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Structured High Resolution 
Algorithms in the Solution of the 
Euler Equations in the Two-
Dimensional Space 
The present work compares the high resolution schemes of (1) Yee, Warming and Harten, 
(2) Harten, (3) Yee and Kutler and (4) Hughson and Beran applied to the solution of 
aeronautical and aerospace problems. All schemes are TVD flux difference splitting type 
and are second order accurate in space. The Euler equations in conservative form, 
employing a finite volume formulation and a structured spatial discretization, are solved in 
two-dimensions. The time integration is performed by a dimensional splitting method and 
is first order accurate. The steady state physical problems of the supersonic flows along a 
ramp and around a blunt body configuration are studied. In the ramp problem, the 
Hughson and Beran scheme was the most critical because presented the most intense 
pressure field and the most intense Mach number field. Moreover, this scheme predicts the 
best value to the shock angle of the oblique shock wave. The shock and the expansion fan 
pressure distributions are better captured by the Yee, Warming and Harten and the Yee 
and Kutler schemes. In the blunt body problem, the Harten scheme presented the most 
intense pressure field. The Harten scheme estimates the best value to the stagnation 
pressure on the configuration nose. 
Keywords: Yee, Warming and Harten algorithm, Harten algorithm, Yee and Kutler 
algorithm, Hughson and Beran algorithm, Euler equations 
 
 
 

Introduction 
1High resolution upwind schemes have been developed since 

1959, aiming to improve the generated solution quality, yielding 
more accurate solutions and more robust codes. The high resolution 
upwind schemes can be of flux vector splitting type or flux 
difference splitting type. In the former case, more robust algorithms 
are yielded, while in the latter case, more accuracy is obtained. 
Several studies were performed involving high resolution algorithms 
in the literature, as follows.  

Roe (1981) presented a work that emphasized that several 
numerical schemes for the solution of the hyperbolic conservation 
equations were based on exploring the information obtained in the 
solution of a sequence of Riemann problems. It was verified that in 
the existent schemes the major part of this information was 
degraded and that only certain solution aspects were solved. It was 
demonstrated that the information could be preserved by the 
construction of a matrix with a certain “U property”. After the 
construction of this matrix, its eigenvalues could be considered as 
wave velocities of the Riemann problem and the UL-UR projections 
over the matrix’s eigenvectors are the jumps which occur between 
intermediate stages. 

Harten (1983) developed a class of new finite difference 
schemes, explicit and with second order of spatial accuracy for 
calculation of weak solutions of the hyperbolic conservation laws. 
These highly non-linear schemes were obtained by the application 
of a first order non-oscillatory scheme to an appropriately modified 
flux function. The so derived second order schemes reached high 
resolution, while preserving the robustness property of the original 
non-oscillatory scheme. 

Yee and Kutler (1985) presented a work which extended the 
Harten (1983) scheme to a generalized coordinate system, in two-
dimensions. The TVD (Total Variation Diminishing) scheme was 
applied to the physical problem of a moving shock impinging on a 
cylinder. The numerical results were compared with the 
MacCormack (1969) scheme, presenting good results.  
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Hughson and Beran (1991) proposed an explicit, second order 
accurate in space, TVD scheme to solve the Euler equations in axis-
symmetrical form, applied to the studies of the supersonic flow 
around a sphere and the hypersonic flow around a blunt body. The 
scheme was based on the modified flux function approximation of 
Harten (1983) and its extension from the two-dimensional space to 
the axis-symmetrical treatment was developed. Results were 
compared to the MacCormack (1969) algorithm’s solutions. High 
resolution aspects, capability of shock capture and robustness 
properties of this TVD scheme were investigated. 

