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A Numerical Model for Thin Airfoils in 
Unsteady Compressible Arbitrary 
Motion 
A numerical method based on the vortex methodology is presented in order to obtain 
unsteady solution of the aerodynamic coefficients of a thin airfoil in either compressible 
subsonic or supersonic flows. The numerical model is created through the profile 
discretization in uniform segments and the compressible flow vortex singularity is used. 
The results of the proposed model are presented as the lift and the pressure coefficient 
along the profile chord as a function of time. The indicial response for the unit step change 
of angle of attack and unit sharp-edged gust response of the profile are also obtained 
numerically. The results yielded by the present methodology are also compared with 
solutions available in the literature.  
Keywords: vortex lattice method, compressible flow, unsteady flow; gust; indicial 
aerodynamics 
 
 
 

Introduction 

1Along the past decade the Generalized Vortex Lattice Method 

was developed for the unsteady motion, initially for subsonic 

(Soviero, 1993) and later for supersonic (Soviero and Ribeiro, 1995) 

and transonic flows (Soviero and Pinto, 2001). In all previous works 

the profile movement (heaving or pitching) was restricted to the 

harmonic motion. Therefore, the calculation was performed in the 

frequency domain.  

The only practical way to obtain the aerodynamic loads from 

arbitrary motions is, according to Bisplinghoff et al. (1955), to use a 

superposition method (Fourier's integral) of the results obtained for 

harmonic motions. However, such a methodology is not adequate 

for sudden movements, which can happen during maneuvers of high 

performance airplanes, sharp gusts or fast deflections of command 

surfaces, such as the ailerons. In these cases the number of terms in 

the series needed to describe forces and moment coefficients can 

become prohibitively large due to the slow convergence behavior of 

the solution describing the studied motion. 

For the incompressible flow regime, there are well known 

studies, such as Wagner’s and Küssner’s, that obtained the time 

evolution of lift of thin profiles with the sudden variation of the 

angle of attack and profile penetration in sharp-edge gust; both, in 

fact, indicial responses. In the compressible flow regime, both 

subsonic and supersonic, a series of indicial responses were 

presented by Bisplinghoff et al. (1955) as a function of the Mach 

number for thin profiles. However, calculating these indicial 

responses analytically is long, tedious, and limited to a short period 

of time suggesting the need of researching on numeric solutions that 

are sufficiently fast and applicable to arbitrary motions. 

Thus, the study and development of a numeric method that 

allows the calculation of aerodynamic forces and moments for a 

profile in arbitrary motion is desirable. Due to the new types of 

airplanes now in project or construction around the world, in which 

the aerodynamic efficiency is the main goal, the structures must be 

lighter and; therefore, more susceptible to, in a disturbed airflow, 

assuming a motion pattern which may not always be correctly 

modeled by harmonic or periodic motions. Another application of 

the indicial formulation is in the helicopter engineering area 

(Beddoes, 1984).  

A numerical model for arbitrary compressible motions, based on 

the linearized acceleration potential, was developed by Long and 
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Watts (1987). Numerical solutions of the Navier-Stokes equations 

have been proposed by Shaw and Qin (2000). 

A model for two-dimensional incompressible flow for arbitrary 

motions was developed by Soviero and Lavagna (1997). A similar 

approach to the one presented here, although limited to the 

supersonic flow, was developed by Hernandes and Soviero (2002). 

This model was restricted to the wave equation and presented 

numerical oscillations in the pressure coefficient results. 

An evolution of the work presented by Hernandes and Soviero 

(2002) is presented here and it considers the classical equation of the 

non-stationary aerodynamics (the convected wave equation). This 

new approach solves the problem of the numerical instabilities and 

extends the range of application of the model for subsonic flows.  

Once the indicial response is known, it is possible to obtain 

solutions for an arbitrary motion using the superposition method 

employing Duhamel integral, as reported by Bisplinghoff et al., 

1955. Lomax et al. (1952) showed how to obtain the flutter speed 

and stability derivatives also from the indicial response. 

The numerical modeling is built through the discretization of a 

flat plate in uniform segments with compressible vortex 

singularities. The authors acknowledge that this is the first time this 

singularity is employed.  Lift and pitching moment coefficients, as 

well as the pressure distribution along the chord as function of time, 

are obtained from this model. The solutions of the sinking motions 

and sharp-edge gust response are presented. The solutions are also 

validated by the solutions available in the literature, such as in 

Lomax et al. (1952) for the indicial response and Lomax (1954), in 

Heaslet and Lomax (1947) and in Bisplinghoff et al. (1955) for the 

sharp-edge gust problem. 

