 presents the CFL number, the number odtiters to
convergence and the computational cost of the ikgos in the
present simulations. As can be seen, the Yee arttbrK(1985)
scheme, the cheapest scheme, is about 810% lesssix than the
Yee, Warming and Harten (1982) scheme, the mostresipe.

Table 4. Numerical results from the simulations.

Ramp Blunt Body
Scheme| CFL| lterations CFL lterations  CBst
YWH
(1982) 0.3 3,348 0.9 1,906 0.000076
Harten
(1983) | 59 | 1050 | 09| 1,885| 0.000049
YK
(1985) 0.3 3,348 0.9 1,906 0.000008
HB
(1991) 0.9 1,042 0.9 1,876 0.0000%54

@: Measured in seconds/per cell/per iteration

Conclusions

The present work compares the flux difference tpijt TVD
algorithms of Yee, Warming and Harten (1982), ofteia (1983),
of Yee and Kutler (1985) and of Hughson and Berg®91), all
schemes second order accurate in space, applagtaoautical and
aerospace problems in the two-dimensional spaces Ehler
equations, on a finite volume context, using an iagwand a
structured spatial discretization, were solved. patilly variable
time step was employed to accelerate the conveegeracess to the
steady state solution. The steady state physicatbl@ms of the

generated by the Harten (1983) and the HughsorBanan (1991)
schemes, which presented a shock peak. The shagk &nbest
estimated by the Hughson and Beran (1991) schemthel blunt
body problem, the Harten (1983) scheme presentedtst intense
pressure field in relation to the other schemesyradterizing the
most critical solution. The Mach number and the spoee
coefficient distributions of all schemes were picadty the same.
The lift aerodynamic coefficient was better preeictby the
Hughson and Beran (1991) scheme. The stagnatissyme on the
configuration nose is best determined by the Haf1®83) scheme.
The Yee and Kutler (1985) scheme, the cheapestrsghis about
810% less expensive than the Yee, Warming and R&(1882)
scheme, the most expensive. The Yee, Warming amtei§1982)
and the Yee and Kutler (1985) schemes have prateirtaally the
same solutions, where the different forms of definthe artificial
compressibility terms of both schemes do not presesaningful
differences. A more complete study, with more ptgisproblems,
will be carried out by this author aiming to bettaghlight the
characteristics of these schemes.

As initial conclusion, the Harten (1983) and thegHson and
Beran (1991) TVD schemes are better than the Yeamivig and
Harten (1982) and the Yee and Kutler (1985) TVDesuoés.
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