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Aspects of Finite Element and Finite 
Volume Equivalence and a Posteriori 
Error Estimation in Polymer Melt Flow 
In this work, aspects of discretization errors associated with finite volume (FV) and 
equivalent finite element (FE) modelling strategies are discussed within the framework of 
polymer melt flow. The computational approaches are based on the generalized Newtonian 
model in conjunction with Cross constitutive equation. The numerical examples illustrate 
one and two-dimensional fluid flows, in which the latter is discretized using structured 
quadrilateral elements / volumes. A study on the best strategy to compute non-linear 
viscosities at control volume boundaries is also presented for FV. Based on well 
established a posteriori error estimation techniques, it is demonstrated that, in this class of 
problems, FV discretization errors and differences between FE and FV solutions are 
greatly affected by the scheme used to compute the FV non-linear coefficients at the 
control volume surfaces. Simulations for rectangular channels show that FE yields smaller 
global errors then FV for velocity and temperature solutions. 
Keywords: polymer melt, finite volumes, finite elements, error estimation 

Introduction

1In the last twenty years, commercial software packages aiming 
at simulation of polymer processing, such as extrusion and injection 
moulding, have been steadily developed, most of which able to 
handle applications ranging from common household objects to 
complex aerospace components. Due to the complexity of such 
problems, most commercial programs attempt to combine practical 
rheological models with approximate computational modelling 
techniques. Such approach has hampered more comprehensive 
studies on the polymer behaviour and further understanding of the 
interaction of the problem parameters. However, in the last years, 
the literature shows an increasing attention in the simulation of 
polymer processing operations using more elaborate material 
modelling. For instance, Carreau and Cross constitutive equations 
have been used to study several aspects of injection moulding. The 
former was adopted to describe error estimation associated with 
finite elements (Bao, 2002; Fortin et al., 2004), whereas the latter 
was used to study the effects of viscous dissipation and axial heat 
conduction (Zdanski and Vaz Jr., 2006) and error assessment (Vaz 
Jr. and Gaertner, 2004, 2006). The present work addresses some 
modelling aspects of polymer melt flow using finite volumes (FV) 
and finite elements (FE) schemes, such as computation of the FV 
non-linear coefficients at the control-volume surfaces, 
approximation between FE and FV solutions and FV and FE error 
estimation. The numerical examples illustrate one and two-
dimensional fluid flows, in which the latter is discretized using 
structured quadrilateral elements / volumes. 

Nomenclature

e = error in the Energy norm
h = mesh size 
H = channel height 
J2 = second invariant of the rate of the shear strain tensor 
k = thermal conductivity 
kp = power-law consistency index 
L = channel length
n = power-law index 
p = order of the discretization error 
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p~  = estimated order of the discretization error
P = pressure
q = polynomial order of the approximation 
r = mesh refinement ratio, r = h2 / h1 and h2 > h1

R2 = coefficient of determination  
T = temperature
Tw = channel wall temperature 
w = velocity
W = channel width 

Greek Symbols 

 = Richardson or exact error 
 = shear viscosity 
0 = Newtonian viscosity 

= rate of the shear strain tensor 

= equivalent shear strain 

= material parameter 
= specific mass 

= equivalent shear stress, 

= effectivity index 

Subscripts 

E Energy norm 
h variable at Gauss points 
h1 variable or Richardson error for mesh h1

R Richardson estimate
RMS Root Mean Square 
T temperature 
w velocity 

Superscripts 

a analytical or exact solution 
FE finite element solution 
FV finite volume solution 
w velocity

Governing Equations and Polymer Rheology 

The physics of polymer melts in injection moulding suggests 
that fluid flow is governed by the shear viscosity, which makes 
possible to use the generalised Newtonian model, 

),( 2 TJ  (1) 
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where  is the shear stress tensor,  is the shear viscosity and  is 
the rate of strain tensor. In such problems, viscosities are related to 
temperature, T, and the second invariant of the rate of strain tensor, 
J2, so that 

