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Multiobjective Optimization 
Techniques Applied to Engineering 
Problems  
Optimization problems often involve situations in which the user’s goal is to minimize 
and/or maximize not a single objective function, but several, usually conflicting, functions 
simultaneously. Such situations are formulated as multiobjective optimization problems, 
also known as multicriteria, multiperformance or vector optimizations. Because 
multiobjective optimization problems arise in different scientific applications, many 
researches have focused on developing methods for their solution. Thus, there are several 
criteria that can be considered to solve such complex optimizations. This paper contributes 
to the study of optimization problems, by comparing some of these methods. The classical 
method, based on function scalarization, in which a vector function is transformed into a 
scalar function, is represented here by the weighted objectives and global criterion 
methods. A different approach involves hierarchical, trade-off and goal programming, 
which treats the objective functions as additional constraints. Some multicriteria 
optimization problems are given to illustrate each methodology studied here. The 
techniques are initially applied to an environmentally friendly and economically feasible 
electric power distribution problem. The second application involves a dynamics 
optimization problem aimed at optimizing the first three natural frequencies. 
Keywords: multiobjective optimization, weighted objectives, hierarchy, trade-off, global 
criteria 
 
 
 

Introduction 
1Many real-world engineering design or decision making 

problems involve the simultaneous optimization of multiple 
conflicting objectives. A multiobjective optimization problem is 
defined as such when the goal is to simultaneously minimize or 
maximize several functions with the same objective, with one 
function often conflicting with another (Eschenauer et al., 1990). In 
such cases, one must look for an optimized vector defined in n-
dimensional Euclidean space, En, of project variables that offer the 
best solution for a vector of objective functions defined in the k-
dimensional Euclidean space, Ek, of objective functions (Osyszka, 
1981). 

Such problems may be subject to restrictions and all related 
functions may be nonlinear. Several objectives are available and can 
be considered to solve these complex optimization problems. In 
such cases, the same values of design variables are unlikely to result 
in the best optimal values for all the objectives. Hence, some trade-
offs between the objectives are needed to ensure a satisfactory 
design. Because system efficiency indices may differ (and be 
mutually contradictory), it is reasonable to use the multiobjective 
approach to optimize the overall efficiency. This can be done 
mathematically correctly only if a principle of optimality is used. 
We have used a Pareto-optimality principle whose essence is as 
follows. The solution to the multiobjective optimization problem is 
considered Pareto-optimal if no other better solution satisfies all the 
objectives simultaneously. In other words, there may be other 
solutions that better satisfy one or several objectives, but they must 
be less satisfactory than the Pareto-optimal solution in satisfying the 
remaining objectives. In that case, the result of the multiobjective 
optimization problem is finding a full set of Pareto-optimal 
solutions. As a rule, it is impossible to find a full infinite set of 
Pareto-optimal solutions for particular real-life problems. Therefore, 
the aim of a multiobjective engineering problem is to determine a 
finite subset of criteria-distinguishable Pareto-optimal solutions. 

The scope of this research involves investigations into 
multiobjective optimization techniques. Some classical methods are  

 
based on scaling the functions, with the vector objective function 
transformed into a scalar function, while others treat objective 
functions as additional restrictions. 

Multiobjective optimization problems appear in a variety of 
scientific applications, and several researchers have focused on 
developing methods to solve them. Yoshimura et al. (2005) utilize 
the formulation of multiobjective optimization problems, 
particularly the hierarchical optimization structure, to reformulate 
problems based on the evolution of number characteristics. The 
optimization problem studied here involves a variety of performance 
characteristics such as accuracy, operating efficiency, manufacturing 
cost, and energy consumed during use. Knowles (2005) uses 
multiobjective optimization in scenarios where the evaluation of 
each solution is financially and/or temporally expensive. That paper 
evaluates several algorithms and proposes a hybrid optimization 
algorithm. Parsons and Scott (2004) used multiobjective 
optimization considering the problem of maritime projects. Their 
article discusses a methodology to help design teams select the best 
solution from a set of excellent Pareto solutions with a minor 
additional computation cost. Andersson (2003) applied a 
multiobjective design of a hydraulic pump. The problem was 
formulated using dynamic simulation models, response surfaces, 
and static equations. Vankan and Maas (2002) presented models and 
the optimization genetic algorithm to solve an engineering design 
that approaches the detailed of aeronautical designs based on the use 
of multiobjective functions. Ambrósio (2002), in turn, utilized 
multiobjective programs as an instrument for agroenvironmental 
planning. Saramago and Steffen (2002) presented a solution to a 
multiobjective optimization problem to identify the best trajectory 
for a handling robot in the presence of moving obstacles, 
minimizing the total time required to traverse its predefined route 
and the mechanical energy of its actuators. 

This paper contributes to the study of various methods which are 
potentially applicable for the solution of multiobjective optimization 
problems. To illustrate the methodologies in question, we discuss 
the solutions to two problems. In the first application, the techniques 
are applied to an environmentally friendly and economically 
feasible electric power distribution problem, where the aim is to 
select generating unit outputs that meet the demand at minimum 
operating cost and minimal pollution and atmospheric emissions.  
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The second example involves the dynamics optimization 
proposed by Faria (1991) and studied by Oliveira and Saramago 
(2004), which considers a cantilevered beam whose free extremity 
contains a mass-spring system. The objective is to maximize the 
first natural frequency and to distance the first three natural 
frequencies from each other. 

Nomenclature 

ai, bi, ci = cost coefficients of the ith-generator  
E  = modulus of elasticity, N /m2  
Ek  = k-dimensional Euclidean space   
En  = n-dimensional Euclidean space   
f(x) = vector of the objective function   
Fc  = total fuel cost of the generator problem, $/h   
Fe  = total emission function of atmospheric pollutants, ton/h   
fi

o  = minimum value of each i-th function  
f o  = ideal vector for a multiobjective optimization problem  
gl(x) = inequality constraints functions   
hr(x) = equality constraints functions 
K  = stiffness spring  
L  = length of each element of cantilever beam, m  
Lp  = metrics in the global criterion method   
ms  = mass of the mass-spring system, Kg   
Mviga = mass of the cantilever beam, Kg   
n; p  = deviation variables in the goal programming method   
NOx = nitrogen oxide   
PD  = total demand power, MW   
Pi  = real power output of the ith-generator, MW  
Pinf  = minimum power of each ith-generator, MW  
Ploss  = real power loss in transmission lines, MW   
Psup  = maximum power of each ith-generator, MW   
ℜn  = n-dimensional real space   
ri  = constant multipliers in the weighting objectives method  
s  = constants of the metrics in the global criterion method   
SOx  = sulfur oxide   
t  = set of design goals  
T  = transpose operator 
tinf = low limit of the goal desired  
tsup  = upper limit of the goal desired  
wi  = weighting coefficients   
x = decision variable vector 
x* = optimum vector   
xo(i) = optimum vector for each i-th objective function  
xi

inf, xj
sup = side constraints 

Greek Symbols 
αi, φi, γi, ξi, λi = emission characteristic coefficients  
βj = weighting coefficients 
ξt  = limits values of the objective functions 
ξh, ξhj-1 = coefficients of the function increments or decrements 
Δfi = function increments of the pay-off table 
ρ = density, kg/m3 
Ω = feasible region      