In this work, the Yee, Warming and Harten (1982), the Harten 
(1983), the Yee and Kutler (1985) and the Hughson and Beran 
(1991) schemes are implemented, on a finite volume context and 
using an upwind and structured spatial discretization, to solve the 
Euler equations, in the two-dimensional space. The results are 
compared with each other and with analytical solutions. All schemes 
are second order accurate in space and are applied to the solution of 
the supersonic flows along a ramp and around a blunt body 
configuration. A spatially variable time step procedure is 
implemented aiming to accelerate the convergence of the schemes to 
the steady state condition. This technique has proved excellent gains 
in terms of convergence ratio as reported in Maciel (2005). The 
results have demonstrated that the Hughson and Beran (1991) 
scheme yields the most intense and accurate results in the ramp 
problem, while the Harten (1983) scheme yields the most accurate 
and the most intense results in the blunt body problem. More 
complete studies, involving other different physical problems, are 
aimed by this author with the intention of better highlighting the 
characteristics of these schemes. 

Nomenclature 

a = speed of sound, m/s 
CFL = “Courant-Friedrichs-Lewy” number 
e = total energy per unity volume, J/m3 

Ee = inviscid flux vector (or Euler flux vector) in x direction 
Fe = inviscid flux vector (or Euler flux vector) in y direction 
H = total enthalpy, J/Kg 
p = static pressure, N/m2 



Edisson Sávio de Góes Maciel 

96 / Vol. XXX, No. 2, April-June 2008 ABCM 

Q = vector of conserved variables 
R = matrix for construction of the dissipation function 
u = x component of velocity vector q, m/s 
v = y component of velocity vector q, m/s 
V = volume of a given computational cell, m3 

Greek Symbols 

α = attack angle, degrees, or projection vectors 
∆t = time step, s 
γ = ratio of specific heats, adopted 1.4 for atmospheric 

medium 
λ = eigenvalues of the Euler equations 
ψ = entropy function 
ρ = density, kg/m3 

Subscripts 

e = Euler 

Euler Equations 

The flow is described by the Euler equations, which express the 
conservation of mass, of linear momentum and of energy of an 
inviscid, non-heat-conducting and compressible fluid, in the absence 
of external forces. In the integral and conservative forms, these 
equations can be represented by: 

 

( ) 0=++∂∂ ∫∫ S yexeV
dSnFnEQdVt , (1) 

 
where Q is written for a Cartesian system, V is a cell volume, nx and 
ny are the components of the normal unity vector on the cell faces, S 
is the cell surface area and Ee and Fe represent the components of 
the convective flux vector. Q, Ee and Fe are represented by: 
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being ρ the fluid density; u and v the Cartesian components of the 
velocity vector in the x and y directions, respectively; e the total 
energy per unity volume of the fluid; and p the static pressure of the 
fluid. 

In all solutions, the Euler equations were nondimensionalized 
with respect to the freestream density, ρ∞, and with respect to the 
freestream speed of sound, a∞. The matrix system of the Euler 
equations is closed with the state equation of an ideal gas: 

 

[ ])(5.0)1( 22 vuep +−−= ργ , (3) 
 

where γ  is the ratio of specific heats. The total enthalpy is 
determined by ( ) ρpeH += . 

Yee, Warming and Harten (1982) Algorithm 

The Yee, Warming and Harten (1982) algorithm, second order 
accurate in space, is specified by the determination of the numerical 
flux vector at the (i+½,j)  interface. The convective numerical flux 
vector to the (i+½,j)  interface is described by: 
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with: 
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l EEE +=  and ( ))()()(
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L
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where “R” and “L” indicate right and left states, respectively; and 
“ l” varies from 1 to 4. 

The Yee, Warming and Harten (1982) dissipation function, to 
second order of spatial accuracy, is constructed by the following 
matrix-vector product: 

 
{ } [ ] ( )( ){ }

jijijijiljijiYWH tggRD
,2/1,,1,,2/1,2/1 ++++ −+= ∆ψαβ . (6)  

 
The various terms presented above are described below. 

