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Modelling Hermetic Compressors 
Using Different Constraint Equations 
to Accommodate Multibody Dynamics 
and Hydrodynamic Lubrication 
In this work, the steps involved for the modelling of a reciprocating linear compressor are 
described in detail. The dynamics of the mechanical components are described with the 
help of multibody dynamics (rigid components) and finite elements method (flexible 
components). Some of the mechanical elements are supported by fluid film bearings, where 
the hydrodynamic interaction forces are described by the Reynolds equation. The system of 
nonlinear equations is numerically solved for three different restrictive conditions of the 
motion of the crank, where the third case takes into account lateral and tilting oscillations 
of the extremity of the crankshaft. The numerical results of the behaviour of the journal 
bearings for each case are presented giving some insights into design parameters such as, 
maximum oil film pressure, minimum oil film thickness, maximum vibration levels and 
dynamic reaction forces among machine components, looking for the optimization and 
application of active lubrication towards vibration reduction. 
Keywords: hermetic compressor, multibody dynamics, journal bearing, Reynolds equation, 
hydrodynamic lubrication. 
 
 
 

Introduction 
1One of the most common types of compressors used in the 

refrigeration field is the piston compressor, also known as 
reciprocating compressor. Small-scale hermetic reciprocating 
compressors are widely used to compress coolant gas in household 
refrigerators and air-conditioners. It was at the beginning of the 
Sixties when these small machines became a household appliance of 
common use in the industrialized countries. Since then, numerous 
research studies have been carried out in order to optimize the 
design and to improve the thermal and mechanical efficiency of 
refrigeration compressors. Positive displacement compressors 
mechanically drive the refrigerant gas from the evaporator at low-
pressure side to the condenser at high-pressure side, reducing the 
compressor chamber volume. Reciprocating compressors use 
pistons that are driven directly through a slider-crank mechanism, 
converting the rotating movement of the rotor to an oscillating 
motion. A hermetic reciprocating compressor is a particular case 
where motor and compressor are directly coupled on the same shaft 
and contained within the same housing (welded steel shell) and in 
contact with the refrigerant and oil (Rigola, 2002). A picture and a 
schematic draw of a hermetic reciprocating compressor used in 
household refrigerators are shown in Fig.1. 

 
 

 
Figure 1. Picture and schematic draw of a hermetic reciprocating compressor. 
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The study and optimization of the dynamic behaviour of 

reciprocating compressors, taking in account the hydrodynamics of 
bearings, are of significant importance for the development of new 
prototypes. The performance of the bearings affects key functions 
such as durability and noise and vibration behaviour of the 
compressor. Optimization studies of the performance of journal 
bearings by means of numerical simulation may reduce 
development costs for prototype testing work significantly. Several 
studies that involve numerical studies and computational models for 
the analysis of small reciprocating compressors are found in the 
literature, as it can be seen in the works carried out by Rasmussen 
(1997) and Rigola (2002). In some studies, numerical simulations of 
the refrigerant flow through the valves and inside the cylinder 
during the compression cycle have been included (Longo and 
Gasparella, 2003), whereas in others the focus has been on the 
dynamics of motion in steady and transient conditions (Dufour, et 
al., 1995). Some researchers have included the coupling of fluid-
structure dynamics in order to particularly analyse the dynamics of 
the piston (Gommed and Etsion, 1993; Cho and Moon, 2005). In a 
study carried out by Kim and Han (2004), an analytical model of the 
coupled dynamic behaviour of the piston and crankshaft was 
developed and comparisons between a finite bearing model and a 
short bearing approach were included. In the same study, a 
numerical procedure that combines Newton-Raphson method and 
the successive over relaxation scheme was also presented. In the 
study carried out by Cho and Moon (2005), a time-incremental 
numerical algorithm to solve a finite differences model for the 
estimation of the oil film pressure was coupled with a finite element 
model for the computation of the structural deformation of the 
piston. As it is described here, many of the research studies related 
to compressor modelling are mainly focused on the study of the 
thermal and fluid dynamic behaviour. In contrast, the main focus of 
the present work is on the developing of a multibody dynamic 
model of a hermetic compressor, where the dynamics of the fluid 
film bearings and the flexibility of the crankshaft are included. The 
multibody dynamic model, which includes the main mechanical 
components of the hermetic compressor, is coupled with a finite 
elements model of the rotor and the hydrodynamic interaction 
forces, which are computed using analytical solutions of the 
Reynolds equation. The influence of the crankshaft tilting 
oscillations on design parameters, such as the minimum film 
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thickness and maximum pressures are carefully investigated, since 
the finite element model allows capturing of such movements. The 
elasto-hydrodynamic theory, which takes in account the bearing and 
housing flexibility, is not considered in this work, since it is 
presented only in very special cases. 

Nomenclature 

Ap =transversal area of the piston, m2 
cb =radial clearance of the bearing, m 
Dp =piston diameter, m 
ec =mass eccentricity of the crank, m 
f =vector of forces, N 
fb =vector of journal bearing forces, N 
hb =oil film thickness, m 
hp =length of crank pin, m 
I =moment of inertia tensor 
l =length of the connecting rod, m 
lb =width of the bearing, m 
m =mass, kg 
ndof =number of degrees of freedom 
Pg =gas pressure inside the cylinder, Pa 
p =fluid film pressure, Pa 
rpm =revolutions per minute 
r =radius, m 
S =Sommerfeld number 
Ti =transformation matrix in the coordinate i 
xB =piston position along the X direction, m 
Greek Symbols 
Ω  =rotational speed of the crankshaft, rad/s 
θ =rotation angle of the crank around Z-Z axis, rad 
α =rotation angle of the connecting rod, rad 
β =rotation angle around X-X axis, rad 
Γ =rotation angle around Y1-Y1 axis, rad 
µ =viscosity oil film, Pa.s 
ε =eccentricity ratio 
φ =attitude angle, rad 
τz =motor shaft torque, Nm 
Subscripts 
A,B,C =relative to the points A, B or C, respectively 
b =relative to the bearing 
Bi =relative to the i-th mobile reference frame 
c =relative to the crank 
cr =relative to the connecting rod 
p =relative to the piston 
I =relative to the inertial reference frame 
N =relative to normal reaction forces cylinder-piston 
LJB =relative to infinitely long-width journal bearing 
SJB  =relative to short-width journal bearing 
X,Y  =relative to the X and Y directions 
ξ, η =relative to the radial and transversal directions 

Mathematical Modelling 

In this section the formulation of representative motion 
equations to describe the mathematical model of a hermetic 
reciprocating compressor is developed. The main components of the 
reciprocating mechanism (i.e., connecting rod and crank) are 
modelled as rigid bodies, the piston motion is modelled as a particle 
and the main shaft is modelled as a flexible body via finite elements. 

Three different approaches which differ in the definition of the 
restrictive conditions of motion of the centre of the crank have been 
comparatively studied. These three cases are: 

 

- Case (I). Neglecting lateral displacements and tilting 
oscillations of the crank (no hydrodynamic bearings). 

- Case (II). Considering lateral displacements but not tilting 
oscillations of the crank (rigid crankshaft).  

- Case (III). Considering lateral displacements and tilting 
oscillations of the crank (flexible crankshaft). 

 
Although the two first approaches make the problem simpler 

and reduce the computational time, by including the tilting crank 
effect in the model (case III), a more precise estimation of the 
journal bearing forces and the journal orbits may be obtained, 
considering that the oil film thickness is usually only a few 
micrometers thick. In order to include the tilting oscillations of the 
crank, the crankshaft is modelled via finite elements and coupled to 
the motion equations of the piston-slider-crank mechanism through 
the degrees of freedom where the shaft is connected to the crank. 
Furthermore, the fluid film forces in the upper and lower bearings 
are calculated by using analytical solutions of the Reynolds 
equation, and introduced into the equations of the rotor at each time. 
Therefore, depending on the case of study, the dynamics of the 
compressor is described by a different global system of equations. 

Developing of the Multibody Dynamics Model 

The motion equations of the piston-connecting rod-crank system 
have been formulated using the Newton-Euler's method, following 
the methodology suggested by Santos (2001). Figure 2 shows a 
sketch indicating the inertial referential frame IXYZ and the main 
angles of rotation for the four moving reference frames.  

(a) Definition of the Inertial and Moving Reference Systems. 

One inertial reference frame IXYZ and four moving reference frames 
have been defined. The inertial reference frame is attached to the 
centre of the bearing (point O), whereas, the moving reference 
frames B1, B2 and B3 are attached to the crank, and the moving 
reference frame B4 is attached to the connecting rod.  B1 (X1Y1Z1) is 
obtained by rotating I, the angle β, around the X axis; B2 (X2Y2Z2) is 
obtained by rotating B1, the angle Γ, around the Y1 axis; B3 (X3Y3Z3) 
is obtained by rotating B2, the angle θ, around the Z2 axis, and B4 
(X4Y4Z4) is obtained by rotating I, the angle α, around the Z axis. 
The transformation matrices are given by: 
 
Tβ: transformation from the inertial 
frame I to the moving frame B1. 
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Tθ: transformation from the inertial 
frame B2 to the moving frame B3. 
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Tα: transformation from the inertial 
frame I to the moving frame B4. 
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Figure 2. Geometry and reference systems. 

(b) Position Vectors and Constraint Equations. 

A different constraint equation is established for each one of the 
three cases studied. A simplified sketch illustrating how the main 
parts of the system are connected is shown in Fig. 2. The constraint 
equations for each case are given by Eq. (1-3). 

Case (I): 

 
rlx IIpI =+   (1) 

 

where,  
 

rTr 3B
T

I ⋅= θ  ;  { }T
pcB hr −= 03 r   ;   

{ }T0αα sinlcoslI −=l  ; { }T
pBpI hx −= 0x  

Case (II): 

 
crlx IIIpI +=+   (2) 

 

where, the position vector of the centre of the crank is given by: 
 

 { }T
ccI yx   0=c  

Case (III): 

 
crlx IIIpI +=+   (3) 

 
In this case rotations in β and Γ are considered, therefore the vector 
Ir is given by: 

 

rTTTr 3B
TTT

I ⋅⋅⋅= θΓβ  

 

(c) Kinematic Relations. 

The angular velocities for each one of the moving reference 
frames may be written as in Eq. (4). 

 

{ }T00β&& =βI ;  { }T001 Γ&& =ΓB ;   

{ }Tθ&& 002 =θB ;  { }Tα&& −= 00αI  (4) 
 
For the cases (I) and (II), the absolute angular velocity of the 

crank is given by θω &= , since β&  and Γ& are equal to zero. Thus, in 
these cases the moving reference frame B3 will be simply obtained 
by rotating I, the angle θ, around the Z axis. For the case (III) the 
absolute angular velocity written with help of the moving reference 
frame B3, is given by: 

 
θβ ω &&&

3333 BBBB      ++= Γ  (5) 

 
where:  

 
ββ &&

IB ