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Laminar Elliptic Flow in the Entrance 
Region of Tubes 
The developing region of an axially symmetric laminar flow from a reservoir to a sharp-
edged tube is numerically simulated with a primitive-variables solver of the Navier-Stokes 
equations, using a plenum upstream of the tube inlet in order to avoid arbitrary 
specification of the profile at the inlet. Development region lengths, velocity profiles and 
head losses for varying Reynolds numbers are obtained. Results are compared to available 
experimental and theoretical results. 
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Introduction 

1In hydraulic engineering, head losses in tubing are assumed to 

be formed by the sum of two parts, the “distributed” or “major” 

losses, and the “localized” or “minor” losses. The first part is 

associated to the well-known fully developed profiles, either laminar 

or turbulent, and is computed as if it covered the whole length of the 

tube. The second part is associated to departures from the developed 

profiles, such as those occurring in entrances, abrupt contractions or 

expansions, bends and other flow disturbances, and is usually dealt 

with by means of empirically determined coefficients for each of 

these geometries.  

As widely recognized, the terms “major” and “minor” losses 

may be misleading, since in a short tube with several valves and 

bends the “minor” losses may well have a much larger combined 

effect then the “major” ones. Also, the term “localized” loss is 

somewhat artificial. In the entrance of a tube, for instance, the 

abrupt velocity profile at the beginning tends asymptotically to the 

developed profile within the so-called developing region, where the 

viscous dissipation is higher than that predicted by the developed 

profile. The “localized” loss is given by this increase in the viscous 

losses integrated through the developing region of the tube, together 

with small viscous losses upstream of the tube inlet.  

Analogous situations hold for other disturbances of the 

developed profile. One consequence is that the accumulated effect 

of two or more sources of localized losses placed very close to each 

other is not the sum of the individual losses, as would be the case if 

they were sufficiently far apart for the developed flow to be 

reestablished before each localized loss.  

Despite these well known facts, the distinction between 

distributed and localized losses is convenient for the practical 

computation of hydraulic circuits, being likely to remain the usual 

engineering practice. 

Early theoretical approaches to the developing region used the 

boundary layer hypothesis of negligible diffusion along the 

streamline direction. The flow in the developing region is often 

interpreted as being formed by a core inviscid flow and a viscous 

layer adjacent to the walls which becomes thicker as the flow 

progresses until it reaches the center of the tube, where the core flow 

width vanishes. This qualitative description has also led to some of 

the earlier quantitative approaches to that problem. Another usual 

approach assumes the boundary layer hypothesis to hold in the 

entire developing region.  

The practices based on the boundary layer theory lead to a 

parabolic equation that can be solved column by column in a 
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marching fashion, requiring the specification of the velocity profile 

at the tube inlet, where a uniform parallel flow is generally assumed. 

These approaches produced significant results with respect to the 

size of the developing region, but not with respect to the head 

losses, for the reasons given below.  

The parabolic model does allow the computation of the pressure 

drop from the inlet to the fully developed zone. This can be 

complemented by assuming no dissipation upstream of the tube, so 

that Bernoulli´s equation relates the pressures at the inlet and at an 

upstream stagnant point. However, as commented as early as 1968 

by Astarita & Greco, the unwarranted assumption about the inlet 

profile makes the calculation of the pressure drop through the tube 

unreliable, and the hypothesis of an ideal flow upstream of the tube 

inlet could be justified in a carefully designed, smooth entrance, but 

not in sharp corners. 

More recent approaches towards this problem use either the 

creeping flow approximation for low Reynolds numbers or, more 

generally, the full elliptic Navier-Stokes equations, dismissing in 

both cases the boundary layer hypothesis. Although some of the 

solutions with the Navier-Stokes equations employ the same domain 

and the same entrance boundary conditions of the parabolic models, 

an important feature of applying the full Navier-Stokes equations to 

this problem is the possibility of using a plenum upstream of the 

tube inlet, so that the profile at the inlet can be determined, rather 

than arbitrarily postulated. Besides, the viscous losses upstream of 

the tube inlet can be considered. 

The present study simulates the entrance region of the laminar 

stokesian flow emerging from a reservoir to a sharp-edged tube by 

adopting a large plenum whose entrance velocities are specified by 

two distinct radial flows towards the center of the tube inlet: an 

inviscid flow and a creeping flow. The comparison of these two 

solutions provides a direct indication of the influence of such 

choice, and of the reliability of the solutions obtained. The Navier-

Stokes problem is solved numerically employing the CFD code 

PHOENICS, obtaining velocity profiles, development region 

lengths and head losses for Reynolds numbers between 1 and 2000. 