2/12/1

2 ):2/1(J , (2) 

in which  is the so-called equivalent shear rate. The general 
approach is based on the coupled solution of the momentum and 
energy equations, which, for fully developed fluid flow, can be 
written as 

z

P
wT ),(div        and       0div Tk  , (3) 

where w is the velocity, zP /  is the pressure gradient, k is the 

thermal conductivity,  represents the viscous heating and  is 

the equivalent stress. It is interesting to mention that studies using 
velocity and temperature fully coupled approaches associated with 
polymer melt flow based on realistic material modelling are still 
scarce (the reader is referred to Vaz Jr. and Zdanski (2007) for 
further discussions on the issue). Notwithstanding, a number of 
works based on formulations similar to Eq. (3) have been recently 
published, such as Syrjälä (2002), Hashemabadi et al. (2003), 
Pinarbasi and Imal (2005) and Vaz Jr. and Gaertner (2006). 

In this work, shear viscosity is described by both the power law

and Cross constitutive models. Polymer melts approach the power

law behaviour for large shear rates, in which 

1n

pk , (4) 

where kp is the consistency parameter and n is the power law index. 
Due to inexistence of analytical solutions for Cross equation, some 
error analyses have only been performed for power-law fluids (kp = 
18,332.63 and n = 0.36043). The Cross constitutive equation is 
adopted to describe the commercial polymer Polyacetal POM-M90-
44 used in the last numerical example. This polymer has shown 
strong temperature dependency, so that 
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where a1 = 0.022603 Pa.s, a2 = 5,003.01 K, 6
1 106425.1b , b2 = 

3,901.0 K, c1 = 1.3574 and c2 = 653.73 K (Herrmann, 2001). The 
specific mass and thermal conductivity used in the simulations are 
= 1143.9 kg/m3 and k = 0.31 W/m K, respectively. 

Numerical Modelling 

FE and FV Approximations

The FE method is based on Galerkin weighted residuals and 
assumes that the exact solution can be interpolated from C0-

continuous shape functions. The FE equations have been 
approximated using the classical four-noded isoparametric elements 
and the Gauss quadrature (Zienkiewicz and Taylor, 1994). The FV 
discretization procedure applies the conservation laws to discrete, 
non-overlapping control volumes (Ferziger and Peri , 1999). The 
FV equations are approximated using linear interpolation functions 
and assume uniform shear rate, viscosity and thermal conductivity 
over the control volume surfaces. 

Remark 1: It is well known that, in self-adjoint problems, the 
finite element method associated with Galerkin weighting provides 
an optimal approximation and, therefore, yields more accurate 
results. Moreover, Idelsohn and Oñate (1994) demonstrate that, for 
linear advective-diffusive problems, a generally non-symmetric FV 
characteristic matrix can be transformed into an identical FE 
“stiffness” matrix when linear triangles with a lumped mass matrix 
are used in both methods, the proportional vertex centred scheme is 
employed in FV and the source terms are constant. The contrast 
between using linear diffusive coefficients (e.g. viscosities) and the 
material nonlinearity of the present work precludes a 
straightforward extension of Idelsohn and Oñate's (1994) conclusion 
to polymer melt flows. Furthermore, FE and FV compute shear rates 

and viscosities at different locations. The former evaluates  and 
at the Gauss points, as illustrated in Fig. 1, and the latter at the 
control volume boundaries, as depicted in Fig. 2. In spite of such 
issues, the first two numerical examples demonstrate that the 
scheme to compute viscosities at the control volume surfaces 
dictates FE and FV solution equivalence. 

Figure 1. FE four-noded element: viscosity and shear strain rate computed 
at Gauss points. 