Optimization Problem 

Multiobjective optimization involves the minimization of a 
vector of objectives F(x) that can be subject to a number of 
constraints or bounds: 

 
Optimize f(x) = [f1(x),  f2(x),  ..., fk(x)]T ,  
f(x) ∈ ℜk,  x ∈ ℜn (1) 
 
Subject to: xj

inf ≤ xj ≤ xj
sup,  j = 1, 2, ..., n 

gl(x) ≤ 0, l = 1, 2, ..., m (2) 
hr(x) = 0,  r = 1, 2, ..., p 
 

where x is a vector of the decision variable, f(x) is a vector of the 
objective function, and gl(x) and hr(x) are inequality and equality 
constraints. Two Euclidean spaces are considered in this problem: 
the n-dimensional space of the decision variables and the k-
dimensional space of the objective functions. The constraints given 
by (2) define the feasible region: 

 

{ }0)x(h,0)x(g/x n =≤ℜ∈=Ω  (3) 
 
Note that, because f(x) is a vector, if any of the components of 

f(x) compete with each other, the problem has no single solution. 
This poses a dilemma, i.e., what solution should be adopted? The 
answer to this question requires the definition of two important 
terms.  

First, let us consider the so-called ideal solution. Let xo(i) = 
[x1

o(i), x2
o(i), ..., xn

o(i) ]T be a vector of variables which optimizes 
(either minimizes or maximizes) the i-th objective function fi(x). 
This solution is called the “ideal solution”. To determine this 
solution, one must find the minimum attainable for all the objective 
functions separately. Assuming that this minimum can be found, the 
vector xo(i) is:  

 
fi

o =  fi(xo(i)) = opt  fi(x), i = 1, 2, …, k (4) 
 

where fi
o indicates the minimum value of each i-th function.  

The vector fo = [f1
o, f2

o, ..., fK
o]T is ideal for a multiobjective 

optimization problem. 
The second term is Pareto-optimal. In the presence of several 

objective functions, the notion of “optimum” changes because the 
aim is to find good compromises. The notion of optimum was 
generalized by Pareto (1896) and continues to be very important in 
multiobjective analyses. A common way of stating this optimum is 
as follows: 

A point x* ∈ Ω is Pareto-optimal if, for every x ∈ Ω , either 
 
fi(x) ≥ fi(x*) for every  i ∈ I = [1, 2, ...., k], (5) 
 

or there is at least one i ∈ I such that 
 
fi(x) > fi(x*) for at least one i ∈ I (6) 
 
This definition is based upon the intuitive conviction that the 

point x* is defined as optimal if no objective can be improved 
without worsening at least one other objective. Unfortunately, 
Pareto’s optimum usually gives not one single solution, but a set of 
solutions called non-inferior or non-dominated solutions. 

Some Classic Methods of Multiobjective Optimization 

Weighting Objectives Method 

The weighted sum strategy converts the multiobjective problem 
of optimizing the vector f(x) into a scalar problem by building a 
weighted sum of all the objectives: 

 

( ) ( )∑ == k
i iii rxfwxf 1                                                            (7) 

 
where  
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ri are constant multipliers, wi ≥ 0 are the weighting coefficients that 
represent the relative importance of each criterion. Objective 
weighting is obviously the most usual substitute model for vector 
optimization problems. The trouble here is attaching weighting 
coefficients to each of the objectives. The weighting coefficients do 
not necessarily correspond directly to the relative importance of the 
objectives or allow trade-offs between the objectives to be 
expressed. For the numerical methods to seek the optimum of (7) so 
that wi can reflect closely the importance of objectives, all the 
functions should be expressed in units of approximately the same 
numerical values. 

The best results are usually obtained if ri = 1/fi
o, where fi

o 
represents the ideal solution for the problem. Another usual form of 
writing the coefficients ci is using the initial values of the objective 
functions ri = 1/ fi (x 

o). 

Hierarchical Optimization Method 

Consider the situation where a user wants to organize the 
objective functions in terms of importance. Let the numbering 1 to k 
reflect this order in the sense that the first criterion is the most 
important one and the k-th criterion is the least important (Osyckza, 
1981). In the hierarchical optimization method this order is obeyed, 
with each objective function optimized separately and a new 
constraint – which depends on the other objective functions – added 
in each step. This method can be described as follows: 
(1)  Find the optimum for the primary objective (the most important 
criterion), i.e., 

 
find  x(1)

 

= [x1
(1), 

 

x2
(1),

 

...., xn
(1)]T  

such that  f1(x(1)) = opt  f1(x),  x ∈ Ω . (8) 
Do step 2 for i = 2, 3, ..., k 
 

(2)  Find the optimum of the i-th objective function, i.e., 
 
find x(i)

 

= [x1
(i), 

 

x2
(i),

 

...., xn
(i)]T  

such that fi 
subject to additional constraints : 

(x(i)) = opt  fi (x),  x ∈ Ω 

)(
100

1)( 1
11

1 −
−− ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
±≤ − j

j
h

j xfxf j
ξ , for j = 2,3,..., i (9) 

 
where ξh are the assumed coefficients of the function increments or 
decrements given in percentages. The sign ‘+’ refers to the functions 
that are to be minimized, whereas ‘−’ refers to the functions that are 
to be maximized. Thus, the optimal solution given by the 
hierarchical method is the point x(k)

 

= [x1
(k), 

 

x2
(k),

 

...., xn
(k)]T. 

