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Leading-Edge Bluntness Effects on 
Aerodynamic Heating and Drag of 
Power Law Body in Low-Density 
Hypersonic Flow 
A numerical study is reported on power law shaped leading edges situated in a rarefied 
hypersonic flow.  The sensitivity of the heat flux and drag coefficient to shape variations of 
such leading edges is calculated by using a Direct Simulation Monte Carlo method.  
Calculations show that the stagnation point heating on power law leading edges with finite 
radius of curvature follows the same relation for classical blunt body in continuum flow; it 
scales inversely with the square root of the curvature radius at the nose.  Furthermore, for 
those leading edges with zero or infinity radii of curvature, the heat transfer behavior is in 
surprising agreement with that for classical blunt body far from the nose of the leading 
edge. 
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Introduction 

The successful design of high-lift, low-drag hypersonic 
configurations will depend on the ability to incorporate relatively 
sharp leading edges that combine good aerodynamic properties with 
acceptable heating rates.  As aerodynamic heating may cause serious 
problems at these speeds, the removal of heat near the front of the 
body must be considered.  For this purpose, the vehicle leading 
edges must be sufficiently blunt in order to reduce the heat transfer 
rate to acceptable levels, and possibly to allow for internal heat 
conduction.  The use of blunt-nosed shapes tends to alleviate the 
aerodynamic heating problem since the heat flux for blunt bodies 
scales inversely with the square root of the nose radius.  In addition, 
the reduction in heating rate for a blunt body is accompanied by an 
increase in heat capacity, due to the increased volume.  Since the 
stagnation region is one of the most thermally stressed zones, this 
particular region is of considerable practical as well as theoretical 
interest.  Nevertheless, designing a hypersonic vehicle leading edge 
involves a tradeoff between making the leading edge sharp enough 
to obtain acceptable aerodynamic and propulsion efficiency and 
blunt enough to reduce the aerodynamic heating in the stagnation 
region.1 

Mason and Lee (1994) have demonstrated that some 
geometrically blunt configurations may actually behave as if they 
were aerodynamically sharp.  Power law shapes (y~xn, 0 < n < 1) 
were shown to have an infinite body slope at the nose and yet have 
zero radius of curvature at the nose for certain values of power law 
exponent n.  Their analysis describes the details of the geometry and 
aerodynamics of low-drag axisymmetric bodies by using Newtonian 
theory.  However, one of the important aspects of the problem, 
stagnation point heat transfer, was not considered. 

A number of theoretical and numerical predictions of stagnation 
point heat transfer on blunt bodies has been reported in the literature 
(Sibulkin, 1952, Lees, 1956, Roming, 1956, Fay and Riddell, 1958, 
Cohen, 1961, Sutton and Graves, 1971, Zoby, Moss and Sutton, 
1981, Zuppardi and Verde, 1998, and DeJarnette et al. 1987).  The 
work of Fay and Riddell (1958) is the reference point for the 
scientists working on aerodynamic heating.  Due to their simplicity, 
the Fay-Riddell correlation formulas are still in use today for the 
thermal analysis of hypersonic vehicles. 
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Theoretical formulations, experimental data, and semi-empirical 
formulas (DeJarnette et al., 1987) all agree in the fact that stagnation 
point heat transfer for blunt body in continuum flow is inversely 
proportional to the square root of the nose radius of the leading 
edge, i.e., 

 

nRq 1∝  (1) 
 
In addition to the shape of the body, the stagnation point heat 

transfer is dependent on Mach number, Reynolds number and 
Knudsen number. 

The purpose of this paper is to investigate the effect of the 
power law exponent on the heat transfer to the body surface and the 
drag acting on the surface of such leading edges.  Attention will be 
addressed to the heat transfer behavior in comparison to the Eq. (1), 
since the radius of curvature for such shapes goes to zero or infinity 
for certain power law exponents. 