Following a finite volume formalism, which is made equivalent to a 
generalized coordinate system, the right and left cell volumes, as 
well as the interface volume, necessary for coordinate change, are 
defined by: 

 

jiR VV ,1+= , jiL VV ,=    and    ( )LR VVV += 5.0int . (7) 

 
The cell volume is defined in Maciel (2007a). The interface area 

components, Sx_int and Sy_int, necessary to define the metric terms, 
are also defined in Maciel (2007a). The metric terms to this 
generalized coordinate system are defined as: 

 

intint_ VSh xx = , intint_ VSh yy =    and   intVShn = . (8) 

 
The properties calculated at the flux interfaces are obtained 

either by arithmetic average or by Roe (1981) average. In this work, 
the arithmetic average was used. The speed of sound at the interface 

is determined by ( ) ( )[ ]2
int

2
intintint 5.01 vuHa +−−= γ , where Hint, 

uint and vint are the total enthalpy and the Cartesian components of 
velocity calculated at the flux interface. The eigenvalues of the 
Euler equations, in the ξ generalized coordinate direction, are given 
by: 

 

yxcont hvhuU intint += , ncont haU int1 −=λ , contU=λ=λ 32   

and  ncont haU int4 +=λ . (9) 
 
The jump of the conserved variables, necessary to the 

construction of the Yee, Warming and Harten (1982) dissipation 
function, are detailed in Maciel (2006), as well as the α vectors on 
the (i+½,j)  interface. The Yee, Warming and Harten (1982) 
dissipation function uses the matrix of the right eigenvector of the 
Jacobian matrix in the direction normal to the flux face: 
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where '
xh  and '

yh  are metric terms also defined in Maciel (2006). 

Two options of entropy condition are implemented. The first is: 
 

lll Zt == λ∆ν ; (11) 
 

25.02 += ll Zψ ; (12) 
 

and the second is: 
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where “l” varies from 1 to 4 (two-dimensional space) and δf 
assuming values between 0.1 and 0.5, being 0.2 the value 
recommended by Yee, Warming and Harten (1982). 

The g numerical flux function, responsible to the second order 
of accuracy of the scheme, is a limited function to avoid the 
formation of new extremes and is given by: 
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where signall is equal to 1.0 if l
jig ,2/1

~
+  ≥ 0.0 and -1.0 otherwise. 

The g~  function at the (i+½,j)  interface is defined by: 
 

( ) l
ll

l Zg αψ 25.0~ −= . (15) 
 
The θ term, responsible to the artificial compressibility, which 

enhances the resolution of shock waves and contact discontinuities, 
is defined as follows: 
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The β  parameter at the (i+½,j)  interface is given by the 

following expression: 
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in which ωl assumes the following values: ω1 = 0.25 (non-linear 
field), ω2 = ω3 = 1.0 (linear field) and ω4 = 0.25 (non-linear field). 
The lϕ  function, the numerical speed of propagation of information 

of the function g, at the (i+½,j)  interface is defined by: 
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The entropy function is redefined considering lϕ  and lβ : 

llllZ ϕβ+ν= , and lψ  is recalculated according to Eq. (12) or to 

Eq. (13).  
The time integration follows the dimensional splitting method, 

first order accurate, which divides the integration in two steps, each 
one associated with a specific spatial direction. Details of this 
method are found in Yee, Warming and Harten (1982), in Maciel 
(2006) and in Maciel (2007b).  

Harten (1983) Algorithm 

The Harten (1983) algorithm, second order accurate in space, 
follows the Eqs. (7) to (10). The next step is the definition of the 
entropy condition, which is defined by Eqs. (11) and (13). 

The g~  function at the (i+½,j)  interface is defined according to 
Eq. (15) and the g function of second order accuracy is given by Eq. 
(14). The lϕ  function at the (i+½,j)  interface is defined according 

to Eq. (18) 
The entropy function is redefined considering lϕ : lllZ ϕν += , 

and lψ  is recalculated according to Eq. (13). Finally, the Harten 

(1983) dissipation function, to second order spatial accuracy, is 
constructed by the following matrix-vector product: 
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Equations (4) and (5) are used to conclude the numerical flux 

vector of the Harten (1983) scheme and the time integration is 
performed by the dimensional splitting method defined in Yee, 
Warming and Harten (1982), in Maciel (2006) and in Maciel 
(2007b).  