Figure 2. Structured two-dimensional finite volume mesh: viscosity and 
shear strain rate computed at the control volume surfaces.  
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FV Interface Quantities 

The scheme to evaluate shear strain rate, viscosities and 
temperatures at control-volume surfaces in FV has shown of 
paramount importance in this class of problems due to its high 
material nonlinearity. Strategies can be divided into three groups: (i)
computation of shear rates and viscosities at nodes followed by 
interpolation at the control-volume surfaces; (ii) computation of 
shear rates at nodes followed by interpolation over the volume 
interfaces and evaluation of the corresponding viscosities and (iii)
computation of the shear rates directly at the control-volume 
surfaces followed by evaluation of the corresponding viscosities. 
The following paragraphs summarise some of the methods 
associated with the strategies previously mentioned. For the sake of 
clarity, the approximations are presented for surface “e” of a one-
dimensional control volume, as illustrated in Fig. 3. 

P

wx

exwx

w

wx ex
ex

e

W E 

x

Figure 3. One-dimensional control volume and neighbouring nodal points. 

The most widely used schemes to estimate diffusivity properties 
at the control volume surfaces are based on the harmonic mean,
advocated by Patankar (1980), and a linear interpolation between 
nodes P and E, which, in this case, can be represented, respectively, 
as 

PeEe

PE
e

ff1
,   and   

EePee ff 1 , (7) 

where eee xxf / . Alternatively, the Kirchhoff approximation, 

based on the namesake transformation, was proposed by Voller and 
Swaminathan (1983) to evaluate discontinuous thermal 
conductivity, which, in the present case, is used to approximate 
viscosities as 

d
E

PPE

e

1
. (8) 

In a recent comparative work for one-dimensional problems, Liu 
and Ma (2005) proposed a different method to compute nonlinear 
thermal conductivity at volume interfaces that yields better results 
then the harmonic mean. Based on Liu and Ma's (2005) concept, the 
shear rate at the volume surfaces are estimated first, followed by 
computation of the corresponding viscosity, 

EePee ff 1        and       eee . (9) 

This work proposes computation of  at the control-volume 
(CV) surfaces directly from velocities located at neighbouring 
nodes. For one-dimensional problems, the equivalent shear rate is 
reduced to 

e

EP

e

e
x

ww

x

w
    and    eee , (10) 

where wE and wP are nodal velocities. Computation of viscosities 
follows Eq. (10)b. Despite the additional care required on 
programming the algorithm for two and three-dimensional 
problems, one should note that the direct evaluation of the shear rate 
at the control-volume surfaces is based on central derivatives, 
thereby yielding a second-order approximation to the shear rate. 
This work presents an error assessment of the methods described by 
Eqs. (7)-(10). 

Viscosity computation using Eq. (5) also requires temperatures 
at volume surfaces. In case of collocated meshes for velocities and 
temperatures, interface temperatures can be easily estimated using a 
linear interpolation between the corresponding points (Liu and Ma, 
2005), which, in the one-dimensional example, one obtains 

EePee TfTfT 1 . (11) 

Error Estimation 

Despite the increasing number of works concerned with 
injection moulding, error estimation using the generalised 
Newtonian model, especially associated with finite volumes/finite 
differences, has been rarely mentioned in the literature. Bao (2002) 
proposed an error estimation scheme for finite elements based on a 
discrete Babuska–Brezzi inf-sup condition. An error estimator based 
on the second derivative of velocities for FE solutions was used in 
conjunction with an h-adaptive procedure by Fortin et al. (2004). 
Application of Richardson extrapolation (Richardson, 1910) and 
error norms (Zienkiewicz and Zhu, 1987) to estimate discretization 
errors in polymer melt flows were also described by Vaz Jr. and 
Gaertner (2004, 2006). The present work emphasises discretization 
errors of FV solutions and their equivalence to FE approximations 
based on Richardson extrapolation and analytical solutions for 
simple constitutive relations. Error in the Energy norm associated 
with FE is also summarised in the following sections. 