Nomenclature 

a  = sound speed 

pc  = pressure coefficient 

dt  = time interval  

n  = panel quantity 

M = U/a - Mach number 

N  = time intervals  

p  = pressure 

t  = time 

0t  = initial time 

U  = airflow velocity 

nU  = normal velocity over the panel 

'u  = perturbation velocity in x direction 
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w  = induced velocity in z direction 

Greek Symbols 

α  = profile incidence angle 

β = compressibility factor 

δφ  = velocity potential jump 

λ  = sharp-edge gust constant 

φ  = velocity potential 

xφ  = x∂∂φ  

tφ  = t∂∂φ  

xxφ = 22
x∂∂ φ  

ttφ  = 22
t∂∂ φ  

xtφ  = ( ) tx ∂∂∂∂ φ  

ρ = fluid density 

∇ 2 = laplacian operator in x, z domain 

Subscripts 

j  = relative to a panel 

k  = relative to a time level 

Mathematical Model 

The proposed model is valid for any arbitrary motion, although 

only two well-known problems available in the literature are 

addressed here. In the first one, a flat plate with zero incidence 

angle, immersed in airflow with velocityU , has a sudden change in 

incidence angleα . Fig. 1 illustrates this indicial response problem. 

The second one considers the same flat plate with zero incidence 

angle (immersed in an airflow with velocityU ) suddenly exposed to 

a vertical gust with intensity Uλ  (where λ  is a constant) traveling 

against the profile with airflow velocityU . The solution of this 

problem refers to the response of the profile to a sharp-edge gust 

entry and is sketched in Fig. 2.  
 

 

Figure 1. Step change of angle of attack. 

 

Figure 2. Flat plate in a sharp-edge gust. 

 

An inviscid fluid is considered. The flow is irrotational and the 

small disturbances hypothesis is assumed. Therefore, the 

mathematical model is restricted to the equation of the velocity 

potential for unsteady flow: 
 

φφφφ 2222 ∇=++ aUU xxxttt  (1) 

The pressure jump over the chord (
lowerpupperp cc − ) is 

obtained as: 
 

( )xtp U
U

c φ∆φ∆∆ +−=
2

2
 

lowerxupperxx

lowertuppertt

φφφ∆

φφφ∆

−=

−=
 (2) 

 

As soon as the angle of attack of the profile is changed to a non-

zero angle, a perturbation potential jump δφ  is generated over the 

profile. In the case of the sharp-edge gust, the potential jumps are 

generated on the area already reached by the gust. Those potential 

jumps are immediately substituted by a vortex pair of intensity Γ  

and Γ−  (where Γ  is numerically identical to δφ ). Fig. 3 illustrates 

this correspondence: 
 

 

Figure 3. Correspondence between a perturbation potential jump and a 
vortex pair. 

 

The intensity of the perturbation potential can be determined by 

considering the solution for the motion of a piston, which is 

suddenly placed in an impulsive movement in a compressible flow 

(Bisplinghoff et al., 1955). The disturbance pressure developed over 

the profile is given by: 
 

naUp ρ=∆ 2  (3) 

 

where nU  is the normal velocity over the considered panel. In the 

time zero, it is equal to αU  for indicial response and to Uλ  ( λ  is 
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a constant) for sharp-edge gust. The variables α  and λ  are 

assumed unitary in order to facilitate calculations. The results 

presented are, therefore, function of these quantities. The term of the 

pressure associated to the impulsive motion is obtained from Eq. 3 

and since the term of Eq. 2 related to the impulsive motion is given 

by the one that includes tφ∆ , it results in: 

 

MU

U

U

aU
c nn

pimpulsive

42

2
2

1
==

ρ

ρ
∆  

dtUU
c tpimpulsive

δφ
φ∆∆

22

22
−=−=  

 

Therefore,  
 

dtaU n2=δφ  (4) 

 

The velocity nU , after the initial condition, is given by the initial 

boundary condition added to the normal velocities induced by the 

vortices emitted in the previous time levels. The vortices introduced 

in substitution to the potential jumps are divided in two types: the 

bound vortices (tied to the profile) and the free vortices (that move 

with the speed of the undisturbed airflow). The emitted vortices 

induce normal velocities along the profile chord according to Eqs.5 

and 6. The subscript "o" indicates the origin of the vortex (position 

and time of creation).  
 

( )
aXT

UTXTa
TXwbound

222

2

−−
−=

π
Γ

),(  (5) 

 

( )
[ ]TUTXa

UTXTa
TXw free −

−−
−=

222

2π
Γ

),(  (6) 

 

where, 
 

0

0

ttT

xxX

−=

−=
 

Numerical Model 

The proposed model is based on two well-known concepts of 

theoretical aerodynamics. The first concept is the impulsive 

generation of vortices in a perfect fluid and the second, the 

relationship between a pair of counter rotating vortices and the 

velocity potential jump on the line that links them. 