Trade-off Method 

This method involves optimizing a primary objective, fr(x), and 
expressing the other objectives in the form of inequality constraints. 
Thus, fr is called the main objective and fi(x), for i = 1, ..., k with  i ≠ 
r, are called secondary or side objectives. A method is classified in 
the trade-off category, if the concept of trading a value of one 
objective function for a value of another function is used to 
determine the next step in the search for the optimal solution. This 
concept is realized by optimizing one of the criterions and 
considering the others as flexible constraints. Hence, this method is 
also called constraint method or ξ-constraint method (Osyczka, 
1981), and can be executed as shown below: 

(1)  Find the optimum of the r-th objective function, i. e., find x* 
such that 

 
fr(x*) =  opt   fr(x),  x ∈ Ω (10) 
 

subject to additional constraints: 
 
For a minimization problem: 
 fi(x) ≤ , for i = 1, 2, ...., k and   i ≠ r  (11) 

itξ

 
For a maximization problem: 
 fi(x) ≥ , for i = 1, 2, ...., k and  i ≠ r 

itξ

 
where ξt are the assumed values that cannot be exceeded by the 
objective functions. 
(2)  Repeat the process (1) for values different from ξt. A good 
choice of the set ξt can be useful in the decision. The search is 
interrupted when the decision maker finds a satisfactory solution. 

It may be necessary to repeat the above procedure for different r 
indices. 

A problem with this method, however, is making a suitable 
selection of ξt to ensure a feasible solution. A further disadvantage 
of this approach is that the use of hard constraints is rarely adequate 
for expressing true design objectives. The difficulty here is in 
expressing such information at early stages of the optimization 
cycle. In order to obtain a reasonable choice of ξt it is often useful to 
optimize each objective function separately, i.e., to find fi

o for i = 
1..., k. Knowing these values, the additional constraints (11) can be 
written as follows: 

 
For minimization a problem: 
 fi(x ) ≤  fi

o + Δfji, for i = 1,...., k and i ≠ r  (12) 
 
For maximization a problem: 
 fi(x ) ≥  fi

o + Δfji, for i = 1,...., k and  i ≠ r 
 

where Δfji are the assumed values of function increments given by: 
 

0)(0 )( j
i

jji fxff −=Δ  (13) 

 
A pay-off table can be constructed, as shown in Tab. 1. In this 

table, row i corresponds to the optimal solution xo(i), which 
optimizes the ith objective function, and fji is the value taken by the 
jth function fj(x), when the ith function fi(x) reaches its 

optimum . 0
if

 

Table 1. Pay-off table for the trade-off method. 

 f1(x) f2(x) … fi(x) … fk(x)

xo(1) f1
o f21 ... fi1 ... fk1

xo(2) f12 f2
o ... fi2 ... fk2

M  M  M  M  M  M  M  

xo(i) f1i f2i ... fi
o ... fki

M  M  M  M  M  M  M  

xo(k) f1k f2k ... fik ... fk
o

 
To obtain the function increments, it may also be convenient to 

build the pay-off table using Δfji, given by Eq. (13), as indicated in 
Tab. 2.  
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Table 2. Pay-off table using the function increment Δfij. 

 Δf1(x) Δf2(x) … Δfi(x) … Δfk(x)

xo(1) 0 Δf21 ... Δfi1 ... Δfk1

xo(2) Δf12 0 ... Δfi2 ... Δfk2

M  M  M  M  M  M  M  

xo(i) Δf1i Δf2i ... 0 ... Δfki

M  M  M  M  M  M  M  

xo(k) Δf1k Δf2k ... Δfik ... 0 
 
Similarly, the pay-off table can be built using relative 

increments of the functions: 
 

)(
)(

)(0

0)(0

i
j

j
i

jr
ji xf

fxf
f

−
=Δ  (14) 

Global Criterion Method 

In this technique, the multicriteria optimization problem is 
transformed into a scalar optimization problem by using a global 
criterion. The function that describes this global criterion must be 
defined, so that a possible solution close to the ideal solution is 
found. This function is usually written as follows: 

 
sk

i
o

i

i
o

i

f
xffxf ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

1

)()(  (15) 

 
Boychuk and Ovchimikov (1973) used Eq. (15), adopting s = 1, 

and Salukvadze (1974) considered s = 2. Other values for s can also 
be used, but the solution obtained after minimizing Eq. (15) differs 
greatly according to the values of s chosen. 

The global criterion method can also be applied using a family 
of Lp-metrics defined as: 

 

∞≤≤⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

sxfffL
sk

i

s

i
o

ip 1,)()(
1

1

 (16) 

 
where, for example, for s = 1 and s = 2: 

 

∑
=

−=
k

i
ii xfffL

1

0
1 )()(  (17) 

 
2

1

1

20
2 ))(()( ⎥

⎦

⎤
⎢
⎣

⎡
−= ∑

=

k

i
ii xfffL  (18) 

 
Note that the minimization of L2(f) is equivalent to the 

minimization of the Euclidean distance between the value of the 
function and the ideal solution. 

Instead of working with distance in an absolute sense, it is 
recommended to use relative distances, so Eq. (16) can be rewritten 
as: 

 

∞≤≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
= ∑

=

s
f

xfffL
sk

i

s

o
i

i
o

i
p 1,)()(

1

1

 (19) 

 
In this case, the values of every normalized function are limited 

to the interval [0,1]. 
 

Goal Programming Method 

This method requires that the researcher specify goals for each 
objective he/she desires to reach. The main idea in goal 
programming is to find solutions that attain a predefined target for 
one or more objective functions. If no solution reaches predefined 
goals in all the objective functions, the task is to find solutions that 
minimize deviations from those goals (Deb, 2001). Thus, the 
method described here involves expressing a set of design goals, t = 
[t1, t2, …, tk]T, which is associated with a set of objectives,              
f(x) = [f1(x),  f2(x),  ..., fk(x)]T. 

The quantitative values of the goals are considered restrictions 
you add. Thus, new variables are added to represent deviations from 
the predefined goals. In goal programming, the user chooses a target 
value t for every objective function and the task is then to find a 
solution whose objective value is equal to t, subject to the condition 
that the resulting solution is feasible (x ∈ Ω). 

The optimization problem can be formulated as 
 
goal fi(x) = ti , i = 1,…, k;  x ∈ Ω,  (20) 
 

where Ω is the feasible search region. 
The functions in Eq. (20) are written using ‘equal-to’ type goals. 