The flow conditions represent those experienced by a spacecraft 
at an altitude of 70 km.  This altitude is associated with the 
transitional flow regime that is characterized by Knudsen number 
Kn of the order of 10-2 or larger.  Therefore, the focus of the present 
study is the low-density region in the upper atmosphere, where 
numerical gaskinetic procedures are available to simulate 
hypersonic flows.  High-speed flows under low-density conditions 
deviate from a perfect gas behavior because of the excitation of the 
internal modes of energy.  At high altitudes, and therefore low 
density, the molecular collision rate is low and the energy exchange 
occurs under nonequilibrium conditions.  In such a circumstance, 
the degree of molecular nonequilibrium is such that the Navier-
Stokes equations are inappropriate.  For the simulation of such 
complicated flow phenomena, models and assumptions that must be 
checked separately are necessary.  In the current study, the Direct 
Simulation Monte Carlo (DSMC) method is used to calculate the 
rarefied hypersonic two-dimensional flow. 

Nomenclature 

A = constant in power-law body  
Cd = drag coefficient, 2F/ρ∞V∞

2H 
Ch = heat transfer coefficient, 2qw/ρ∞V∞

3 
c = molecular velocity, m/s 
e =specific energy, J/kg 
F = drag force, N 
H = body height at the base, m 
K = function defined by Ch√(Rc/λ∞) , dimensionless 



Leading-Edge Bluntness Effects on Aerodynamic Heating and … 

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyright © 2005 by ABCM         July-September 2005, Vol. XXVII, No. 3 / 237 

Kn = Knudsen number, dimensionless  
L = body length, m 
M = Mach number, dimensionless 
m = mass, kg 
N = number of molecules, dimensionless 
n = body power law exponent, dimensionless 
q = heat flux, W/m2 
R = circular cylinder radius, m 
Rc = radius of curvature, m 
Re = Reynolds number, dimensionless 
Rn = nose radius, m 
s = arc length, m 
T = temperature, K 
V = velocity, m/s 
x = cartesian axis in physical space, m 
y = cartesian axis in physical space, m 
Greek Symbols 
η = coordinate normal to body surface, m 
µ = air dynamic viscosity, kg/(m s) 
ρ = air density, kg/m3 
Subscripts 
i    refers to incident molecule 
r    refers to reflected molecule 
w   wall conditions 
∞   freestream conditions 

Leading-Edge Geometry Definition 

In dimensional form, the body power law shapes are given by 
the following expression, 

 
nAxy =  (2) 

 
where n is the power law exponent and A is the power law constant, 
which is a function of n. 

The radius of curvature Rc for the shapes defined by Eq. (2), 
obtained from the general formula for the longitudinal radius of 
curvature, is as follows, 
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By taking the limit of Eq. (3) as x → 0, one obtains the value of 

the radius of curvature at the nose of the leading edge.  The first 
term in the square bracket vanishes for n ≥ 2, a range of not practical 
interest.  The exponent of the second term in the bracket controls the 
result for practical cases.  For values of 0 < n < 1, the nose radius 
goes to infinite for n < 1/2, it is finite and equal to A2/2 for n = 1/2, 
and it goes to zero for n > 1/2.  Therefore, only one value of n 
produces a nonzero finite value for the leading-edge radius. 

The power-law shapes are modeled by assuming a sharp leading 
edge of half angle θ with a circular cylinder of radius R inscribed 
tangent to this wedge.  The power law shapes, inscribed between the 
wedge and the cylinder, are also tangent to the wedge and the 
circular cylinder at the same common point where they have the 
same slope angle.  The circular cylinder diameter provides a 
reference for the amount of blunting desired on the leading edge.  It 
is assumed that the wedge half angle is 10 deg, the circular cylinder 
diameter of 10-2m and power law exponents of 1/4, 1/2 and 3/4, 
which yield infinite, finite and zero, respectively, for the radius of 
curvature.  Figure 1 illustrates schematically this construction for 
this set of power law leading edges. 
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Figure 1. Drawing illustrating the leading edge geometry. 

 
From geometric considerations, the power law constant A is 

obtained by matching slope on the wedge, circular cylinder and 
power law body at the tangency point.  The common body height H 
at the tangency point is equal to 2Rcosθ.  In this way, for the power 
law shapes to be investigated in this work, the power law constant A 
and the body length L from the nose to the tangency point are listed 
in Table 1. 

 

Table 1. Characteristics of the power law shapes. 