Yee and Kutler (1985) Algorithm 

The Yee and Kutler (1985) algorithm, second order accurate in 
space, follows Eqs. (7) to (10). The next step consists in determining 
the θ function of artificial compressibility: 
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The κ function at the (i+½,j)  interface is defined as follows: 
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The g numerical flux function is determined by: 
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where signall assumes value 1.0 if l
ji ,2/1+α  ≥ 0.0 and -1.0 

otherwise. The σl function, the numerical speed of propagation of 
information, at the (i+½,j)  interface is calculated by the following 
expression: 
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The lϕ  function at the (i+½,j)  interface is defined by: 
 

( ) 25.02 ++= lll σνϕ , (24) 
 

with νl defined according to Eq. (11). Finally, the Yee and Kutler 
(1985) dissipation function, to second order spatial accuracy, is 
constructed by the following matrix-vector product: 
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Equations (4) and (5) are used to conclude the numerical flux 
vector of Yee and Kutler (1985) scheme and the time integration is 
performed by the dimensional splitting method defined in Yee, 
Warming and Harten (1982), in Maciel (2006) and in Maciel 
(2007b).  

Hughson and Beran (1991) Algorithm 

The Hughson and Beran (1991) algorithm, second order 
accurate in space, follows Eqs. (7) to (10). The next step consists in 
determining the numerical flux function. To non-linear fields (l = 1 
and 4), it is possible to write: 
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For linear fields (l = 2 and 3), it is possible to write: 
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where signall is equals to 1.0 if l
ji ,2/1−α  ≥ 0.0 and -1.0 otherwise. 

After that, Equations (11) and (13) are employed and the σl term at 
the (i+½,j)  interface is defined: 

 

( )25.0 lll Z−= ψσ . (28) 
 
The lϕ  function, the numerical speed of propagation of 

information, at the (i+½,j)  interface is defined by: 
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The entropy function is redefined considering the lϕ  term: 

lllZ ϕ+ν=  and lψ  is recalculated according to Eq. (13). Finally, 

the Hughson and Beran (1991) dissipation function, to second order 
accuracy in space, is constructed by the following matrix-vector 
product: 

 
{ } [ ] ( )[ ]{ }

jijijijijijiBeranHughson tggRD
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Equations (4) and (5) are used to conclude the numerical flux 

vector of Hughson and Beran (1991) scheme and the time 
integration is performed by the dimensional splitting method 
defined in Yee, Warming and Harten (1982), in Maciel (2006) and 
in Maciel (2007b).  

Spatially Variable Time Step 

The basic idea of this procedure consists in keeping constant the 
CFL number in all computational domain, allowing, hence, the use 
of appropriated time steps to each specific mesh region during the 
convergence process. Details of the present implementation can be 
found in Maciel (2002), in Maciel (2006) and in Maciel (2007b). 

 
 
 

Initial and Boundary Conditions 

Initial Condition 

Values of freestream flow are adopted for all properties as initial 
condition, in the whole calculation domain, to the physical problems 
studied in this work. Due to the nondimensionalization, only the 
freestream Mach number, the angle of attack and the ratio of 
specific heats are necessary to initialize the flows.  Details are found 
in Maciel (2002), in Maciel (2006), and in Maciel (2007b). 

Boundary Conditions 

The boundary conditions are basically of three types: solid wall, 
entrance and exit. These conditions are implemented in special cells 
named ghost cells. Details are found in Maciel (2002), in Maciel 
(2006) and in Maciel (2007b). 

Results 

Tests were performed in a CELERON-1.2GHz and 128 Mbytes 
of RAM memory microcomputer. Converged results occurred to 4 
orders of reduction in the value of the maximum residue. To all 
problems, the attack angle was adopted equal to 0.0°. 

Ramp Physical Problem 

To this physical problem, an algebraic mesh with 61x100 points 
was used, which is composed of 5,940 rectangular volumes and of 
6,100 nodes, on a finite volume context. Figures 1 and 2 show the 
ramp configuration and the ramp mesh adopted for this problem, 
respectively. 