For each Reynolds number, solutions are achieved for several grid 

refinement levels, allowing the extrapolated value at infinite 

refinement to be estimated. The present results agree with the 

existing theoretical results for low Reynolds numbers and extend 

them for higher values. However, significant differences still persist 

with respect to the available experimental results; possible causes 

for such differences are raised, suggesting further investigations. 

Nomenclature 

A = Area, m2 

B = Auxiliary parameter,  35 s/m  
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1C ,
2C  = Real constants, s/m3  

D = Tube diameter, m 

f = Real function 

g = Acceleration of gravity, m/s2 

K = Localized loss coefficient, dimensionless 

L = Tube length, m 

m&  = Mass flow rate, kg/s 

n= Number of numerical cells in z-direction 

P = Pressure, Pa 

Q&  = Heat transfer rate, W 

r = Radius, m 

R = Geometric ratio between adjacent cells in irregularly spaced 

cases, dimensionless 

Re = Reynolds number, µρ /DV , dimensionless 

u = Specific internal energy, J/kg 

v = Velocity component, m/s 

V  = Velocity vector, m/s;  
2

V  = 2
V , 22 s/m  

V  = Average velocity, m/s 

z = Height, m 

Greek Symbols 

ρ  = Density, kg/m3 
π  = Pi number, dimensionless 

υ  = Kinematic viscosity, m2/s 

µ  = Dynamic viscosity, 2m/Ns  

Subscripts 

E Relative to domain exit (outlet)  

I Relative to domain inlet, composed by frontal and lateral 

surfaces 

IF Relative to frontal surface of inlet  

IL Relative to lateral surface of inlet surface 
r Relative to radial component of the cylindrical grid 
*r  Relative to radial component of the spherical grid for the 

plenum inlet 

z Relative to axial component of the cylindrical grid 

Bibliographic Survey 

When dealing with localized head losses at tube inlets, most 

introductory textbooks on fluid mechanics present only an empirical 

coefficient valid for turbulent flows. Vennard & Street (1978) is one 

of the few textbooks where the laminar case is referred to, stating 

only that the coefficient tends to decrease for crescent Reynolds 

numbers. 

Experimentally determined head loss coefficients are presented 

by Idelchik (1969 e 1994). The 1969 edition shows a graphic of the 

localized head loss coefficient in sharp-edged tube inlets for 

Reynolds numbers between 10 and 104; for lower Reynolds numbers 

it gives an algebraic expression, which is modified in the 1994 

edition.  

Astarita & Greco (1968) performed an experimental study on 

head loss coefficient in sudden contractions of ratio 0.1616 

( 2

0

2 DD ) for laminar flows, and found experimental results much 

higher than the available theoretical ones. Similar discrepancies 

were shown by Sylvester & Rosen´s (1970) results for contraction 

ratio 0.0156 and by Edwards, Jadallah & Smith (1985), who 

determined the head loss coefficients for bends, valves, orifice 

plates and sudden contractions and expansions with contraction 

ratios 0.445 and 0.660. 

Perry, Green & Maloney (1997) express the head losses in terms 

of equivalent tube lengths as a function of the Reynolds number for 

laminar flows through sudden contractions with aspect ratios 

smaller than 0.2. 

Schlichting (1979, Chapters IX and XI) reviews the theoretical 

studies based on the boundary layer hypothesis dealing with flows 

in the entrance regions of channels and tubes, including complex 

whirly flows.  

The creeping flow approximation for very low Reynolds 

numbers has been considered by Benson & Trogdon (1985) and by 

Sisavath et al (2002). Benson & Trogdon used an analytic 

eigenfunction method to obtain the developing flow in a tube 

assuming two distinct profiles at the inlet: the uniform profile with 

slipping at the wall and the linear profile adherent to the wall with a 

maximum at the center. Sisavath et al considered the head losses in 

sudden expansions and contractions, which coincide in the case of 

creeping flow since their respective flows are symmetric to each 

other; their analytical results were in good agreement with the 

numerical results obtained by Oliveira, Pinho & Schulte (1998), 

Vrentas & Duda (1973) and by themselves.  

Full Navier-Stokes equations and plenums upstream of the tube 

inlet were used by Vrentas & Duda (1973), Sparrow & Anderson 

(1977), Naylor et al. (1991), Sadri & Floryan (2002a, 2002b), and 

Uribe (2002). 

