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Quasi-Static Thermal Stresses in
Steady State Thick Circular Plate

The present paper deals with the determinatiomeifrhal stresses in a thick circular plate
under steady temperature field. A thick circulaatplis considered having constant initial
temperature and arbitrary heat flux is applied dw tupper face with lower face at initial

temperature and the fixed circular edge is thersnaisulated. Heat is exchanged through
heat transfer at lower boundary surface. The resait obtained in series form in terms of
Bessel's functions and they are illustrated nunziyc
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Introduction

During the second half of the twentieth centurynisothermal
problems of the theory of elasticity became indreglg important.
This is due to their wide application in diverseldis. The high
velocities of modern aircraft give rise to aerodwyi@a heating,
which produces intense thermal stresses that retthecstrength of
the aircraft structure.

Nowacki (1957) has determined steady-state thestnasses in
circular plate subjected to an axisymmetric temipeeadistribution
on the upper face with zero temperature on the ddaee and the
circular edge. Roy Choudhary (1972) (1973) and \Wadk (1982)
determined Quasi-static thermal stresses in thimculgr plate.
Gogulwar and Deshmukh (2005) determined thermassés in thin
circular plate with heat sources. Also Tikhe andliieukh (2005)
studied transient thermoelastic deformation inia tircular plate,
where as Qian and Batra (2004) studied transieetntbelastic

deformation of thick functionally graded plate. Mowver, Sharma et

al (2004) studied the behavior of thermoelastickhplate under
lateral loads and obtained the results for radiad aaxial
displacements and
numerically and illustrated graphically for diffette theories of
generalized thermoelasticity. Also Nasser M.EI-Magh (2004)
(2005) solved two-dimensional problem of thick platith heat
sources in generalized thermoelasticity. Recentihiret al (2005)
did thermoelastic analysis of thick walled finiength cylinders of
functionally graded materials and obtained the Itgsfor stress,
strain and displacement components through th&rteis and along
the length are presented due to uniform intern@sgire and
thermal loading.

The present paper deals with the determination hefntal
stresses in a thick circular plate under steadypéegaiure field. A
thick circular plate is considered having constaiital temperature
and arbitrary heat flux is applied on the uppeefadth lower face
at initial temperature and the fixed circular edgethermally
insulated. Heat is exchanged through heat tranaterlower
boundary surface.

This paper contains, new and novel contributionttefrmal
stresses in quasi-static thick plate under steaafg.sThe results
presented here will be more useful in engineerimgpblem
particularly in the determination of the state dfam in thick
circular plate constituting foundations of contasor hot gases or
liquids, in the foundations for furnaces etc.
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temperature change have been utaimp

Formulation of the Problem

Consider a thick circular plate of radias and thicknessh
defined by 0<r <a,~h/2<z<h/2. The initial temperature in a
thick circular plate is given by constantj. The heat flux

~Quf(r)/4 is applied on the upper surface of ple=h/2) and
lower facgz=-h/2) is at initial temperatur§ . The fixed circular

edge (r =a) is thermally insulated. Under these more realistic
prescribed conditions, the steady state thermess#is are required
to be determined.

The differential equation governing the displacemgutential
function ¢(r, z) is given in Noda et al (2003) as

%9 109  0%p

— T+ T4+ T =KT 1

ar2 rar 9z &
where K is the restraint coefficient and temperature cleang

r=T-T;,T; is initial temperature. Displacement functign is

known as Goodier’s thermoelastic displacement piaten
The steady state temperature of the plate satisfiesheat
conduction equation,
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with the boundary conditions
aT
A, =" Qof(r) atz=h/20sr<a ©)
z
T=T, at=-h/20<r<a 4)
‘;_T=o at=a,—-h/2<z<h/2 ®)
r
and
T=Ti att=0 (6)

The displacement function in the cylindrical coote system
are represented by the Michell's function definedNoda et al
(2003) as
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Y 32M Using equations (3), (16) and by theory of Besdelstion one
u, = —- (7) obtains
or  odrdz
-2Qo a
a 0°M A = rJo(anr) f(r)dr 17)
Uz=a—f+ 21-v)0°M =3 8 a%Aa, & (aya) cosh@r,h) '([ o
The Michell’s function M must satisfy equations (16) and (17) gives the required exprasfir steady

state temperature function.