The freestream Mach number adopted for this simulation was 
2.0, characterizing a low supersonic flow regime. 

 

 
Figure 1. Ramp configuration. 

 
Figures 3 to 6 show the pressure field obtained by the Yee, 

Warming and Harten (1982), the Harten (1983), the Yee and Kutler 
(1985) and the Hughson and Beran (1991) schemes, respectively. 
The pressure field generated by the Hughson and Beran (1991) 
scheme is the most intense in relation to the other schemes. It is 
interesting to note that the Hughson and Beran (1991) and the 
Harten (1983) solutions present a larger high pressure region than 
the equivalent regions obtained by the Yee, Warming and Harten 
(1982) and the Yee and Kutler (1985) schemes. 
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Figure 2. Ramp mesh. 

 

 
Figure 3. Pressure field (YWH/82). 

 

 
Figure 4. Pressure field (H/83). 

 
Moreover, the Yee, Warming and Harten (1982) and the Yee 

and Kutler (1985) schemes present nearly identical solutions. 
Although differences exist between the algorithms, both schemes 
have the same behavior in this example. Equations (16) and (17) 
behave in the same way as Eqs. (20) and (21), respectively. The 
different ways of providing artificial compressibility have the same 
effects in this problem to these schemes. 

 

 
Figure 5. Pressure field (YK/85). 

 

 
Figure 6. Pressure field (HB/91). 

 

 
Figure 7. Mach number field (YWH/82). 

 
Figures 7 to 10 exhibit the Mach number field generated by the 

Yee, Warming and Harten (1982), the Harten (1983), the Yee and 
Kutler (1985) and the Hughson and Beran (1991) schemes, 
respectively. The Mach number contours generated by the Hughson 
and Beran (1991) scheme shows the most intense field in relation to 
the other schemes. The Hughson and Beran (1991) and the Harten 
(1983) schemes present, again, larger areas of high Mach numbers 
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(black area) than the Yee, Warming and Harten (1982) and the Yee 
and Kutler (1985) schemes. 

 

 
Figure 8. Mach number field (H/83). 

 

 
Figure 9. Mach number field (YK/85). 

 

 
Figure 10. Mach number field (HB/91). 

 
Figure 11 shows the wall pressure distributions along the ramp 

obtained by the Yee, Warming and Harten (1982), the Harten 
(1983), the Yee and Kutler (1985) and the Hughson and Beran 
(1991) schemes. They are compared with the oblique shock wave 
and the expansion wave Prandtl-Meyer theories. It is possible to 
note that the YWH/82 and the YK/85 solutions are smoother than 

the H/83 and HB/91 solutions, but they do not present oscillations 
around the shock region, what characterizes better solutions, in 
qualitative terms, than the H/83 and HB/91. They are doing what 
high resolution schemes are expected to do: present solutions of 
second order schemes free of oscillations in shock regions. In the 
H/83 and HB/91 solutions, the shock presents a small peak, but the 
shock is thinner and the expansion fan is less smoothed. The HB/91 
scheme is the only one which has the highest value of pressure 
exactly at the beginning of the ramp, where the shock position 
should be. The YWH/82 and the YK/85 schemes also present nearly 
the same solution in terms of pressure distribution. 

 

 
Figure 11. Wall pressure distributions. 

 
One way to quantitatively verify if the solutions generated by 

each scheme are satisfactory consists in determining the shock angle 
of the oblique shock wave, β, measured in relation to the initial 
direction of the flow field. Anderson (1984) (pages 352 and 353) 
presents a diagram with values of the shock angle, β, to oblique 
shock waves. The value of this angle is determined as function of 
the freestream Mach number and of the deflection angle of the flow 
after the shock wave, φ. To φ = 20º (ramp inclination angle) and to a 
freestream Mach number equals to 2.0, it is possible to obtain from 
this diagram a value to β equals to 53.0º. Using a transfer in Figures 
3 to 6, it is possible to obtain the values of β to each scheme, as well 
the respective errors, shown in Tab. 1. The results highlight that the 
Hughson and Beran (1991) scheme is the most accurate of the 
studied schemes in this problem. 