The profile is divided in a convenient number n  of panels. The 

control points, where the velocity potential jumps ( δφ ) are applied, 

are placed in the center of each panel and are identified by the index 

j  ( nj ≤≤1 ). The time levels are identified by the index k  

( Nk ≤≤1 ). The variable time step dt  corresponds to the elapsed 

time between iterations. 

From the initial motion of the profile, an impulsive motion is 

generated on each panel, creating a potential jump δφ , given by 

Eq.4. Immediately, those n  velocity perturbation potential jumps 

are substituted by pairs of counter rotating vortices. 

The sequence of events is explained in Fig.4. Time zero, 0=t  

( 1=k ), corresponds to the initial condition, where the piston theory 

is applied with the boundary condition of normal velocity of 

intensity nU  over the whole profile chord and posterior substitution 

of the velocity perturbation potential jumps, δφ , for pairs of counter 

rotating vortices. In a next time step ( dtt = , 2=k ), it is observed 

that the vortex in the profile trailing edge is free to move with 

airflow velocityU , (in fact the unsteady Kutta condition) and new 

velocity perturbation potential jumps, δφ ,  are calculated - now 

considering, not only the normal velocity nU , but also the velocities 

induced by the vortices generated in the previous time 
+= 0t . For 

further time levels (until Nk = ), the assessment of the induced 

velocities in each panel should consider all the emitted vortices until 

the previous time level. In the panel edges, a balance of the emitted 

vortices is made resulting in an algebraic sum in the left extremities 

of each panel.  

The sequence of events for supersonic flow is similar to the 

subsonic case, just differing in the fact that there are no emissions of 

free vortices from the profile trailing edge, that is, all the vortices 

remains tied to the profile. The counter rotating vortices from the 

perturbation velocity potential jumps for supersonic flow are all 

bound to the profile because the Kutta condition does not need to be 

respected in this flow regime. For the subsonic flow case, the vortex 

of the profile trailing edge (of intensity k
1Γ−  and located in the 

right extremity of the panel 1=j ) is, due to model imposition, free 

to create a wake automatically and to satisfy the Kelvin theorem. 

Initially, an explicit integration scheme was studied, where the 

perturbation velocity potential jumps were calculated as a direct 

function of the normal velocity over the panel for the considered 

time level. Moreover, the boundary conditions were established on 

the profile, i.e., exactly on the control point of each panel. That 

concept was considered inadequate because the convergence of the 

method depended directly on the time step adopted. More exactly, 

when the control point of a considered panel suffered influence from 

the generated vortex (in the left end of the panel) of that same panel 

in the previous level, the calculations presented oscillations and 

divergence in some cases. That divergence was caused by 

oscillations in the results of the pressure jump coefficient over the 

profile. The same oscillatory characteristic observed by Hernandes 

and Soviero (2002) was also noticed by Long and Watts (1987) for 

the supersonic regime. 

Due to these limitations, it was opted not to use an explicit 

numerical model. A model to establish the boundary conditions 

halfway between the considered time level and the following one 

was chosen. Again, that choice was based on the existent analogy 

between the two-dimensional unsteady flow and three-dimensional 

steady supersonic flow (Sears, 1954), where the point at which the 

boundary condition is applied is usually defined in the center of the 

panel. 
 

 

Figure 4a. Sequence of events - Subsonic flow (k=1). 



Fabiano Hernandes and Paulo Afonso de O. Soviero 

256 / Vol. XXIX, No. 3, July-September 2007 ABCM 

 

Figure 4b. Sequence of events - Subsonic flow (k=2). 

 

 

Figure 4c. Sequence of events -Subsonic flow (k=N). 

 

Thus, the numerical model becomes implicit because there is, in 

the considered control point, an influence of its own panel for the 

considered time level and its solution comes from the solution of a 

linear system composed by a matrix of coefficients [ ]A  that 

multiplied by the velocity potential jumps vector, [ ]kδφ , for the 

considered time level k , results in satisfaction of boundary 

conditions [ ]kW  (normal velocities over the panels). 