0?0%M =0 9) The temperature change is obtained by using
where r=T-T,
2 2
02 :6_+1_i +a_ (10) Hence
a2 r oo gz?
> . h
The component of the stresses are represented by th (2= Z_: Ah‘]O(anr)S'”{an[”Eﬂ (18)
thermoelastic displacement potentghnd Michell’s functiorM as n=1
) ) Now suitable form oM satisfying (9) is given by
o :2(3{6_2¢-Kr+ai[vmzlv| -9 '\:ﬂ (12) o h
or z or M =3 Jo(a,r)i B,cos an(z+—j
n=1 2
_ 10¢ 0 2 10M
Ogg = ZG{?E_ Kr +E(VD M —??H (12) +C, an[z+ g}sin}{an(z+ gﬂ} (19)
2 2 ; ;
0,,=2G g _ Kr+i (2-v)02M - 0°M (13) where B, énd C.n are arbitrary fun.ct|ons.
922 0z 922 Assuming displacement functlodr, z) as
and ¢(r,z,t):(z+gjz DnJo(anr)cosl{an[H%H (20)
2 2 n=t
o, =2022,91-vyp2m -IM (14) o
ordz or 972 Using ¢ in (1), one have

where G and V are the shear modulus and Poisson’'s ratio pp= Ky
respectively, 2ay,
For traction free surface stress functions

Thus equation (20) become
oy =0,,=0 atr=a

h _K(, )2 Ado(anr) h
= = =+ r,z2)=—|z+— ———=cosha,| z+— 21
020, =0 atz=£2 (15) @r, 2) : [ ZjnZzl a n| 25 (21)
Equation (1) to (15) constitutes mathematical fdatian of the Now using equations (18) (19) and (21) in (7) (8} 411) to
problem. (14), one obtains the expressions for displacemants stresses
respectively as
Solution
. . ) 2 - KA, h h
To obtain the expression for temperature T(r, 2): up = Y Ji(anr) — z+E coshap Z+E
n=1
Assume

T(r,2)=T, + i AJo(apr)sin

n=1

+Bpa? sin an[z+ﬂj
h 2
an[z+5j
where aq,a, are roots of the transcendental equation

(16)
+ Cna§<sinr{an(z+ EH + an{z+ D}
2 2

J(a@)=0. where J,(x) is Bessel function of the first kind of xcos{an(z+gﬂ>} (22)
ordern and A, is constant. The consta, can be found from the
nature of temperature on upper face.
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u, = ng;:l\]o(anr) { :2: J<cos{an(z+gﬂ - Kni.::l%Jo(a’nf) Sin”{a’n(ﬁgﬂ

R an[z+ngim‘{an[z+gﬂ> —éBnaﬁ Jo(anr)sinr{an[ﬁgﬂ

-Bha? Cos}{an[z+gﬂ i;l o(anr)<[ gjcosl{an[z+gﬂ

+cna§<2(1— ) cosh{an[z+gﬂ n[z+gj cosh{ [ gm} (26)
ol Gl ]} T o[ aen (csfan 202

el A ]l
v

(z+—j cos{ ﬂ + ni;anaf; (@) cosl{an[z+ %ﬂ

_anlAnJo(anf) Slnf{an z+ } +n§;:lcna§ Jl(anr)<2vcosh{an[z+gﬂ
+n§ana§{anJ0(anr) J1(@n )}s I—{an z+ } +an(z+gjsinh{an(z+gﬂ>} 27)
+nZlC ndn <”” 2‘”0(""”5'”{” n[ gﬂ Now in order to satisfy equation (15) solving edqumt(24) to

(27) for B,y and C,, one obtain

+ [an.]o(anr) -—Jl(?“r)j [sinl—{an[ugﬂ

KA, (1-2v)

B, = 3 (28)
h h 2ay
+ an[z+—j cos{an[z+—jD>} (24)
2 2 K
C,=2n (29)
2ay
0-55 =2G ( )z A’]-]l(anr)[ ]COS{O’,{Z*LEH
2 r 2 2 Using these values dB,, and C,,in equations (22) to (27) one
o obtain the expressions for displacements and ssess
-K ZAnJO(anr)sinr{an[ﬁ H
n=1 A, . h
h u =K@L-v)Y —Jl(anr)smr{an[z+zﬂ (30)
z Ja(an )5|n"{an[2+_ﬂ n=1%
n=1 2 0 h
. u, =K@1-v)3> %Jo(anr)cos}{an(z+—ﬂ (31)
+ 3 Cna§<an2v‘]0(anr)sinr{an(z+ DH n=Len
n=1 2 _ & (O'nl')
o, =-2GK{1-v)Y A, ag| z+— (32)
1