Exponent n A(m1-n) L(m) L/H 
1/4 1.7034 x 10-2 7.8496 x 10-3 0.774 
1/2 4.1671 x 10-2 1.3963 x 10-2 1.418 
3/4 8.9438 x 10-2 2.0944 x 10-2 2.127 

 
A geometrically blunt body is defined to be one with a slope 

(dy/dx = ∞) at the tip that corresponds to an angle of 90 deg.  On the 
other hand, a geometrically sharp body is defined to be one with a 
finite slope (dy/dx ≠ ∞) at the tip, and the leading-edge radius is 
zero.  The body slope angles at the nose (x = 0) for power law 
shapes are 90 deg for values of 0 < n < 1.  Moreover, the radius of 
curvature changes from zero to infinity at the same range of n.  
Therefore, the power law shapes are blunt even though some of 
them have a zero nose radius.  As a result, some power law shapes 
exhibit both blunt and sharp geometric properties. 

Computational Method and Procedure 

A number of significant problems in fluid mechanics involve 
transitional flows, i.e., flows for which the mean free path is of the 
same order of magnitude as a characteristic dimension of the 
problem.  The most successful numerical technique for modeling 
complex transitional flows has been the Direct Simulation Monte 
Carlo (DSMC) method.  The fundamental work on DSMC method 
has been described in the well-known book by Bird (1994).  In a 
review on DSMC methodologies, Bird (1998) has discussed the 
recent advances of the DSMC method and examined its range of 
validity.  Ivanov and Gimelshein (2002) discuss the current 
challenges of the DSMC method and examine the issues related to 
the efficiency and accuracy of the method in the near continuum 
regime, as well as its use for modeling of rarefied flows with real 
gas effects. 

The DSMC method has been recognized as an extremely 
powerful technique capable of predicting an almost unlimited 
variety of rarefied flowfields in the regimes where neither the 
Navier-Stokes nor the free molecular approaches are appropriate.  
The DSMC method treats transitional flows on a molecular basis, 
statistically representing a real gas by thousands or millions of 
simulated molecules.  The positions, velocities, and initial state of 
these simulated molecules are stored and modified in time in the 
process of molecules moving, colliding among themselves, and 
interacting with boundaries in simulated physical space.  The 
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simulation time of the DSMC method is a real physical time and all 
DSMC calculations are treated as unsteady state.  The solution of 
the steady-state case is the asymptotic limit of the unsteady flow. 

In this study, the molecular collisions are modeled using the 
variable hard sphere (VHS) molecular model (Bird, 1981).  In this 
model, the temperature dependency of the viscosity is considered by 
a variable cross section that is inversely proportional to the relative 
collision energy between the colliding molecules.  The energy 
exchange between kinetic and internal modes is controlled by 
Borgnakke-Larsen statistical model (Borgnakke and Larsen, 1975).  
The essential feature of this model is that a part of collisions is 
treated as completely inelastic, and the reminder of the molecular 
collisions is regarded as elastic.  Simulations are performed using air 
as working fluid with two chemical species, N2 and O2.  Energy 
exchanges between the translational and internal modes are 
considered.  The vibrational temperature is controlled by the 
distribution of energy between the translational and rotational 
modes after an inelastic collision.  The probability of an inelastic 
collision determines the rate at which energy is transferred between 
the translational and internal modes after an inelastic collision.  For 
a given collision, the probabilities are designated by the inverse of 
the relaxation numbers, which correspond to the number of 
collisions necessary, on average, for a molecule to relax.  The 
relaxation numbers are traditionally given as constants, 5 for 
rotation and 50 for vibration.  Diffuse reflection with full thermal 
accommodation is assumed for the gas-surface interaction modeling.  
In this model, the reflection of the impinging molecules is not 
related to the pre-impingement state of the molecules. 

The physical space is divided into a certain number of regions, 
which are subdivided into computational cells.  The dimensions of 
the cells must be such that the change in flow properties across each 
cell is small compared to the mean free path.  The cell provides a 
convenient reference for the sampling of the macroscopic gas 
properties.  The smallest unit of physical space is the subcell, where 
the collision partners are selected for the establishment of the 
collision rate.  Time is advanced in discrete steps such that each step 
is small in comparison with the mean collision time, which is 
defined as the mean time between the successive collisions suffered 
by any particular molecule.  More details for estimating the 
computational requirements of DSMC simulations are presented at 
length by Rieffel (1999). 
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Figure 2. Schematic view of the computational domain. 