 

Table 1. Shock angle and percentage errors for the ramp problem. 

Algorithm β (°) Error (%) 
Yee, Warming and Harten (1982) 54.2 2.26 

Harten (1983) 53.9 1.70 
Yee and Kutler (1985) 53.8 1.51 

Hughson and Beran (1991) 53.2 0.38 

Blunt Body Physical Problem 

To this physical problem, an algebraic mesh with 103x100 
points or composed of 10,098 rectangular volumes and 10,300 
nodes was used. The flow entrance and exit boundaries were located 
at 20 times the curvature ratio of the blunt body nose. An 
exponential stretching of 5% was implemented in the η direction. 
Figures 12 and 13 exhibit the blunt body configuration and the blunt 
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body mesh, respectively. The freestream Mach number adopted for 
this simulation as initial condition was 5.0, characterizing a high 
supersonic flow regime. 

 

 
Figure 12. Blunt body configuration. 

 

 
Figure 13. Blunt body mesh. 

 
Figures 14 to 17 show the pressure field generated by the Yee, 

Warming and Harten (1982), the Harten (1983), the Yee and Kutler 
(1985) and the Hughson and Beran (1991) schemes, respectively. 
The pressure field generated by the H/83 scheme is the most intense 
in relation to the others schemes. Good symmetry properties are 
observed in all solutions. 

 

 
Figure 14. Pressure field (YWH/82). 

 

 
Figure 15. Pressure field (H/83). 

 

 
Figure 16. Pressure field (YK/85). 

 

 
Figure 17. Pressure field (HB/91). 

 
Figures 18 to 21 exhibit the Mach number field obtained by the 

Yee, Warming and Harten (1982), the Harten (1983), the Yee and 
Kutler (1985) and the Hughson and Beran (1991) schemes, 
respectively. The Mach number fields are practically the same, with 
small qualitative differences. 
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Figure 18. Mach number field (YWH/82). 

 

 
Figure 19. Mach number field (H/83). 

 

 
Figure 20. Mach number field (YK/85). 

 
Figure 22 shows the -Cp distribution around the blunt body 

geometry obtained by all four schemes. There are no meaningful 
differences among the solutions generated by the schemes, with all 
solutions obtaining the same value to the Cp peak at the 
configuration nose (Cp = 1.68). 

 

 
Figure 21. Mach number field (HB/91). 

 

 
Figure 22. -Cp distribution on the blunt body surface. 

 
The aerodynamic coefficients of lift and drag are shown in Tab. 

2 to each scheme. Due to the symmetry of the blunt body 
configuration in relation to the y axis and due to the zero angle of 
attack, the expected value to the lift coefficient (cL) is zero. As can 
be seen the best value is obtained by the Hughson and Beran (1991) 
scheme. 

 
Table 2. Aerodynamic coefficients of lift and drag for the blunt body 
problem. 

Algorithm cL cD 
Yee, Warming and Harten (1982) 3.99x10-4 4.82x10-1 

Harten (1983) 1.30x10-4 4.82x10-1 
Yee and Kutler (1985) 3.99x10-4 4.82x10-1 

Hughson and Beran (1991) 1.26x10-4 4.81x10-1 
 
Another possibility for quantitative comparison of all schemes is 

the determination of the stagnation pressure on the configuration 
nose. In that region the shock wave presents a normal shock 
behavior and the stagnation pressure jump can be obtained from the 
tables encountered in Anderson (1984). With that it is possible to 
determine the ratio ∞prpr0 , where pr0 is the stagnation pressure 

in front of the configuration and pr∞ is the freestream pressure 
(equal to 1/γ for the adopted nondimensionalization). 

For this problem, M∞ = 5.0 corresponds to ∞prpr0 = 32.65 

and remembering that pr∞  = 0.714, it is possible to conclude that 
pr0 = 23.31. Table 3 exhibits the values obtained by the stagnation 
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pressure to each scheme and the respective percentage errors. As 
can be observed, the Harten (1983) scheme presents the most 
accurate value. 