Vrentas & Duda (1973) analyzed the sudden contraction of a 

tube by solving the Navier-Stokes equations under the vorticity-

stream function approach using an explicit finite difference scheme, 

obtaining head losses, development lengths and velocity profiles for 

Reynolds numbers 0, 50, 100 and 200 and contraction aspect ratios 

1.5, 2.5 and 4.0.  

Sparrow & Anderson (1977) also employed the vorticity-stream 

function approach to solve numerically the flow from a great 

reservoir to a duct for Reynolds numbers 1, 10, 50, 100, 300 and 

1000, and found the influence of the upstream flow upon the profile 

at the inlet to be more significant as the Reynolds number decreases.  

The works on the entrance region of plane channels performed 

by Naylor et al. (1991) and by Sadri & Floryan (2002a, 2002b) 

employ plenums with entrance boundary conditions defined by the 

Jeffery-Hamel flow. Their numerical grids are based on polar 

coordinates in the plenum and cartesian coordinates in the channel. 

Naylor et al. studied the natural convection between isothermal 

vertical plates by solving the Navier-Stokes and energy equations 

with the finite element program FIDAP. Sadri & Florian studied the 

entrance flow in a channel using finite differences and the vorticity-

stream function approach, detecting a contraction vane for Reynolds 

numbers above 137. 

The same problem was considered by Uribe (2002), also using a 

plenum with Jeffery-Hamel flow as entrance condition. However, 

sharp variations in the numerical grid were avoided by using 

Cartesian coordinates both in the plenum and in the channel. A 

finite-volume primitive variables approach was adopted, explicit for 

the velocities and implicit for the pressure. Central differencing was 

used when it was stable. For Reynolds numbers 100 to 400 both the 

exponential and the QUICK discretization schemes were employed, 

and the results from QUICK were considered more reliable. A 

velocity peak was found close to the walls in the beginning of the 

tube; a recirculation  region was detected just downstream of the 

inlet for all Reynolds numbers studied.  

The head loss coefficient in an axially symmetric sudden 

expansion was numerically computed by Oliveira, Pinho & Schulte 

(1998) by means of a finite volume method over a co-located non-

orthogonal grid with the upwind scheme for the convective terms 

and central differencing for the diffusive ones, obtaining results for 

Reynolds numbers between 0.5 and 200 and aspect ratios between 

1.5 and 4.0. 
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Physical Problem 

The computational domain is sketched in Fig.1, showing the 

physical walls of the tube and the reservoir (full and broken lines) as 

well as the fictitious boundaries at the inlet and outlet (dotted lines). 

Assuming the flow to be axisymmetric, the cylindrical reference 

grid (r,z) is the most appropriate for the numerical computations on 

the tube. For geometric simplicity in this reference grid, the plenum 

upstream of the tube was established as a cylinder coaxial with the 

tube. The spherical reference grid ),r( * θ  is useful for analytically 

computing the inlet conditions prescribed at the entrance of the 

plenum. 
 

 

Figure 1. Sketch of computational domain, defined by frontal (IF) and 
lateral (IL) surfaces of the plenum, part of the reservoir wall, tube wall and 
exit surface (E). 

 

Steady-state incompressible flow with null tangential velocity 

was assumed. Constant viscosity and isothermal conditions are also 

considered, neglecting the mild effects of the dissipation upon the 

thermal state. The governing equations are the continuity and the 

Navier-Stokes equations in the following conservative form: 
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The positions of the boundaries at the inlet and outlet of the 

domain are somewhat arbitrary. For the exit boundaries, the 

numerical tube size was fixed as twice the development size 

established by Shah & London (1978) for each Reynolds number 

considered. The numerical solution obtained confirmed the 

sufficiency of this choice of length.  

Domain inlet conditions are generally more influential on the 

flow than the outlet conditions, particularly for convection-

dominated flows, and there is no previous estimation of the required 

length of the plenum upstream the tube inlet. Arbitrarily setting the 

plenum length equal to its radius, a series of preliminary tests 

indicated that the profile at the tube entrance turned almost 

independent on the plenum size if the plenum radius was at least five 

times the tube radius; these proportions were adopted for all cases.  