However, these functions can be written using four different types, 
as shown below (Steuer, 1986): 

 

1. Less-than-equal-to t (f(x) ≤ t) 
2. Greater-than-equal-to t (f(x) ≥ t) 
3. Equal-to t (f(x) = t) 
4. Within a range (f(x) ∈ [tinf, tsup]) 
 

In order to meet the above goals, two non-negative deviation 
variables (n and p) are usually introduced. For the less-than-equal-to 
type goal (f(x) ≤ t), the positive deviation p is subtracted from the 
objective function. The deviation p quantifies the amount by which 
the objective function has not satisfied the target t. Here, the 
objective of goal programming is to minimize the deviation p. 

 
f(x) - p ≤ t,  n = 0  (21) 
 
For the greater-than-equal-to type goal (f(x) ≥ t), a negative 

deviation n is added to the objective function. Here, the deviation n 
quantifies the amount by which the objective function has not 
satisfied the target t. The objective of goal programming is to 
minimize the deviation n so as to find the solution that minimizes 
the deviation. 

 
f(x) + n  ≥  t,  p =  0  (22) 
 
For the equal-to type goal (f(x) = t), the objective function must 

have the target value t, and, therefore, both positive and negative 
deviations are used, so f(x) - p + n = t. Here, the objective of the 
method is to minimize the summation (p + n), so the optimal 
solution is minimally distant from the goal in either direction. 

Thus, to solve a goal programming problem, each goal is 
converted into at least one equality restriction, and the objective is 
to minimize all p and n deviations. The formulation of the problem 
allows the objectives to be under- or overachieved, enabling the 
designer to be relatively imprecise about initial design goals. The 
relative degree of under- or overachievement of the goals is 
controlled by the vectors of weighting coefficients, w and β, and is 
expressed as a standard optimization problem using the following 
formulation: 

 
Minimize   ∑  

=

+
k

1j
jjjj )npw( β
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Subject to 
 

0p,n,x

k,...,2,1jtnp)x(f

jj

jjjj

≥∈

==+−

Ω
 (23) 

 
Here, the parameters wj and βj are weighting factors to minimize 

the deviations of jth objective in relation jth goal. This terms 
introduces an element of slackness into the problem, which 
otherwise requires the goals to be met strictly. The weighting 
vectors, w or β, enable the designer to express a measure of the 
relative trade-offs between the objectives. Usually, the weight 
factors wj and βj are values defined by the decision-maker. Thus, the 
solution to the problem using goal programming depends on the 
choice of these weighting factors. This provides a conveniently 
intuitive interpretation of the design problem, which is solvable 
using standard optimization procedures. 

Numerical Simulations 

Application 1: Environmentally Friendly and Economically 
Feasible Distribution Problem 

The aim of environmentally friendly, economically feasible 
distribution of electric power is to select generating unit outputs that 
meet the demand at a minimum operating cost and that cause 
minimal pollution and atmospheric emissions, while satisfying all 
the unit and system constraints. Thus, the objective is to minimize 
two competing objective functions, fuel cost and emissions, while 
satisfying equality and side constraints. The vector of real power 
outputs of the ith-generators is represented by P = [P1, P2, ..., Pn]T. 
The generator cost curves Fc(P) are represented by quadratic 
functions. Thus, the total $/h fuel cost can be expressed as: 

 

2
iiii

n

1i
ic PcPba)P(F +∑ +=

=

 (24) ⎪

 

where n is the number of generators, ai, bi, and ci are the cost 
coefficients of the ith-generator, and Pi is the real power output of 
the ith-generator. 

The total ton/h emission Fe(P) of atmospheric pollutants such as 
sulfur oxides, SOx, and nitrogen oxides, NOx, caused by fossil-fueled 
thermal units can be expressed as: 

 

( )∑
=

− +++=
n

1i

)P(
i

2
iiiii

2
e

iiePP10)P(F λξγφα  (25) 

 
where αi, φi, γi, ξi and λi are emission characteristic coefficients of 
the ith-generator. 

For stable operations, the real power output of each generator is 
restricted by lower and upper limits (side constraints), as follows:  

 
Pi

inf ≤ Pi ≤ Pi
sup,    i = 1,...,n (26) 

 
The total power generation must cover the total demand PD and 

the real power loss in transmission lines Ploss. Hence,  
 

lossD
n

1i
i PPP +=∑

=

 (27) 

 
The n = 6 generators, cost coefficients and emission characteristic 

coefficients, according to Abido (2003), are given in Tab. 3. Pi
inf = 10 

MW, Pi
sup = 120MW and PD + Ploss = 283 MW. Thus, the formulation 

of the optimization problem is given by: 
 
Minimize F(P) = [Fc(P) ,  Fe(P) ] (28) 
 

Subject to 

⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=≤−=
=≤−=

=−= ∑
=

12,...,70P10)P(g
6,...,10120P)P(g

0283P)P(h
n

1i
i1

l

l

ll

ll

 (29) 

 

Table 3. Generator cost and emission coefficients for six generators. 

  G1 G1 G3 G4 G5 G6

Cost a 10 10 20 10 20 10 
 b 200 150 180 100 180 150 
 c 100 120 40 60 40 100 

Emission α 4.091 2.543 4.258 5.426 4.258 6.131 
 φ − 5.554 − 6.047 − 5.094 − 3.550 − 5.094 − 5.555
 γ 6.490 5.638 4.586 3.380 4.586 5.151 
 ξ 2 × 10−4 5 × 10−4 1 × 10−6 2 × 10−3 1 × 10−6 1 × 10−5

 λ 2.857 3.333 8.000 2.000 8.000 6.667 
 
In this example, the optimization problem was investigated 

using a sequential quadratic programming technique (Grace, 1992) 
of the Matlab Toolbox.  

The ideal solution was calculated by applying Eq. (2) and the 
results obtained were Fc

0 = 599.22 $/h and Fe
0 = 0.19 ton/h. 

a) Weighting Objectives Method 

According to Eq. (7), the optimization problem is formulated as:  
 

F(P) = w1
o

c

c

F

F  + w2
o

e

e

F

F  , (30) 

 

Table 4 indicates that the optimal values depend on the 
weighting coefficients wi, as shown in Fig. 1, which represents the 
curve of the optimal Pareto set. 

b) Hierarchical Optimization Method 

Let us consider the case where the priority is to minimize the 
fuel cost function. 

 
Step 1: min Fc(P)    ⇒ Fc

o = 599.22 $/h (31) 
 
subject to constraints (29) 
Step 2: min Fe(P) 
subject to constraints (29) 
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and the additional constraint: 

0F
100

1)P(F o
c

h
c ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

ξ                                          (32) 

 
The optimal solutions are sensitive to the variation of coefficient 

ξh, as can be noted in Tab. 5. Besides, if this coefficient increases, 
the optimal solution approaches the ideal solution related with the 
emission function. 

 

 
Figure 1. Application 1: optimal set of Pareto, using the weighting 
objectives method. 

c) Trade-off Method 

Let us consider the example where the main objective is the fuel 
cost function. 

 
Min Fc(P) 
subject to constraints (29) 
and the additional constraint: 

2t
e

o
ee

F
FF

ξ≤
⎟
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⎜
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⎝

⎛ −  (33) 

 
Using Oliveira’s pay-off table (2005), one finds that the relative 

increment limit is          ξt2 = 0.14.  The problem (33) was solved 
adopting the values of the increment around this limit and the results 
are shown in Tab 6.  