 

[ ][ ] [ ] 0=+ kk
WA δφ  (7) 

 

The vector of the perturbation potential jumps is given by: 
 

[ ]


















=
k
n

k

k

k

δφ
δφ

δφ

δφ 2

1

 (8) 

 

The matrix [ ]A  is associated with the influence of the generated 

vortices in a considered time level k  and their influence in the same 

time level. It should still be added to the elements of the main 

diagonal, the term regarding the impulsive motion, given by 

1/(2adt). Thus, the matrix of the influence coefficients is written as: 
 

[ ]


















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
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+

=
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a
adt
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adt

a

A

nnnn

n

n

2

1
2

1
2

1

21

22221

11211

 (9) 

 

For subsonic flow, the velocities vector [ ]kW  is only a function 

of the normal velocities over the profile due to the profile motion 

( αU ) added to the velocities induced by the vortices created in the 

previous time levels. For the method to work out in the supersonic 

flow, it is essential to consider the additional element of the method 

- the singularity vortex. In subsonic flows, it is possible to calculate 

the velocity induced by a vortex in any point of the area affected by 

its propagation. However, for the supersonic flow, the vortex origin 

point is singular and it is not possible to calculate the velocity 

induced in this point. So, it is necessary to define the contribution of 

the singularity for the velocity field. This concept is well explained 

in Miranda et al. (1977). The term relative to the induced velocity 

due to the singularity is defined from the induced velocity in the 

permanent flow. Eqs.10 and 11 define the resulting velocities vector 

for subsonic and supersonic flows, respectively. 
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The system solution is obtained from the equation: 
 

[ ] [ ] [ ]kk
WA .

1−=δφ  (12) 
 

From the solution of the system (vector [ ]kδφ ), it is possible to 

calculate the aerodynamic coefficients. The circulatory and the non-

circulatory (or impulsive) terms of the pressure jump coefficient 

over the profile are obtained from the equations: 
 

∑
=

−=





 n

i

i
j
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j
p
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dxU
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where, 
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Then, the pressure jump coefficient over the profile results in: 
 

( ) 












+−= ∑

=

n

i

i
j

k
jk

j
p

dt
dx

dxU
c

1

2
δφ∆

δφ

α
∆

α
 (16) 

 

And the lift coefficient for a considered time level is obtained 

as: 
 

( ) ( )∑
=

−=
n

j

k

j
p

k
L cdxC

1
αα ∆  (17) 

Results and Discussion 

The aerodynamic coefficients numerically calculated are now 

presented, for both subsonic and supersonic flows, for unitary 

change of angle of attack and sharp-edge gust. The calculated results 

are compared with available solutions in the literature; the results 

for the indicial response of angle of attack are compared with 

Lomax et al. (1952) and the results for the sharp-edge gust are 

compared with Lomax (1954), Heaslet and Lomax (1947), and 

Bisplinghoff et al. (1955). 

The subsonic and supersonic pressure distribution along the 

chord of a flat plate after an abrupt angle of attack variation are 

presented, for some time levels, in figures 5 and 6. All results 

validate the results from literature. In the subsonic case, the pressure 

distribution tends towards the incompressible and subsonic results, 

that is, with the characteristic singularity in the leading edge and 

zero pressure jump at the trailing edge. The supersonic case tends 

towards the constant pressure distribution of the steady state regime, 

which is obtained, differently from the subsonic one, after a finite 

elapsed time.  

After pressure coefficient integration along the chord, the lift 

coefficient for unitary angle of attack is presented in Figures 7 and 

8. In the subsonic flow, the steady state values are obtained only 

asymptotically. The same is not true for the supersonic flow. In fact 

steady state values are attained earlier as the supersonic Mach 

number increases. The overall behavior exists due to wave traveling 

which, in supersonic flow, is only in the downstream direction and 

in both directions in the subsonic flow. Once again, all calculated 

values corroborate those from Lomax et al. (1952). 

Figures 9 and 10 present the pressure distributions for several 

time levels for subsonic and supersonic flows unit sharp-edge gusts, 

respectively. A small oscillation in pressure distribution is noted in 

Fig. 9 for the two lower time levels and it corresponds to the arrival 

of the front end of the gust. It is a local behavior due to 

discretization without influencing the global level of forces.  

Time histories of the lift coefficients for subsonic and 

supersonic unit sharp-edge gusts Mach numbers, respectively, are 

presented in Figures 11 and 12. Contrary to the problem of step 

change in angle of attack in both regimes, the lift coefficients start 

from zero and converge to its steady state value in an infinite or 

finite time interval depending on the Mach number. All comparisons 

corroborate the published data.  

The last four figures, Figs. 13, 14, 15 and 16, illustrate the 

variation of center of pressure along the chord with time. In 

subsonic flow the final position of the center of pressure is at the 

quarter point from the leading edge. In supersonic flow the final 

position is, alternatively, at the mid-chord. Both positions in either 

subsonic or supersonic flow tend toward these steady state values. 