This question is linked to the profile imposed at the plenum 

entrance. In the present approach, the domain entrance and exit 

boundaries are specified in terms of velocities. Null derivatives were 

specified at the exit. The inlet conditions are of specified value, and 

two approaches were comparatively employed, each associated to a 

distinct model of the flow approaching the tube inlet, interpreted as 

a sink for the plenum flow. Both models assumed spherically radial 

flows towards the center of the tube inlet, so that the radial velocity 

is set in any case as 
2*

r
r)(fv * θ= . One model considers the 

uniform radial flow, which is a classic inviscid solution defined by 

1C)(f =θ , slipping on the reservoir walls. The other model emerges 

from a creeping flow solution that gives )2cos1()( 2 θθ += Cf , 

obeying the non-slip condition at these walls. The constants 
1C  and 

2C  are fixed in terms of the desired Reynolds number, as shown in 

detail by Santos (2004). The velocities to be imposed at the plenum 

entrance are computed on the spherical reference coordinates and 

subsequently projected onto the plenum cylindrical coordinates. As 

will be seen, both models produced practically the same profile at 

the tube inlet, with minor differences with respect to head loss.  

For computing the head loss due to the sharp entrance, one 

applies the first law of Thermodynamics to the control volume 

defined by the numerical domain, obtaining: 
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As usual, the vector elementary area Ad is directed outwards the 

domain. The left member of the above equation shows the head loss 

as the difference between the sums of kinetic, potential and pressure 

energies at the inlet and at the outlet of the domain, expressing the 

destruction of these thermodynamically noble forms of energy. The 

right member represents the same head loss as the thermal energy it 

turns into, i.e., either as increased internal energy or as heat 

transferred to the surroundings. These thermal forms of energy are 

unimportant for the incompressible case. Instead, the head loss is 

computed as the sum of distributed and localized losses, as can be 

found in any standard textbook in fluid mechanics (see, for instance, 

Fox & McDonald, 1988), yielding: 
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The first term within the parenthesis on the right side of Eq. (5) 

corresponds to the distributed loss for the laminar case, and the 

second term to the localized loss at the tube inlet. Solving Eq. (5) for 

the localized loss coefficient K one obtains: 
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where B is an auxiliary parameter given by: 
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The squared velocity module 
2

2 VV
r

=  is computed as the sum 

of the squared velocity components )( 22
zr vv + . The above 

integrations are performed numerically after the converged solution 

is found, for various grid refinement levels. The final coefficient is 

obtained by means of the Richardson’s extrapolation for vanishing 

grid sizes. 

Numerical Solution 

The numerical problem was solved employing the proprietary 

CFD code PHOENICS, which operates with primitive variables 

using the SIMPLEST procedure to relate the pressure and the 

continuity equation. 

The numerical grid was regular in the r-coordinate on the whole 

domain and also regular in the z-coordinates within the plenum. For 

lower Reynolds numbers, where the developed profile is achieved in 

short distances, the grid was also regular in the tube, with the same 

spacing used in the plenum. Only for Reynolds numbers of 20 and 

above 20, that required large tube sizes to achieve the developed 

profile, was it found advantageous to employ irregular grids in the z-

coordinate within the tube, so decreasing the number of cells. In 

these cases, the first cell in the tube had the same size of the cells in 

the plenum and the remaining cell sizes in the tube were set 

geometrically crescent.  

The code also offers another grid size variation rule, called 

power rule, which was avoided because it leads to cells sizes 

varying, in relative terms, very strongly in the beginning of the tube 

and very smoothly afterwards, while the geometric rule imposes a 

uniform rate of variation across the space. 

In order to keep the same convergence characteristics of the 

regularly spaced case, the refinement studies used the cell size 

geometric ratio R decreasing with the number of z-direction cells  n 

in such a way that the product  n ln R  was kept constant. This 

criterion was inspired by Rivas’ (1972) demonstration that the 

quadratic spatial convergence of the central differencing scheme is 

maintained for irregular grids, provided that during the refinement 

process there is a unique function with bounded non-null derivatives 

mapping a regularly spaced transformed domain into the irregularly 

spaced physical domain. The above referred criterion was shown to 

hold for many other quadratic discretization schemes by a simple 

numerical test due to Figueiredo and Llagostera (2000, also 

Llagostera and Figueiredo, 2000). 

The last decades saw extensive research on numerical 

discretization schemes for the momentum equations and other 

convective-diffusive transport equations. So far, central differencing 

remains a sufficiently accurate scheme if it is stable, and, for high 

Reynolds numbers, the QUICK scheme emerges as one of the most 

successful. This conclusion was confirmed for entrance flows in 

channels by Uribe (2002).  

The UNIFAES scheme (Figueiredo, 1997) has shown generally 

superior accuracy, and always superior stability and robustness in 

comparison with both central differencing and QUICK (Vilela, 

2001). However, while central differencing and QUICK are 

incorporated, together with other schemes, to the PHOENICS code, 

the new scheme UNIFAES has not been implemented in any 

commercial code so far. 