 
The computational domain is made large enough so that the 

upstream and side boundaries can be specified as freestream 
conditions.  A view of the computational domain is depicted in Fig. 
2.  Only half of the body needs to be considered because of its 

symmetry.  The flow at the downstream outflow boundary is 
predominantly supersonic and vacuum conditions are specified 
(Bird, 1994). 

Numerical accuracy in DSMC method depends on the grid 
resolution chosen as well as the number of particles per 
computational cell.  Both effects were investigated to determine the 
number of cells and the number of particles required to achieve grid 
independence solutions for the thermal nonequilibrium flow that 
arises near the leading edges.  A discussion of both effects on the 
aerodynamic surface quantities is described in the appendix. 

The freestream conditions used in the present calculations are 
those given by Santos (2001).  Table 2 and Table 3 summarized the 
freesteam conditions and the gas properties (Bird, 1994), 
respectively.  The freestream velocity V∞ is assumed to be constant 
at 2.9 km/s, which corresponds to freestream Mach number M∞ of 
10.  The wall temperature Tw is assumed constant at 880 K, chosen 
to be four times the freestream temperature. 

The overall Knudsen number is defined as the ratio of the 
molecular mean free path in the freestream gas to a characteristic 
dimension of the flowfield.  In the present study, the characteristic 
dimension was defined as being the diameter of the circular cylinder 
(see Fig. 1).  Therefore, the freestream Knudsen number 
corresponds to Kn∞ (= λ∞/2R) of 0.0903.  Finally, the freestream 
Reynolds number by unit meter Re∞ is 17889. 

 

Table 2. Freestream conditions. 

Parameter Value Unit 
Velocity (V∞) 2900 m/s 
Temperature (T∞) 220.0 K 
Pressure (p∞) 5.582 N/m2 

Density (ρ∞) 8.753 x 10-5 kg/m3 

Viscosity (µ∞) 1.455 x 10-5 Ns/m2 

Number density (n∞) 1.821 x 1021 m-3 

Mean free path (λ∞) 9.03 x 10-4 m 
 

Table 3. Gas properties. 

Parameter O2 N2 Unit
Molecular mass (m) 5.312 x 10-26 4.650 x 10-26 kg 
Molecular diameter (d) 4.010 x 10-10 4.110 x 10-10 m 
Mole fraction (X) 0.237 0.763  
Viscosity index (ω) 0.77 0.74  

Computational Results and Discussion 

Attention is now focused on the heat transfer calculations and on 
the drag coefficient obtained from the DSMC results.  The 
simulations were performed, as mentioned above, for power law 
exponents of 1/4, 1/2, and 3/4.  The present calculations correspond 
to freestream Mach number of 10, wall temperature of 880 K, and 
freestream conditions associated to an altitude of 70 km. 

The heat transfer coefficient Ch is defined as being, 
 

3
2

1
∞∞

=
V

qC w
h

ρ
 (4) 

 
where the heat flux qw to the body surface is calculated by the net 
energy fluxes of the molecules impinging on the surface.  A flux is 
regarded as positive if it is directed toward the surface.  The heat 
flux qw is related to the sum of the translational, rotational and 
vibrational energies of both incident and reflected molecules as 
defined by, 
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where N is the number of molecules colliding with the surface by 
unit time and unit area, m is the mass of the molecules, c is the 
thermal velocity of the molecules, eR and eV stand for the rotational 
and vibrational energies, and subscripts i and r refer to incident and 
reflected molecules. 

The heat flux qw is based upon the gas-surface interaction model 
of fully accommodated, completely diffuse re-emission.  This is the 
most common model assumed, even though it is well known that 
some degree of specular reflection and less than complete 
accommodation are more realistic assumptions (Gilmore and 
Harvey, 1994). 
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Figure 3. Heat transfer coefficient as a function of the arc length for power 
law exponents of 1/4, 1/2 and 3/4. 
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Figure 4. Heat transfer coefficient as a function of the body slope angle for 
power law exponents of 1/4, 1/2 and 3/4. 
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Figure 5. Distribution of K(n) as a function of the arc length for power law 
exponents of 1/4, 1/2 and 3/4. 
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Figure 6. Distribution of K(n) in the vicinity of the stagnation as a function 
of the arc length for power law exponents of 1/4, 1/2 and 3/4. 