Richardson Extrapolation 

Richardson (1910) ascertained that a higher order solution could 
be achieved by assuming that the “exact” solution is described as  

1
11111

pp

hhhexact hOhxxxx  (12) 

where exact  and 
1h  are, respectively, “exact” and discrete solutions 

at a given point x,
1h is the discretization error, h1 is the mesh size, 

 is a constant and p is the error order. The exact order of the 
discretization error is hardly known a priori, which recommends use 
of an estimate p~ . Therefore, 

1h and p~  can be determined by 

assuming (and verifying) asymptotic convergence (Oberkampf and 
Trucano, 2002) and by applying Eq. (12) to three nested meshes, h1,
h2, and h3, which, for a constant refinement ratio, r, yields 

1
~
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in which 
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where h3 > h2, > h1. The global measure is defined by the error norm 
as 
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where NR represents the number of nodes coinciding to meshes h1,
h2, and h3, 1h

 is the local error and  corresponds to either nodal 

velocities,  = w, or nodal temperatures,  = T. Although the 
technique described previously can handle only uniform meshes, 
extensions have also been developed for non-uniform grids 
(Ferziger and Peri , 1996) and multi-dimensional transient problems 
(Marchi and Silva, 2005). 

A Posteriori Projection / Smoothing Technique 

Error estimation has become an important issue in 
computational mechanics since the late seventies when Babuška and 
Rheinboldt (1978) proposed a posteriori error estimates for the 
finite element method using norms of Sobolev spaces. The topic 
gained momentum when Zienkiewicz and Zhu (1987) introduced 
error estimates based on post-processing techniques of the finite 
element solutions. Due to its relative simplicity, the original 
Zienkiewicz and Zhu’s scheme has been extended to a wide 
spectrum of applications, ranging from linear solid mechanics to the 
highly non-linear metal forming problems. This strategy was also 
employed successfully by Wu et al. (1990) for solving the 
incompressible (Newtonian) Navier-Stokes fluid flow around a 
cylinder using an error estimate based on the Energy norm. The 
present work summarizes application of the Energy norm,

dd hhhhhhE
--

**2
e ,  (16) 

in which  and  are the “exact” values of the equivalent stress 
and equivalent shear rate, respectively, and the subscript h indicates 
the corresponding finite element approximations. The standard post-
processing of the finite element solution provides the equivalent 

shear rate, h , and equivalent shear stress, 
h

, at the integration 

points. The “exact” solution is determined based on Zienkiewicz 
and Zhu's (1987) concept, which comprises (i) extrapolation from 

Gauss points, 
h

 and h , to nodes, (ii) followed by an interpolation 

back to the integration points, *
h  and *

h . Additional details on the 

strategy to compute errors in the Energy norm are presented in Vaz 
Jr. and Gaertner (2004). 

The previous scheme has the advantage of computing the error 
estimate using only one mesh, being intrinsically associated with the 
finite element method. Despite its extensive use in almost every 
field of computational mechanics, this technique has the 
disadvantage of estimating errors based on secondary measures 
(stresses and strain rates). It is worthy to emphasise that research on 
error estimation for polymer melt flow is still in its infancy and 
further investigation to assess accuracy and applications to complex 
flows are recommended. 

Numerical Examples 

A suitable quantification of the solution accuracy is crucial to 
establish confidence in the numerical model. The instinctive 
assumption that by refining the mesh one obtains more accurate 
results is not always true. Therefore, error assessment is a 
fundamental step during the development of a numerical model. 
This section is divided into tree parts: (i) assessment of the schemes 
used to evaluate viscosities at control-volume surfaces for FV, (ii)
evaluation of Richardson errors for FE and FV and their 
equivalence, and (iii) discretization errors for polymer melt flow in 
thick channels. Analyses (i) and (ii) aim at assessing the accuracy 
degree of the approximations by comparing analytical solutions for 
isothermal power-law fluid flow in plane channels and rectangular 
channels with large aspect ratios. Case (iii) uses the Cross
constitutive equation and addresses velocity and temperature fully 
coupled solutions. 