Accordingly, the present computations employed the central 

differencing scheme for Reynolds numbers up to 100. The QUICK 

scheme for Reynolds numbers of 100 and above, where the central 

differencing did not converge. Very close results were obtained with 

the two schemes for the common case of Reynolds number equal to 

100.  

The convergence criteria in each case was such that the result is 

not affected by lower levels of tolerance.  

Results 

Fig. 2 shows the axial and radial velocity component profiles 

obtained at the tube entrance assuming both inviscid and creeping 

flows at the plenum inlet for Reynolds number equal to 100. The 

two profiles are visually identical for both boundary conditions, in a 

clear indication that the plenum size is sufficient. 
 

 
Figure 2. Axial and radial velocity components on east plenum entrance 
for Re=100. 

 

 

Figure 3. Axial velocity profiles at tube inlet for Re between 20 and 200. 

 

 

Figure 4. Radial velocity profiles at tube inlet for Re between 20 and 200. 
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Figure 5. Axial velocity profiles at tube inlet for Re between 200 and 2000. 

 

 

Figure 6. Radial velocity profiles at tube inlet for Re between 200 and 
2000. 

 

 

Figure 7. Developing axial velocity profiles for Re=200. 

 

 

Figure 8. Developing radial velocity profiles for Re=200. 

 

 

Figure 9. Developing axial velocity profiles for Re=2000. 

 

 

Figure 10. Developing radial velocity profiles for Re=2000. 

 

Figures 3 to 6 show the evaluation of the inlet profile for 

variable Reynolds numbers. For Reynolds numbers greater than 

100, the axial velocity component develops a peak that becomes 

more pronounced and closer to the tube wall as the Reynolds 

number increases. The radial velocity component also develops a 

negative peak in about same place, and its magnitude reaches about 

half the magnitude of the axial velocity, showing that it is by no 

means negligible as the parallel flow assumes.  

The evolution of the velocity profiles along the tube is shown in 

Fig. 7 to 10  for Reynolds numbers 200 and 2000. For Re=200 the 

initial peak velocity has entirely disappeared at the distance of 1D 

from the entrance, while for Re=2000 a distance equivalent to 3D 

was necessary. For Reynolds number 2000, as well as for 1000, a 

recirculating zone is detected in the entrance.  

The length of the developing region, defined as the distance 

from the tube inlet to the point where the centerline velocity 

achieves 99% of its developed value, is plotted in Fig. 11 for 

varying Reynolds numbers, together with the developing lengths 

obtained by Shah & London (1978) and by Dombrowki et al. (1993) 

using the parabolic model. Clearly, all results are very similar for 

moderate and high Reynolds numbers, and differ sensibly for low 

Reynolds numbers, representing creeping and other flow situations 

where the parabolic model is not applicable.  
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Figure 11. Developing length. 

 

The values of the development region length found here can also 

be expressed algebraically in a form analogous to that presented by 

Dombrowski et al. as follows: 
 

( ) 5640.0Re05456.0Re0.05869-exp8476.0 −+=DL  (8) 

 

The determination of the localized loss coefficient requires very 

precise computations, since it results from the difference between 

the integrated noble forms of energy in the entrance and the exit of 

the domain, also subtracting the loss due to the developed profile. 

Indeed, this parameter turned out to be very sensible to grid 

refinement, as shown in figures 12 and 13 for Reynolds numbers 

200 and 2000 respectively. Five different levels of refinement are 

reported for each Reynolds number and each assumed profile at the 

entrance of the plenum. The most refined computation in the case 

Re=200 employed 650 nodes in z-direction and 250 nodes in r-

direction in the plenum, and in the case Re=2000 it employed 544 

and 160 nodes respectively.  

Despite the very refined mesh employed, a grid dependent result 

still appears at the entrance of the tube for Reynolds number 2000 

(Figures 5 and 6, and z=2.5 in Figures 9 and 10). This numerical 

error disappears entirely within the short distance of  0.1D from the 

entrance (z=2.6).  
 

0,36

0,37

0,38

0,39

0,4

0,41

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035

Delta r

K

Plen.1

Plen.2

Aprox.1

Aprox.2

 

Figure 12. Localized loss coefficient as function of grid refinement for 
Re=200. 
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Figure 13. Localized loss coefficient as function of grid refinement for 
Re=2000. 
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Figure 14. Localized loss coefficient. 