 

Table 3. Stagnation pressure for the blunt body problem. 

Algorithm pr0 Error (%) 
Yee, Warming and Harten (1982) 20.30 12.9 

Harten (1983) 20.39 12.5 
Yee and Kutler (1985) 20.30 12.9 

Hughson and Beran (1991) 20.35 12.7 
 
For the ramp and blunt body results, two schemes are the best in 

relation to the others. The solution generated by the Hughson and 
Beran (1991) scheme in the ramp problem, in the determination of 
the shock angle, is the most accurate, although the Yee, Warming 
and Harten (1982) and the Yee and Kutler (1985) schemes present 
better wall pressure distribution. In the blunt body problem, the 
solution generated by the Harten (1983) scheme is the most accurate 
with respect to shock jump conditions. 

Table 4 presents the CFL number, the number of iterations to 
convergence and the computational cost of the algorithms in the 
present simulations. As can be seen, the Yee and Kutler (1985) 
scheme, the cheapest scheme, is about 810% less expensive than the 
Yee, Warming and Harten (1982) scheme, the most expensive. 

 

Table 4. Numerical results from the simulations. 

 Ramp Blunt Body  

Scheme CFL Iterations CFL Iterations Cost(1) 

YWH 
(1982) 0.3 3,348 0.9 1,906 0.000076 
Harten 

 (1983) 
0.9 1,059 0.9 1,885 0.000049 

YK 
(1985) 0.3 3,348 0.9 1,906 0.000008 

HB 
(1991) 0.9 1,042 0.9 1,876 0.000054           (1): Measured in seconds/per cell/per iteration 

Conclusions 

The present work compares the flux difference splitting TVD 
algorithms of Yee, Warming and Harten (1982), of Harten (1983), 
of Yee and Kutler (1985) and of Hughson and Beran (1991), all 
schemes second order accurate in space, applied to aeronautical and 
aerospace problems in the two-dimensional space. The Euler 
equations, on a finite volume context, using an upwind and a 
structured spatial discretization, were solved. A spatially variable 
time step was employed to accelerate the convergence process to the 
steady state solution. The steady state physical problems of the 
supersonic flows along a ramp and around a blunt body 
configuration were solved. 

All schemes have presented good solutions in qualitative and 
quantitative terms. In the ramp problem, the Hughson and Beran 
(1991) scheme was the most critical because presented the most 
intense pressure field and Mach number field in relation to the other 
schemes. The shock and the expansion fan are better captured by the 
Yee, Warming and Harten (1982) and the Yee and Kutler (1985) 
schemes, even though they are smoother than the solutions 

generated by the Harten (1983) and the Hughson and Beran (1991) 
schemes, which presented a shock peak. The shock angle is best 
estimated by the Hughson and Beran (1991) scheme. In the blunt 
body problem, the Harten (1983) scheme presented the most intense 
pressure field in relation to the other schemes, characterizing the 
most critical solution. The Mach number and the pressure 
coefficient distributions of all schemes were practically the same. 
The lift aerodynamic coefficient was better predicted by the 
Hughson and Beran (1991) scheme. The stagnation pressure on the 
configuration nose is best determined by the Harten (1983) scheme. 
The Yee and Kutler (1985) scheme, the cheapest scheme, is about 
810% less expensive than the Yee, Warming and Harten (1982) 
scheme, the most expensive. The Yee, Warming and Harten (1982) 
and the Yee and Kutler (1985) schemes have presented virtually the 
same solutions, where the different forms of defining the artificial 
compressibility terms of both schemes do not present meaningful 
differences. A more complete study, with more physical problems, 
will be carried out by this author aiming to better highlight the 
characteristics of these schemes. 

As initial conclusion, the Harten (1983) and the Hughson and 
Beran (1991) TVD schemes are better than the Yee, Warming and 
Harten (1982) and the Yee and Kutler (1985) TVD schemes. 
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