Isothermal Power-Law Fluid Flow in Plane Channels 

This section discusses solution accuracy in association with 
different schemes to compute viscosities at the control-volume 
surfaces. Global and local errors are evaluated under the framework 
of isothermal power-law fluid flow in plane channels. Estimates 
using Richardson extrapolation have also been studied aiming at 
establishing the spatial error order. The analytical solution for fully 
developed fluid flow between parallel plates can be readily derived 
as 

n

n

aa

H

Hy
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n
wyw
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2/

2/
1

1

12
 , (17) 

in which aw  is the mean velocity, n is the power-law index, H is the 
gap thickness and y is measured from the lower plate. Global RMS 
velocity errors associated with analytical solutions (exact errors),

w

RMS , and Richardson extrapolation, w

RMSR , , are defined, 

respectively, as 

2/1

1

21 N
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,,

1 RN

k
kR

R

w

RMSR
N

, (18) 

where N is the number of nodes, and NR and w

R
 are Richardson's 

number of points and local errors respectively. 
Simulations have been performed for channel gap thickness H = 

2; 4 and 8 mm, mean velocities aw  = 1.0 to 10.0 cm/s and 
normalised mesh sizes ranging from h/H = 0.003125 to 0.1. In order 
to avoid the typical power-law singularity at the channel centre, 
harmonic and linear interpolation (Eq. 7), and Kirchhoff (Eq. 8) 
viscosity means require even node numbers, whereas linear 

interpolation of  at the control-volume surfaces (Eq. 9) and direct

shear rate computation at surfaces (Eq. 10) require odd node 
numbers. Furthermore, Eq. (7) and Eq. (8) demand computation of 

 at the channel surfaces, which in turn, require velocity 
derivatives at such locations. The latter has been examined using 
first (two-point) and second (three-point) order approximations. 

Figures 4 and 5 illustrate local velocity distributions and 
corresponding global RMS errors. A curve-fit procedure has shown 
that global RMS errors increase linearly with the mean velocity and 
decrease with a rate close to square power with increasing 
normalised mesh sizes as 



Aspects of Finite Element and Finite Volume Equivalence and a … 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright  2008 by ABCM July-September 2008, Vol. XXX, No. 3 / 201

9879.1

4619.1
H

h
w aw

RMS  [cm / s] , (19) 

for direct shear computation (Eq. 10). In statistics, the quality of the 
curve fit is generally measured by the coefficient of determination,
R2, which ranges from 0 (no actual co-relation between the original 
data set and the best-fit curve) to 1.0 (the variability between the 
original data and the fitted equation is very small). In this case, the 
simulations have shown that the coefficient of determination 
approximates R2 = 1.0 for the curve represented by Eq. (19). A more 
formal error analysis is outside the scope of the present work. 
However, errors associated with the analytical solution can be 
alternatively expressed using the L2-norm, so that 

0003.20003.2

22

1.498 hH
L

a

L

a
www .

It is relevant to mention that shear rates computed using direct 

shear computation (Eq. 10) have provided absolute global errors 
around 7.5 times smaller than the scheme based on Eq. (9), i.e.,
linear interpolation of the shear rate at FV surfaces followed by 
computation of viscosities. The other methods used to evaluate 
viscosity at volume interfaces yield even worse solutions (the errors 
provided by linear interpolation, Kirchhoff mean and harmonic

mean are, respectively, 17, 10 and 9 times larger then the errors 
computed when using direct shear computation).
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Figure 4. Isothermal power-law fluid flow in plane channels: FV local 

velocities for H = 4 mm and aw  = 5.0 cm/s. 
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RMS errors for H = 4 mm and aw = 5.0 cm/s. 