 

The lines shown in Fig. 12  and 13 are obtained by fitting a 

curve of type 2
0 . xKK ∆α+= , according to the Richardson’s 

extrapolation; quadratic spatial convergence was assumed as 

suggested by the second-order schemes employed (see for instance 

Morton & Mayers, 1996, section 6.8) and also because curves 

assuming linear convergence did not fit the calculated points so 

closely. However, the quadratic fitting is not exact, possibly 

indicating random errors such as round-off, etc.  

Curiously, the extrapolated value at infinite refinement, 0K , 

obtained using the creeping flow (Plen.1) and the inviscid flow 

(Plen.2) profiles at the plenum entrance, are practically coincident 

for most Reynolds numbers, as exemplified for the case Re=200. 

The case Re=2000 is the most important exception, yet the two 

results are not far apart ( 0K = 0.287 and 0.295). This is further 

evidence that the plenum size is sufficient. For all Reynolds 

numbers considered and all finite refinements, the solution obtained 

with the creeping flow profile was higher and closer to the estimated 

converged solution at infinite refinement.  

Figure 14 plots the localized loss coefficient so obtained as a 

function of the Reynolds number, together with the theoretical 

results presented by Perry et al. (1997), Sisavath et al. (2002), and 

an extrapolation of the experimental results on sudden contractions 

presented by Idelchik (1969 and 1994) to the limiting case of 

infinite ratio. The present results closely agree with the results 

analytically obtained by Sisavath et al. under the creeping flow 

hypothesis; however, results presented by Perry et al. are not so 

close. The experimental results due to Idelchik bear some 

resemblance to, and significant differences from, the theoretical 

results obtained here and elsewhere: the experimental head loss 

coefficient also decays with the Reynolds number, but its value is 

between twice and three times the theoretical one, and it exhibits a 

discontinuous increase for a Reynolds numbers of about 10.  

The present authors have no elements to question the 

experimental results. Instead, it is necessary to raise the possibility 

that the hypothesis employed in the present computations of a 

steady-state axysimmetric flow should be questioned. Therefore, 

two possible reasons for the differences between all theoretical 

results and the experimental ones appear: 1- the presence of 

oscillations in the flow, increasing the mean head loss, 2- the 

occurrence of non symmetric results, occasionally more stable than 

the assumed symmetric results.  

Conclusions  

The problem of the laminar flow in a sharp edged tube emerging 

from a large reservoir was numerically simulated by solving the full 

elliptic Navier-Stokes equations assuming axially symmetric flow, 

and using a plenum upstream of the inlet so that the velocity profile 

at the tube inlet could be calculated instead of postulated.  
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Velocity profiles obtained at the tube inlet were very distinct 

from the parallel profile often assumed, exhibiting a velocity peak 

close to the walls for Reynolds numbers equal or above 200 and, 

perhaps more importantly, showing a radial component whose 

maximum value reaches about half the axial velocity values. 

Furthermore, results indicated possible recirculations for the highest 

Reynolds numbers studied. 

The developing region length determined here closely agrees 

with that presented by Shah & London (1978) and by Dombrowki et 

al. (1993) for moderate and high Reynolds numbers, and differs 

only for low Reynolds numbers (creeping flow situations).  

The localized head losses obtained here are very close to those 

obtained theoretically by Sisavath et al. (2002) for creeping flows, 

but sensibly distinct from the experimental values obtained by 

Idelchik (1969, 1994). The curve of the localized head loss at the 

entrance against the Reynolds numbers bears some resemblance to 

the experimental curve, but quantitatively it is about two or three 

times lower than the experimental results.  

As detailed throughout the text, much care was exercised in 

computing the head loss at the duct entrance: the use of a large 

plenum upstream of the flow, the comparative use of two different 

inlet conditions for such plenum, the large tube length, the choice of 

the best discretization scheme available in the package employed, 

the high level of grid refinement, the continuity of the grid size 

about the entrance and everywhere, the attention to Rivas´s (1972) 

conditions for quadratic convergence of irregular grid, and the use 

of Richardson’s extrapolation. In view of these precautions, it was 

concluded that no flaw in the two-dimensional computation model 

can account for the difference between theoretical and experimental 

results. Therefore, further research is demanded to investigate the 

difference between all theoretical results and experimental data. The 

two hypothesis raised to explain this phenomena - the presence of 

oscillations in the flow, and the occurrence of non symmetric 

solutions - can only be numerically investigated by using three-

dimensional flow models, and the oscillations also require transient 

codes. 
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