However, in the initial stages of the motion, there is a remarkable 

variation in center of pressure position. This fact must be taken into 

account when simplified versions of the vortex lattice method, 

where chord discretization is unitary (as in the Weissinger method), 

are employed. 

Finally, it must be pointed out that the results corroborate the 

references. The largest deviations happen in the abrupt changes of 

pressure, especially in the supersonic flow, which presents well 

defined areas in its theoretical curve of the pressure coefficient, as 

shown in Figs. 6 and 10.  
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Figure 5. Step change of angle of attack - Distribution of the differential 
pressure coefficient on the profile - Subsonic flow. 

 



Fabiano Hernandes and Paulo Afonso de O. Soviero 

258 / Vol. XXIX, No. 3, July-September 2007 ABCM 

0 20 40 60 80 100
1.6

1.8

2.0

2.2

2.4

2.6 }

 

 

 

M=2.0

 Ut/c=0.2

 Ut/c=0.6

 Ut/c=1.5

 Ut/c=0.2

 Ut/c=0.6

 Ut/c=1.5

% profile chord

∆
C

p
α

n=50 dt=0.02

}

Numerical

Lomax et. al, 1952

 

Figure 6. Step change of angle of attack - Distribution of the differential 
pressure coefficient on the profile - Supersonic flow. 
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Figure 7. Step change of angle of attack - Lift coefficient for subsonic 
flow. 
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Figure 8. Step change of angle of attack - Lift coefficient for supersonic 
flow. 
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Figure 9. Unit sharp-edge gust - distribution of the differential pressure 
coefficient on the profile - Subsonic flow. 
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Figure 10. Unit sharp-edge gust - Distribution of the differential pressure 
coefficient on the profile - Supersonic flow. 
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Figure 11. Unit sharp-edge gust - Lift coefficient for the subsonic flow. 
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Figure 12. Unit sharp-edge gust - Lift coefficient for the supersonic flow. 

 

1 2 3 4 5 6 7 8
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

 

} n=100, dt=0.005

C
e
n
te

r-
o
f-

p
re

s
s
u
re

 p
o
s
it
io

n
, 
(x

/c
)c

p

Chords lengths traveled, Ut/c

 M=0.5

 M=0.8

Numerical

 

Figure 13. Step change of angle of attack - Evolution of the center of 
pressure- Subsonic flow. 
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Figure 14. Step change of angle of attack - Evolution of the center of 
pressure- Supersonic flow. 
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Figure 15. Unit sharp-edge gust - Evolution of the center of pressure- 
Subsonic flow. 
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Figure 16. Unit sharp-edge gust - Evolution of the center of pressure - 
Supersonic flow. 

Conclusions 

The present work describes a numerical method for arbitrary 

unsteady motion of thin profiles in linearized compressible flow. 

The method presents a fast and practical way of obtaining the 

arbitrary motion response for the subsonic and supersonic flows - an 

arbitrary motion can be obtained by using a superposition process or 

simply by changing the boundary conditions since it is a numerical 

model. Thus, the method proposed is suitable for preliminary 

aircraft design due to its accuracy, simplicity and computational 

performance. With this method it is possible to obtain results for a 

lot of important motions in applied aerodynamics, like gusts and 

airfoil vortex iteration (AVI) which is very important for the study 

of the helicopter noise. 

It is important to highlight the conclusions concerning the 

numerical model. It was verified the need to establish the boundary 

conditions halfway between the considered time level and the 

following one. This choice is based on the existent analogy between 

the two-dimensional unsteady flow and three-dimensional steady 

supersonic flow, where the point at which the boundary condition is 

applied is usually defined in the center of the panel. This approach, 

which implies an implicit matrix system, is free from oscillations. 

Another remarkable feature is the need, in the supersonic flow, to 

add a term of the induced velocity regarding the singularity vortex. 

Initial studies were made with the acoustic approach. That 

model resulted in oscillations in the pressure jump coefficient 

(Hernandes and Soviero, 2002). Thus, vortices bound to the profile 

were chosen, except for the profile trailing edge vortex, which was 

left free to move downstream in the subsonic case. This model, in 

spite of being more complex due to the need of circulatory terms 

calculation, was more appropriate because it did not present the 

oscillations observed in the acoustic approach mentioned above. 

The method yields results that closely follow the available 

results in the literature (Lomax et. al, 1952, for step change of angle 

of attack response and Lomax, 1954, Heaslet and Lomax, 1947, and 

Bisplinghoff et al., 1955, for sharp-edge gust). In particular for 
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supersonic flow, where a significant large number of panels are 

employed, the error is negligible small, in fact almost imperceptible. 
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