An alternative appraisal of the discretization order for solutions 
using Eq. (9) (interpolate shear) and Eq. (10) (direct shear) has 
been performed based on Richardson extrapolation. Eight nested 
meshes with a constant refinement radio r = 2 have been used (h / H

= 0.00078125, 0.0015625, 0.003125, 0.00625, 0.0125, 0.025, 0.05 
and 0.1). Both schemes have shown monotonic rate of convergence 
and spatial error orders 0.2~p . Local and global RMS errors are 
presented in Fig. 6 and Fig. 7 for a gap thickness H = 4 mm using 
the exact and Richardson definitions (Eq. 18). In case of direct 
shear computation (Eq. 10), errors calculated using Richardson 
extrapolation render very close approximations to those determined 
based on the analytical solution. A somewhat close solution was 
also obtained for viscosities computed using linear interpolation of 
the shear rate (Eq. 9). Table 1 presents results for global RMS 
velocity errors corresponding to Figure 7. The accuracy of 
Richardson estimates is defined by the effectivity index,

w

RMSR

w

RMS ,/ , which is also shown in Table 1. 
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Figure 6. Isothermal power-law fluid flow in plane channels: FV local 

errors (exact and Richardson) for velocities (H = 4 mm and aw  = 5.0 
cm/s).
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RMS errors (exact and Richardson) for velocities (H = 4 mm and aw  = 5.0 
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Table 1. Isothermal power-law fluid flow in plane channels: FV global RMS errors (exact and Richardson) in [cm/s] and the effectivity index, .

Shear interpolation (Equation 9) Direct at the CV surfaces (Equation 10) 

Mesh size 
h / H 

Exact Richardson
Effectivity

index
Exact Richardson

Effectivity

index

0.100000 3.42710E-02 4.12830E-02 1.2046 4.81393E-03 4.64408E-03 0.9647 
0.050000 8.86808E-03 9.89895E-03 1.1162 1.21084E-03 1.18881E-03 0.9818 

0.025000 2.25690E-03 2.39548E-03 1.0614 3.03644E-04 3.00840E-04 0.9908 
0.012500 5.69361E-04 5.87481E-04 1.0318 7.60304E-05 7.56742E-05 0.9953 
0.006250 1.42991E-04 1.45321E-04 1.0163 1.90250E-05 1.89766E-05 0.9975 
0.003125 3.58331E-05 3.61229E-05 1.0081 4.68924E-06 4.80745E-06 1.0252 

It is important to note that the discretization errors have also 
been evaluated for second-order approximations of the velocity 
derivatives at the channel boundaries (i.e. using three nodal points). 

The issue is relevant only for cases which require computation of 
at nodal points. However, simulations have shown only limited 
improvement for such cases, with direct shear computation
rendering global RMS errors 4.2, 4.9, 5.7 and 8.7 times smaller then 
the Kirchhoff mean, linear interpolation of viscosities, harmonic
mean and linear interpolation of the shear rate, respectively. 
Furthermore, it has been found that solutions using linear 
interpolation of the shear rate could not achieve monotonic rate of 
convergence

Remark 2: In all cases analysed, the direct shear computation at 
control-volume surfaces yields markedly smaller errors then the 
others schemes. Moreover, the numerical model based on Eq. (10) 
has presented monotonic rate of convergence with error orders close 
to 2.0. Use of second-order approximation of the velocity 
derivatives at the channel boundaries could not effectively improve 
solutions for schemes based on computation of shear rates at nodal 
points.

Figure 8. FE and FV approximations: local velocities for a mesh 90 x 6 
elements/volumes. 