As can be seen, the ideal solution for Fc
o is obtained at high 

values of ξt2. For values of less-than-equal to ξt2 greater importance 
is given to the minimization of Fe(P). 

d) Global Criterion Method 

The multiobjective problem (28) subject to constraints (29) was 
solved considering the following metrics: 

 
L1-Metric: 
min f(x) = FeFeFcFc oo −+−  (34) 

 
L2-Metric: 

min f(x) = ( ) ( )[ ] 2
122 FeFeFcFc oo −+−  (35) 

 
 

Relative L2-Metric:  
min f(x) = 22
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L3-Metric: 
min f(x) = 3

1
33
⎟
⎠
⎞⎜

⎝
⎛ −+− FeFeFcFc oo  (37) 

 
Relative L3-Metric: 
 min f(x) = 3

1
33
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⎟
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The results obtained with the relative L2-Metric and relative L3-

Metric are similar and offer a good compromise between the two 
objective functions, as indicated in Fig. 2. 

On the other hand, the optimal solution for the other metrics is 
close to the ideal solution for Fc

o, since the absolute value of Fc(P) 
predominates over Fe(P). 

 

 
Figure 2. Application 1: Results of the global criterion method applying 
some metrics. 

e) Goal Programming Method 

Let us now consider the solution for the environmentally and 
economically feasible energy distribution problem, Eqs. (28) and 
(29), based on the goal established for each objective function as its 
ideal value. Thus, the optimization problem can be rewritten as: 

 
Minimize f(P) = w1p1 + w2p2
 

Subject to 

⎪
⎪
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PgPh ll
    (39) 

 
The results obtained are presented in Tab. 8, which indicates 

that this method provided satisfactory results in relation to the 
solutions obtained through the previous methods. When the priority 
is w1, the values obtained approach the ideal value Fc

o, whereas, 
when the priority is w2, the values tend toward the ideal solution Fe

o. 
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Table 4. Application 1: Results of the weighting objectives method. 

w1 w2 P = [P1, P2, P3, P4, P5, P6]T    (MW) Fc(P)   ($/h) Fe(P) (ton/h) 
1.00 0.00 [11.00  30.00  52.00  101.00  52.00  36.00]T 599.22 0.22 
0.90 0.10 [17.00  33.00  53.00  88.00  53.00  39.00]T 600.85 0.21 
0.80 0.20 [21.00  35.00  54.00  78.00  54.00  41.00]T 604.26 0.21 
0.70 0.30 [25.00  37.00  54.00  70.00  54.00  43.00]T 608.44 0.20 
0.60 0.40 [29.00  39.00  54.00  63.00  54.00  44.00]T 612.82 0.20 
0.50 0.50 [31.00  40.00  54.00  58.00  54.00  46.00]T 617.27 0.20 
0.40 0.60 [34.00  42.00  54.00  53.00  54.00  47.00]T 621.62 0.20 
0.30 0.70 [36.00  43.00  54.00  48.00  54.00  48.00]T 625.82 0.20 
0.20 0.80 [37.00  44.00  54.00  45.00  54.00  49.00]T 629.86 0.19 
0.10 0.90 [39.00  45.00  54.00  41.00  54.00  50.00]T 633.72 0.19 
0.00 1.00 [41.00  46.00  54.00  38.00  54.00  51.00]T 637.39 0.19 

 

Table 5. Application 1: Results of the hierarchical method. 

hξ  P = [P1, P2, P3, P4, P5, P6]T (MW) Fc(P) ($/h) Fe(P) (ton/h) 
0.10 [14.00  32.00  53.00  93.00  53.00  37.00]T 599.82 0.22 
0.50 [19.00  34.00  53.00  83.00  54.00  40.00]T 602.22 0.21 
2.00 [27.00  38.00  54.00  66.00  54.00  44.00]T 611.20 0.20 
5.00 [37.00  44.00  54.00  45.00  54.00  49.00]T 629.18 0.19 
8.00 [40.00  45.00  54.00  39.00  54.00  51.00]T 636.40 0.19 
10.00 [40.00  46.00  54.00  38.00  54.00  51.00]T 637.38 0.19 
20.00 [40.00  45.00  54.00  40.00  54.00  51.00]T 635.38 0.19 
50.00 [40.00  46.00  54.00  38.00  54.00  51.00]T 637.36 0.19 

 

Table 6. Application 1: Results of the trade-off method. 

2tξ  P = [P1, P2, P3, P4, P5, P6]T   (MW) Fc(P) ($/h) Fe(P) (ton/h) 

0.05 [28.00  38.00  54.00  65.00  54.00  44.00]T 611.85 0.20 
0.10 [18.00  33.00  53.00  86.00  53.00  39.00]T 601.36 0.21 
0.14 [12.00  30.00  53.00  99.00  53.00  36.00]T 599.28 0.22 
0.20 [11.00  30.00  52.00  101.00  52.00  36.00]T 599.22 0.22 
0.30 [11.00  30.00  52.00  101.00  52.00  36.00]T 599.22 0.22 

 

Table 7. Application 1: Results of the global criterion method. 

Technique P = [P1, P2, P3, P4, P5, P6]T   (MW) Fc(P) ($/h) Fe(P)  (ton/h) 
L1-Metric [11.00  30.00  52.00  101.00  52.00  36.00]T 599.22 0.22 
L2-Metric [11.00  30.00  52.00  101.00  52.00  36.00]T 599.22 0.22 

Relative L2-Metric [32.00  41.00 54.00  56.00  54.00  46.00]T 618.98 0.20 
L3-Metric [11.00  30.00  52.00  101.00  52.00  36.00]T 599.23 0.22 

Relative L3Metric [33.00  41.00  54.00  55.00  54.00  46.00]T 619.52 0.20 
 

Table 8. Application 1: Results of the goal programming method. 

w1 w2 P = [P1, P2, P3, P4, P5, P6]T  (MW) Fc(P) ($/h) Fe(P) (ton/h) 
0.99 0.01 [10.00  26.00  42.00  94.00  42.00  32.00]T 519.37 0.22 
0.90 0.10 [10.00  26.00  42.00  94.00  42.00  32.00]T 519.37 0.22 
0.80 0.20 [10.00  26.00  42.00  94.00  42.00  32.00]T 519.37 0.22 
0.70 0.30 [20.00  34.00  52.00  78.00  52.00  40.00]T 587.67 0.21 
0.60 0.40 [26.00  37.00  53.00  65.00  53.00  43.00]T 598.49 0.20 
0.50 0.50 [31.00  40.00  53.00  57.00  53.00  45.00]T 605.67 0.20 
0.40 0.60 [33.00  41.00  53.00  50.00  53.00  47.00]T 610.80 0.20 
0.30 0.70 [36.00  43.00  53.00  46.00  53.00  48.00]T 614.72 0.20 
0.20 0.80 [37.00  44.00  53.00  42.00  53.00  49.00]T 617.76 0.19 
0.10 0.90 [38.00  44.00  52.00  39.00  52.00  49.00]T 620.20 0.19 
0.01 0.99 [40.00  45.00  52.00  37.00  52.00  50.00]T 626.59 0.19 
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Application 2: Frequency Optimization of a Mass-spring 
System. 