Ji(ann) Y h n= (
+( IS'”{”“(”EH o 3@y
' g0 =26K(1-v) Y An|: L= -0 (Ufnf)}

+an[z+gjxcos}{an(z+gJD>} @5) xsm{ (1) } ’ @)

o—zz_ze{[ jil o(anr)<28inl’{an(z+gﬂ ajz (z:)
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Numerical Calculation

Z=0.2¢

Setting f(r)=Ti+Tod(r -b) (a>b) atzzg, (36)

in equation (17), wherdj is constant and) < a, one has

__ ~2TgbQylg(anb) -
a2l and g (ana) cosh@r,h)

(37)

The numerical calculation have been carried outsfeel (SN
500) plate with parametersa=1mb=05mh=05m, thermal

diffusivity k =15.9x10‘6(mzs‘1) and Poisson ratiov = 0. 28MWwith r Z5-0.25
a,=38317 a,=70156 a3=101735 a,=133237
a5 =16470 ag =196159 a; =227601 ag=259037 Figurel. The radial displacement function u /A in radial direction.

ag = 290468 ay=3218 are the roots of transcendental
equationJy(aa) = 0.

For convenience setting
_ —2TobQdl-v)K B = 4TobQal-v)GK

A in the expressions 01 - r=0.6
a2l a?A ’
(16) and (30) to (35). The numerical expressionstémperature, 0.08 -
displacement and stress components are obtained as 0.06 | —0¢
T o - 2T0bQo & | Jo(@ur) Jo(@nb) 0041
=Ti- _ _ ) -
h T v T \ 1
xsin)‘{:an(z+zj:| (38) 03 -02 -0l 0.1 T 0.2 0.3
VA
r=0.z
u_l’ = z ‘Jl(anr) ‘JO(anb) in an(z-"_j (39)
A n=1 gr% Jg(ana) COSh@'nh) 2 Figure 2. The radial displacement function u,/A in axial direction.
Yz _ D Jo(@nr) Jo(anb) cos{an(Z*LDﬂ (40)
A 321 a, 3 (apa)cosh@,h) 2 014 7= 0.2

0.08

i 0.06 -
U_ér: > { J1(a0nr) Jo(anb) }sinr{an(ﬁgﬂ (41) 0.04 -

n=1|r aﬁ Jg (a,a) cosh@r,h)

0.02 A
. Tab 0 ‘ :

9es - 5 . 0(@nb) 0020 0.2 /0.4 0.6

B -1 anJg (ana) cosh@r,h) -0.04 -
: z=-0.125 & -0.25
3 -0.06 -
X{ Jo(anr)—M} sinr{an(ﬁﬂﬂ (42) -0.08 -
ran 2 ;
0,,=0,, =0 (43)

. . Figure 3. The axial displacement function u,/A in radial direction.
In order to examine the influence of steady stataperature

field on the thick plate, one performed the nunaric
calculations = 0,0.204,0.6,085nd
z=-025-0.125,00.125,025 Numerical variations in radial and

axial directions are shown in the figures with tredp of computer
programme.
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Figure 4. The axial displacement function u,/A I n axial direction.
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Figure 5. The radial stress function o,/B in radial direction.
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Figure 6. The radial stress function o, /B in axial direction.
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Figure7. The stress function ogg/B in radial direction.
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Figure 8. The stress function ogg/B in axial direction.

Concluding Remarks

In this paper a thick circular plate is considevduich is free
from traction and determined the expressions fonperature,
displacement and stress function due to steadg $eahperature
field. As a special case mathematical model is wooted for

f(r)=Ti+Tod(r -b) (a>b) atz:g

and performed numerical calculations. The thernstigldehavior is
examined such as temperature, displacement anssessravith the
help of arbitrary heat flux is applied on the upperface.

From figure 1 and 2, radial displacement functiod, is zero
at r =0,r =1and z=-025Also it can observe that it shows

variation on upper half of plate within annular iy
04<r <land decreases in the direction of lower surface.

From figure 3 and 4, axial displacement functiom, shows
variation on upper half of plate within circulagien 0<r <land
decreases in the direction of lower surface.

From figure 5 and 6, stress function g, is zero
atr =0,r =land z=-025. Also it can observe that it shows

variation on upper half of plate within circulagien 0<r <1 and
decreases in the direction of lower surface.
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From figure 7 and 8, the stress functiogg shows variation

on upper half of plate within circular regio®<r <1 and
decreases in the direction of lower surface.

It means we may find out that displacement andsstre

components occurs near heat source. Radial stoesgonenta,,

develops tensile stress near heat source and cssh@estress out
of the heat source, where as stress componggy develops
compressive stress near heat source and tenses sbut of heat
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