FE and FV Isothermal Power-Law Fluid Flow in 

Rectangular Channels 

This section addresses aspects of FE and FV simulation of 
isothermal power-law fluid flow in rectangular channels for large 
channel width / height, W / H, ratios (two-dimensional solutions 
approximate plane channels by disregarding the corner effect). This 
geometry makes possible to compare FE and FV results with 

analytical solutions over the central line. Following the best 
approach determined in the previous section for FV, the shear rate is 
computed directly at the control-volume surfaces from neighbouring 
nodal velocities. The section presents results for a channel width W
= 300 mm, channel height H = 4 mm and mean velocities, aw ,
ranging from 1 to 10 cm/s. Five nested meshes (30 x 2, 60 x 4, 120 x
8, 240 x 16 and 480 x 32 elements) with constant aspect ratio, hx / hy

= 5, and refinement ratio, r = 2, have been used to estimate 
Richardson errors. 

Figure 8 presents local velocities for aw  = 1.0, 5.0 and 10.0 
cm/s, from which one cannot visually distinguish FE from FV 
solutions. Global RMS errors computed from analytical solutions 
and Richardson estimates are shown in Fig. 9 (Eq. 18). Both 
schemes have shown monotonic rate of convergence and spatial 
error orders 0.2~p . A direct relation between the FE and FV 
velocities can be established by using relative differences associated 
with the corresponding FE solutions and based on mesh size. The 
maximum relative differences, max

re , take place at the channel centre 

and a curve-fit procedure (R2 = 0.9931) yields 

444.1max 00033624.0max h
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ww
e
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FVFE

r  (20) 

for cm/s]0.10,0.1[aw , where wFE and wFV are FE and FV local 

velocities respectively. Alternatively, FV and FE differences can 
also be expressed using the L –norm as 
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Figure 9. FE and FV approximations: local velocities for a mesh 90 x 6 
elements/volumes. 

Remark 3: Despite the nonlinearity of the problem and 
differences on the scheme to compute viscosities, as discussed in 
Remark 1, the present results show that for isothermal power-law 
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fluids and fully developed flows, to a certain extent, an equivalence 
(a direct relation between both solutions can be establish and 
differences are sufficiently small and consistently quantifiable) can 
be ascertained between FE and FV methods only when the FV 
approximation computes shear rates directly at the control-volume 
surfaces.

Polymer Melt Flow in Thick Channels 

This section summarises some aspects regarding error 
estimation using the Cross constitutive relation associated with 
fully-coupled momentum and energy equations. The reader is 
referred to Vaz Jr. and Gaertner (2006) for further details. The 
simulations assume uniform wall temperature, Tw = 493 K, and a 
constant pressure gradient P/L = 44 MPa/m, and results are 
presented for a channel 5 x 5 mm. Seven nested meshes (2 x 2, 4 x 4, 
8 x 8, 16 x 16, 32 x 32, 64 x 64 and 128 x 128 elements / volumes) 
with constant aspect ratio, hx / hy = 1, and refinement ratio, r = 2, 
have been used to estimate Richardson errors. 

The simulations show that the largest relative differences 
between FE and FV solutions for velocities are found, regardless the 
mesh size and H / W ratios, on the closest interior node to the 
channel corners, decreasing subsequently towards the centre (from 

%0.2~  near the corner down to %2.0~  at the centre). This 

behaviour can be credited to the differences on the strategies to 
compute viscosities for FE and FV (see Figs. 1 and 2). Contrary to 
the first two examples, in this case, viscosity requires computation 
of temperatures at the Gauss points (FE) and control-volume 
surfaces (FV). The former interpolates temperatures from nodal 
points using the shape functions, whereas the latter uses linear 
interpolation similar to Eq. (11). 

The local error distributions for velocities based on Richardson 
extrapolation are illustrated in Figs. 10 and 11 for FE and FV, 
respectively. As discussed previously, local Richardson errors are 
computed using three nested meshes, which, in this example are 

64641 xh , 32322 xh  and 16163 xh  elements / 

volumes. It is interesting to note that errors follow quite distinctive 
patterns for FE and FV solutions. The former shows large errors 
near the walls, as illustrated in Fig. 10, whereas the latter follows a 
more conventional pattern, always yielding maximum errors at the 
channel centre, as depicted in Fig. 11. Similar FE and FV error 
distributions have been observed for temperatures, which reach 
maximum values at the channel centre (FE solutions present smaller 
Richardson errors than FV ones). 
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   -0.070

   -0.114

   -0.159

Figure 10. Finite elements: local Richardson errors for velocities, 110w
h

[mm/s], corresponding to a mesh 64 x 64 elements. 

Despite the fact that FE solutions provide smaller Richardson 
errors than FV, the coupled character of the problem and the high 
material nonlinearity, allied to the scheme of computing shear rates 

and viscosities, hinder a smooth distribution of error orders over the 
problem domain. Solution shows points of high convergence rates 
( 5~p ) close to points of virtual divergence ( 6.0~p ) near the 
corners, which recommends greater care when using Richardson 
extrapolation in association with finite elements for this class of 
problems. However, despite the hindrances, this estimate becomes 
attractive due to its capacity to evaluate errors directly from primal 
variables. Contrastingly, the FV velocity and FE and FV 
temperature solutions present a smooth distribution of convergence 
orders over the problem domain ( 2~p ).
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Figure 11. Finite volumes: local Richardson errors for velocities, 110w
h

[mm/s], corresponding to a mesh 64 x 64 volumes. 

Local error estimate for FE solutions using the Energy norm is 
illustrated in Figure 12 for a 64 x 64 mesh. It can be observed that 
error distribution follows a somewhat similar pattern presented by 
the Richardson estimate shown in Figure 10. 
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Figure 12. Local error for the FE solution computed using the Energy 

norm, 310
E

e , for a mesh 64 x 64 elements. 

Remark 4: Figure 13 presents global convergence curves for 
both FV and FE Richardson extrapolation (Eq. 15) and FE Energy 
norm (Eq. 16). The literature indicates that, in the absence of 
singularities, for linear analysis of solid materials and Newtonian 
fluids (Zienkiewicz and Taylor, 1994), the global discretization 
error using the classical FE norms is proportional to hq, where h is 
the element size and q is the polynomial order of the approximation. 
This example uses linear elements (q = 1) and simulations show that 
the convergence rate exhibited by the Energy norm follows similar 
rule, so that 

9926,00211.2 h
E

e . (21) 
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Richardson error norms for FV and FE solutions have also 
shown convergence rates similar to the Energy norm, respectively 
represented as 
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Figure 13. Global FE and FV errors for velocities and temperatures 
computed using Richardson extrapolation, and the Energy norm for the 
FE solution. 

It is worth noting that hq is associated with the asymptotic rate 
of convergence, defined as a global measure and computed over the 
problem domain, whereas hp is related to the order of the scheme, 
calculated locally at the nodes. The former estimates global 
discretization errors and the latter approaches local approximation 
errors.

Concluding Remarks 

This work addresses aspects regarding FV and FE 
approximations and error estimation strategies for polymer melt 
flow in closed channels. The governing equations are solved using 
both the FE and FV methods in association with linear quadrilateral 
elements/volumes and structured meshes. The power-law viscosity 
is used to assess solution convergence and accuracy, whereas the 
Cross constitutive equation is used in conjunction with the 
temperature-velocity fully coupled solution. 

It has been demonstrated that the scheme to evaluate shear rate 
and viscosities at control-volume surfaces determines the error 
magnitude of FV solutions. The smallest errors have been achieved 
by computing the shear rate directly at the volume surfaces. It has 
also been shown that this scheme makes possible to establish certain 
equivalence between FV and FE solutions. This work has also 
addressed some aspects of solution accuracy and convergence using 
error estimates based on Richardson extrapolation and Energy norm 
for FE approximations of fully-coupled solutions. Some care should 
be taken when using Richardson estimates in association with FE 
owing to the smoothness of the error order distributions. However, it 

has been observed that FE Richardson errors are substantially 
smaller then their FV counterparts. 
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