In this application, the simulation is done by means of a 
Sequential Quadratic Programming technique, using the DOT 
(Design Optimization Tools) program developed by Vanderplaats 
(1995). In this program, to execute the sequential optimization 
method, a pseudo-objective function is written using the Augmented 
Lagrange Multiplier Method. The unconstrained minimization is 
done by the Broydon–Fletcher–Goldfarb-Shanno (BFGS) method 
and the one-dimensional search uses polynomial interpolation 
techniques. 

 

 
Figure 3. Application 2: Frequency optimization of a mass-spring system. 

 
Let us consider the problem of dynamics optimization proposed 

by Faria (1991) and studied by Oliveira and Saramago (2004), 
which considers a cantilevered beam, such as that shown in Fig. 3, 
whose free extremity contains a mass-spring system. 

The objective is to maximize the first natural frequency and to 
distance the first three natural frequencies from each other. 

The beam was divided into three elements of equal lengths. 
There are seven design variables: the width (bi) and height (hi) of 
each of the three segments and the stiffness spring (K). 

 The Finite Element Method was used to calculate the first three 
natural frequencies (ω1, ω2 and ω3) applying the code developed by 
Faria (1991). This code was put into the DOT optimization program 
to solve the problem:  

 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=
−=

=
=

)max()(
)max()(

max)(
)]()()([)(

233

122

11

321

ωω
ωω

ω

xf
xf
xf

xfxfxfxf T

 (40) 

 
Subject to 
 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

≤×−=

≤−×=

≤−=

≤−=
≤−=

≤−=

−=
≤−=
≤−=
≤−=

≤−=
≤−=
≤−=
≤−=

)m/N(0310760K)x(14g

;0K310190)x(13g

)m(;003.03b)x(12g
;03b02.0)x(11g

)m(003.02b)x(10g
;02b02.0)x(9g
);m(03.01b)x(8g
;01b02.0)x(7g

);m(003.03h)x(6g
;03h02.0)x(5g

);m(003.02h)x(4g
;02h02.0)x(3g

);m(003.01h)x(2g
;01h02.0)x(1g

 (41) 

Considering the data: L = 0.1 m; ρ = 7.8 × 103 Kg/m3;  E = 2.1 × 
1011 N/m2; ms = 0.1 Kg and Mviga = 0.14625Kg. The ideal solution 
was calculated using Eq. (2), which led to the following results: 

 
f1

o = max f1(x) = 8.11 Hz; 
(ω1 = 8.11, ω2 = 16.28 , ω3 = 54.01) Hz 
 
f2

o = max f2(x) = 10.12 Hz; 
(ω1 =  4.46, ω2 = 14.58 , ω3 = 38.31) Hz (42) 
 
f3

o = max f3(x) = 46.58 Hz; 
(ω1 = 5.32, ω2 = 11.13 , ω3 = 57.71) Hz 

a) Weighting Objectives Method 

m
 

The solution for the problem given by Eqs. (40) and (41) was 
formulated using Eq. (7) as: 
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where the ideal solution is given in Eq. (42). 

Table 9 indicates that the optimal result is strongly dependent on 
the weighting coefficients; hence, when w1 = 0.8 (greater priority to 
f1), the result is closer to the ideal solution (f1

o = 8.11). The same 
behavior holds true when f2 or f3 is prioritized. 

b) Hierarchical Optimization Method 

Case 1: The priority is to maximize the function  f1(x) = ω1
 
Step 1: max f1(x) ⇒  f1

o = 8.11 Hz (44)
subject to constraints (41) 
 
Step 2: max f2(x) 
subject to constraints (41) 
and the additional constraint: 
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Step 3: max f3(x) 
subject to constraints (41) 
and the additional constraints: 
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Case 2: The priority is to maximize the function  f2(x) = (ω2 – ω1) 

 
Step 1: max f2(x) ⇒  f2

o = 10.12 Hz (47)
subject to constraints (41) 
 
Step 2: max f1(x) 
subject to constraints (41) 
and the additional constraint: 
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Step 3: max f3(x) d) Global Criterion Method 
subject to constraints (41) 

To solve the multiobjective optimization problem (40) subject to 
constraints (41), the following metrics are adopted: 

and the additional constraints: 
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 Relative L2-Metric: min f(x) = 
Case 3: The priority is to maximize the function  f3(x) = (ω3 - ω2)  
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 subject to constraints (41)  
L3-Metric: min f(x) =   
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 Step 3: max f2(x)  

The relative L2-Metric, L2-Metric and L1-Metric provide good 
results and represent a compromise between the three objective 
functions. On the other hand, in the case of the L3-Metric and the 
relative L3-Metric, the results remained unchanged from the initial 
value. 

 subject to constraints (41) 
 and the additional constraints: 
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and e) Goal Programming Method 
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ξ  (52) Let the solution of the dynamic problem be given by Eqs. (40) 
and (41), considering the goals established for each objective 
function to be equal to the ideal values of:  

  
In these three cases, whose results are presented in Tab. 10, note 

that the values of the prioritized function are maximized and that the 
results approach the ideal values. Moreover, the results are not 
significantly influenced by the adopted ξh factors. 

f1(x) = 8.11,  f2(x) = 10.12 and f3(x) = 46.58 Hz .  
 
The optimization problem can thus be formulated as: 
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 c) Trade-Off Method 

The main objective is to maximize the distance between the first 
two natural frequencies  f2(x) = (ω2 – ω1) 
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Table 13 shows the optimum solutions. The result obtained by 

using this method is similar to the result provided by the Weighting 
Objectives Method, i.e., when the priority is w1, the values obtained 
approach the ideal f1

o value. The same behavior occurs when f2 and 
f3 are prioritized. 

 
Using the same pay-off table once more (Oliveira, 2005), one 

finds that the relative increment limits are ξt1 = 0.82 and ξt3 = 0.96.   
The results are shown in Tab. 11. Observing the constraints of the problem given by Eq. (41) and 

the results obtained for bi, hi and K in Tabs. 9 to 13, one can see that 
all the optimal solution points obey the imposed constraints. 

Similarly to the previous case, values less-than-equal to the 
limits ξt1 and ξt3  approach the ideal f2

o solution. As these values are 
increased, the results shift away from f2

o, prioritizing the functions 
f1(x) and f3(x). 
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Table 9.  Application 2: Results of the weighting objectives method. 

Initial Points 
w1 = 0.80
w2 = 0.10
w3 = 0.10

w1 = 0.33
w2 = 0.33
w3 = 0.33

w1 = 0.10
w2 = 0.80
w3 = 0.10

w1 = 0.10
w2 = 0.10
w3 = 0.80

b1 (mm) 25.00 30.00 30.00 30.00 30.00 
b2 (mm) 25.00 20.00 29.70 25.20 20.00 
b3 (mm) 25.00 20.00 20.00 20.00 20.00 
h1 (mm) 25.00 30.00 30.00 30.00 30.00 
h2 (mm) 25.00 30.00 30.00 30.00 20.00 
h3 (mm) 25.00 20.00 20.00 30.00 20.00 
K (N/m) 380.00 759.54 759.55 378.39 759.55 

ω1 (Hz) 8.11 7.98 6.72 6.75 

ω2 (Hz) 16.29 16.89 16.62 12.38 

ω3 (Hz) 54.03 54.97 48.16 57.82 

f1(x) 8.11 7.98 6.72 6.75 
f2(x) 8.19 8.92 9.90 5.63 
f3(x) 37.74 38.08 31.54 45.44 

 

Table 10. Application 2: Results of the hierarchical method for cases 1, 2 and 3. 

Case 1 Case 2 Case 3 

Initial Points  1hξ =  

0.10 
1hξ = 

10.00 
1hξ =

 50.00
2hξ = 

0.10 
2hξ = 

10.00 
2hξ = 

50.00 
3hξ = 

0.10 
3hξ =  

10.00 
3hξ =  

50.00 
b1 (mm) 25.00 30.00 30.00 30.00 20.00 20.00 30.00 30.00 27.28 27.28 
b2 (mm) 25.00 30.00 29.95 29.47 20.00 20.00 20.00 20.00 27.28 27.28 
b3 (mm) 25.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 22.71 22.71 
h1 (mm) 25.00 30.00 30.00 30.00 20.04 20.10 30.00 30.00 27.28 27.28 
h2 (mm) 25.00 30.00 30.00 30.00 20.00 30.00 20.00 30.00 27.28 27.28 
h3 (mm) 25.00 20.00 20.00 20.00 20.00 30.00 20.00 30.00 27.28 27.28 
K (N/m) 380.00 759.5 760.0 760.0 759.55 759.99 760.0 190.0 293.16 293.17 

ω1 (Hz) 8.10 8.11 8.10 4.47 4.48 6.72 5.27 5.83 5.83 
ω2 (Hz) 16.27 16.28 16.31 14.57 14.58 16.61 11.23 10.52 10.52 
ω3 (Hz) 54.01 54.01 54.05 38.34 38.38 48.16 57.69 51.58 51.58 

f1(x) 8.10 8.11 8.10 4.47 4.48 6.72 5.27 5.83 5.83 
f2(x) 8.17 8.18 8.21 10.10 10.10 9.89 5.96 4.69 4.69 
f3(x) 37.74 37.73 37.74 23.77 23.80 31.54 46.46 41.06 41.06 

 

Table 11. Application 2: Results of the trade-off method. 

Initial Points 1tξ = 0.70 

3tξ = 0.60
1tξ = 0.82 

3tξ = 0.96
1tξ = 1.00 

3tξ = 1.50
1tξ = 10.00 

3tξ = 15.00

b1 (mm) 25.00 20.00 20.00 20.00 30.00 
b2 (mm) 25.00 20.00 20.00 20.00 30.00 
b3 (mm) 25.00 20.00 20.00 20.00 20.00 
h1 (mm) 25.00 20.00 20.00 20.00 30.00 
h2 (mm) 25.00 20.00 20.00 20.00 30.00 
h3 (mm) 25.00 20.00 20.00 20.00 20.00 
K (N/m) 380.00 759.55 759.55 759.55 760.00 

ω1 (Hz) 4.46 4.46 4.46 8.10 

ω2 (Hz) 14.57 14.57 14.57 16.27 

ω3 (Hz) 38.31 38.31 38.31 54.01 

f1(x) 4.46 4.46 4.46 8.10 

f2(x) 10.11 10.11 10.11 8.17 

f3(x) 23.74 23.74 23.74 37.74 
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Table 12. Application 2: Results of the global criterion method. 

Initial Points L1-Metric L2-Metric Relative L2-Metric L3-Metric Relative L3-Metric 
b1 (mm) 25.00 30.00 30.00 30.00 25.00 25.00 
b2 (mm) 25.00 30.00 20.00 20.00 25.00 25.00 
b3 (mm) 25.00 20.00 20.00 20.00 25.00 25.00 
h1 (mm) 25.00 30.00 30.00 30.00 25.00 25.00 
h2 (mm) 25.00 30.00 30.00 30.00 25.00 25.00 
h3 (mm) 25.00 30.00 27.21 21.00 25.00 25.00 
K (N/m) 380.00 394.80 354.10 759.55 380.00 380.00 

ω1 (Hz) 6.87 6.59 7.96 5.55 5.55 
ω2 (Hz) 12.38 12.71 16.67 10.69 10.69 
ω3 (Hz) 57.86 57.45 55.63 46.59 46.59 

f1(x) 6.87 6.59 7.96 5.55 5.55 
f2(x) 5.51 6.12 8.71 5.14 5.14 
f3(x) 45.58 44.75 38.96 35.90 35.90 

 

Table 13. Application 2: Results of the goal programming method. 

Initial Points 
w1 = 0.80
w2 = 0.10
w3 = 0.10

w1 = 0.33
w2 = 0.33
w3 = 0.33

w1 = 0.10
w2 = 0.80
w3 = 0.10

w1 = 0.10
w2 = 0.10
w3 = 0.80

b1 (mm) 25.00 30.00 30.00 30.00 30.00 
b2 (mm) 25.00 30.00 20.00 20.00 30.00 
b3 (mm) 25.00 20.00 20.00 20.00 20.00 
h1 (mm) 25.00 30.00 30.00 30.00 30.00 
h2 (mm) 25.00 30.00 30.00 30.00 30.00 
h3 (mm) 25.00 27.96 30.00 20.00 30.00 
K (N/m) 380.00 190.00 478.13 759.55 190.00 

ω1 (Hz) 5.31 7.09 7.98 5.31 
ω2 (Hz) 11.13 13.19 16.89 11.13 
ω3 (Hz) 57.71 57.88 54.97 57.71 

f1(x) 5.31 7.09 7.96 5.31 
f2(x) 5.82 6.09 8.91 5.81 
f3(x) 46.58 44.69 38.08 46.58 

Conclusions 

Five different numerical techniques were used to solve the 
multiobjective problem. Two examples were presented to illustrate 
the methodology studied here. The results indicated that the 
hierarchical and trade-off methods are suitable when some of the 
objective functions need to be prioritized. We also found that the 
optimal solution was strongly influenced by the choice of the most 
important criterion. The weighting objective method can also be 
used in this situation, in which the value of the weighting factor is 
used to represent this priority. However, the weighting coefficients 
do not necessarily correspond directly to the relative importance of 
the objectives. The global method is prescribed for applications 
where to every objective function it must be given the same level of 
importance. Lastly, the goal programming method requires that the 
researcher specify goals for each objective s/he desires to reach. 
Therefore, an in-depth knowledge of the problem in question is 
crucial. Successful numerical applications have demonstrated the 
efficiency of these techniques, when they are applied to solve 
problems involving electrical and mechanical systems. The user has 
some tools that can be used, and it is extremely useful to subject the 
same problem to different optimization techniques so that the results 
can be compared and the best method for each case can be chosen. 

References 
Eschenauer, H., Koski, J. and Osyczka, A., 1990, “Multicriteria Design 

Optimization”. Berlin, Springer-Verlag. 

 
Osyczka, A., 1981, “An approach to multicriterion optimization for 

structural design”. Proceedings of International Symposium on Optimum 
Structural Design, University of Arizona. 

Yoshimura, M., Sasaki, K., Izui, K. and Nishiwaki, S., 2005, 
“Hierarchical multi-objective optimization methods for deeper 
understanding of design solutions and breakthrough for optimum design 
solutions”. 6th World Congress on Structural and Mutidisciplinary 
Optimization, Rio de Janeiro, Brazil. 

Knowles, J., 2005, “PAREGO: a hybrid algorithm with on-line landscape 
approximation for expensive multi-objective optimization problems”, IEEE 
Transactions on Evolutionary Computation, Vol. 10, No. 1, pp. 50-66. 

Parsons, M.G. and Scott, R.L., 2004, “Formulation of multicriterion 
design optimization problems for solution with scalar numerical 
optimization methods”. Journal of Ship Research, Vol. 48, No. 1, pp. 61-76. 

Andersson, J., 2003, “Applications of a multi-objective genetic 
algorithm to engineering design problems”. EMO2003 2nd International 
Conference on Evolutionary Multi-Criterion Optimization, Faro, Portugal, 
Vol. 2632, pp. 737-751. 

Vankan, W.J. and Maas, R., 2002, “Approximate modelling and multi 
objective optimisation in aeronautic design”, CMMSE, National Aerospace 
Laboratory NLR, Alicante, Spain. 

Ambrósio, L.A., 2002, “Programação Multicritério: Um instrumento 
para planejamento agroambiental”. Course of Specialization in 
Agroambiental Management, Quantitative Laboratory of Analyses and 
Methods”, FAEF. (In Portuguese) 

Saramago, S.F.P. and Steffen Jr., V., 2002, “Trajectory modeling of 
robots manipulators in the presence of obstacles”. Journal of Optimization 
Theory and Applications, Vol. 110, No. 1, pp. 17-34. 

Faria, M.L.L., 1991, “Uma Contribuição aos Procedimentos de 
Otimização Aplicados a Sistemas Mecânicos”. Master Dissertation, Federal 
University of Uberlândia, Uberlândia, MG, Brazil. (In Portuguese) 

Oliveira, L.S. and S.F.P. Saramago, S.F.P., 2004, “A comparative study 
about some methods of the multi-objective optimization”. CILAMCE 25th 



Multiobjective Optimization Techniques Applied to Engineering Problems  

Abido, M.A., 2003, “A niched Pareto genetic algorithm for 
multiobjective environmental/economic dispatch”. Electrical Power and 
Energy Systems, Vol. 25, pp. 97-105. 

Iberian Latin American Congress on Computational Methods In 
Engineering, Recife, Vol. 1, pp. 1-17. 

Boychuk, L.M. and Ovchinnikov, V.O., 1973, “Principal methods of 
solution multicriterial optimization problems” (survey). Soviet Automatic 
Control, Vol. 6, pp. 1-4. 

Grace, A., 1992, “Optimization Toolbox- For use with Matlab”, The 
Math Works Inc., Natick.  

Oliveira, L.S., 2005, “A Contribution to the Study about Multicriterion 
Optimization Methods”. Master Dissertation, Federal University of 
Uberlândia, Uberlândia, MG, Brazil. (In Portuguese) 

Salukvadze, M.E., 1974, “On the existence of solution in problems of 
optimization under vector valued criteria”, Journal of Optimization Theory 
and Applications. Vol. 12, No. 2, pp. 203-217. 

Vanderplaats, G., 1995, “DOT - Design Optimization Tools Program – 
Users Annual”. Vanderplaats Research & Development, Inc, Colorado Springs. 

Deb, K., 2001, “Multi-Objetive Optimization Using Evolutionary 
Algorithms”. John Wiley & Sons, pp. 77-80 and 129-135. 

Steuer, R.E., 1986, “Multiple Criteria Optimization: Theory, 
Computation and Application”. New York: Wiley. 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2010 by ABCM January-March 2010, Vol. XXXII, No. 1 / 105 


	Sezimária F. P. Saramago
	Introduction
	Nomenclature
	Greek Symbols

	Optimization Problem
	Some Classic Methods of Multiobjective Optimization
	Weighting Objectives Method
	Hierarchical Optimization Method
	Trade-off Method
	Global Criterion Method
	Goal Programming Method
	Numerical Simulations
	Application 1: Environmentally Friendly and Economically Feasible Distribution Problem
	a) Weighting Objectives Method
	b) Hierarchical Optimization Method
	c) Trade-off Method
	d) Global Criterion Method
	e) Goal Programming Method
	 
	Application 2: Frequency Optimization of a Mass-spring System.
	a) Weighting Objectives Method
	b) Hierarchical Optimization Method
	c) Trade-Off Method
	d) Global Criterion Method
	e) Goal Programming Method
	 
	Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