 
The effect of the power law exponent on the heat transfer 

coefficient Ch is illustrated in Fig. 3 as a function of the 
dimensionless arc length s/λ∞, measured from the stagnation point.  
It is seen that the heat transfer coefficient is sensitive to the power 
law exponent n near the stagnation point.  It presents the maximum 
value in the stagnation point and drops off a short distance away of 
the leading edge as the power law exponent increases.  Also, it is 
seen that the blunter the leading edge is the lower the heat transfer 
coefficient in the stagnation region. 

The leading edge geometry effect can also be seen by comparing 
the computational results with that predicted by considering free 
molecular (FM) flow (Bird, 1994).  Figure 4 displays this 
comparison for the heat transfer coefficient as a function of the body 
slope angle θ.  These curves indicate that the heat transfer 
coefficient Ch increases as the leading edge becomes sharp, and 
approaches the free molecular value for the conditions investigated 
in this work. 

Based on the computational results for the heat transfer 
coefficient (Figs. 3 and 4), the characteristic of blunt bodies 
expressed by Eq. (1) seems to fail at the stagnation point, at least for 
power law bodies with n ≠ 1/2.  As would be expected, the heat flux 
is finite at the stagnation point for the leading edges investigated, 
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even though the radius of curvature goes to zero for the n = 3/4 case, 
and goes to infinity for the n = 1/4 case. 

In order to verify the dependence of the heat transfer coefficient 
Ch on the leading edge radius of curvature, the product Ch√(Rc/λ∞), 
named here by function K(n), is obtained from the DSMC results for 
the power law shapes investigated.  Hence, Ch√(Rc/λ∞) represents 
the dimensionless form of Eq. (1).  Figures 5 (linear scaling) and 6 
(log scaling) demonstrate this product as a function of the 
dimensionless arc length along the body surface.  Interesting 
features can be drawn from Figs. 5 and 6.  In the vicinity of the 
stagnation point, the dependence of the heat transfer coefficient on 
the radius of curvature follows that predicted by the continuum 
flow, Eq. (1), for the power law shape with finite radius, n = 1/2 
case.  As would be expected, the dependence of the heat transfer 
coefficient on the radius of curvature in the stagnation region does 
not hold for power law leading edges defined by cases with n ≠ 1/2.  
Moreover, the function K(n) surprising reaches a constant value 
downstream to the stagnation region for the cases investigated.  The 
constant value, which is a function of the power law exponent, is 
reached faster for the n = 3/4 than for the n = 1/4 case.  As a result, 
it is seen that the heat transfer to the body is inversely proportional 
to the square root of the curvature radius of the power law shapes far 
from the stagnation region, independently of the power law 
exponent for the range 1/4 < n < 3/4. 

Referring to Figs. 5 and 6, at first glance, one could conclude 
that power law shape defined by n = 3/4 gives lower value for heat 
flux at the stagnation point than n = 1/2 shape.  Unfortunately, this 
does not hold as is demonstrated in Fig. 3. 

The drag on a surface in a gas flow results from the interchange 
of momentum between the surface and the molecules colliding with 
the surface.  The total drag is obtained by the integration of the 
pressure and shear stress distributions from the nose of the leading 
edge to the station L, which corresponds to the tangent point 
common to all of the body shapes (see Fig. 1).  It is important to 
mention that the values for the total drag presented in this section 
were obtained by assuming the shapes acting as leading edges.  
Therefore, no base pressure effects were taken into account in the 
calculations.  Results are normalized by ½ρ∞V∞

2H and presented as 
total drag coefficient Cd and its components of pressure drag 
coefficient and skin friction drag coefficient. 
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Figure 7. Pressure drag, skin friction drag and total drag coefficient as a 
function of the power law exponent n. 
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Figure 8. Pressure and skin friction drag contributions on the total drag as 
a function of the power law exponent n. 

 
Figure 7 illustrates the total drag coefficient as a function of the 

power law exponent n.  The contributions of the pressure drag 
coefficient and the skin friction coefficient are also displayed in this 
figure.  For n = 1/4 case, the total drag coefficient is dominated by 
pressure drag, a characteristic of a blunt body.  In contrast, for n = 
3/4, the total drag coefficient is dominated by the skin friction drag, 
a characteristic of a sharp body.  As the net effect on total drag 
depends on these opposite behaviors, appreciable changes are 
observed in the total drag coefficient for the power law exponent 
range investigated.  As a reference, the total drag coefficient for the 
n = 1/4 case is around 24% higher than that for the n = 3/4 case. 

Figure 8 displays the percentage of the skin friction drag and 
pressure drag on total drag.  It is seen that for power law exponent 
of 1/4, the shear forces account for only 9% of the total drag forces 
on the leading edge, whereas for power law exponent of 3/4, it 
accounts for 68%. 

Concluding Remarks 

Through the use of DSMC method, the heat flux to and drag 
acting on power law shapes have been investigated.  The 
calculations provided information concerning the nature of the heat 
transfer coefficient and the total drag coefficient along the body 
surface resulting from variations in the body shape for the idealized 
situation of two-dimensional hypersonic rarefied flow.  Results for 
power law exponents of 1/4, 1/2, and 3/4 indicate that the heat flux 
approaches that one predicted by the free molecular flow as the 
power law shape becomes aerodynamically sharp, for the flow 
conditions considered.  A substantial reduction of the aerodynamic 
heating at the stagnation point is observed as the power law 
exponent decreases.  On the other hand, a power law exponent 
decrease is associated with a drag increase.  Furthermore, the 
stagnation point heating for the power law shapes does not follow 
that one for classical blunt body in the vicinity of the leading edge 
for power law exponents different from 1/2.  Nevertheless, the heat 
transfer varies inversely with the square root of the radius of 
curvature far from the stagnation region. 

Appendix 

This section focuses on the analysis of the influence of the cell 
size and the number of particles per computational cell on the 
surface properties in order to achieve grid independence solutions.  
The effect of grid resolution on computed results is of particular 
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interest for the present study since insufficient grid resolution can 
reduce significantly the accuracy of the predicted aerodynamic 
heating and forces acting on the body surface.  Hence, heat transfer, 
pressure and skin friction coefficients were used as the 
representative parameters for the grid sensitivity study.  However, 
because of the reduced number of pages in the paper, the analysis 
will be shown only for heat transfer coefficient related to the n = 1/2 
case. 

The effect of altering the size of the computational cells is 
investigated for a series of three simulations with grids of 35 
(coarse), 70 (standard) and 105 (fine) cells in the ξ-direction and 50 
cells in the η-direction (see Fig. 2).  Each grid was made up of 
nonuniform cell spacing in both directions.  The effect of changing 
the number of cells in the ξ-direction is illustrated in Fig. A1 as it 
impacts the calculated heat transfer coefficient.  The comparison 
shows that the calculated results are rather insensitive to the range of 
cell spacing considered. 

In analogous fashion, an examination was made in the η-
direction.  The sensitivity of the calculated results to cell size 
variations in the η-direction is displayed in Fig. A2 for heat transfer 
coefficient.  In this figure, a new series of three simulations with 
grid of 70 cells in the ξ-direction and 25 (coarse), 50 (standard) and 
75 (fine) cells in the η-direction is compared.  The cell spacing in 
both directions is again nonuniform.  According to Fig. A2, the 
results for the three grids are approximately the same, indicating that 
the standard grid, 70 X 50 cells, is essentially grid independent.  For 
the standard case, the cell size in the η-direction is always less than 
the local mean free path length in the vicinity of the surface. 

A similar examination was made for the number of molecules.  
The sensitivity of the calculated results to number of molecule 
variations is demonstrated in Fig. A3 for heat transfer coefficient.  
The standard grid, 70 x 50 cells, corresponds to a total of 112,300 
molecules.  Two new cases using the same grid were investigated.  
These new cases correspond to, on average, 63,600 and 170,300 
molecules in the entire computational domain.  It is seen that the 
standard grid with a total of 112,300 molecules is enough for the 
computation of the aerodynamic surface quantities. 
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Figure A1. Effect of altering the cell size in the ξ-direction on heat transfer 
coefficient. 
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Figure A2. Effect of altering the cell size in the η-direction on heat transfer 
coefficient. 
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Figure A3. Effect of altering the number of molecules on heat transfer 
coefficient. 
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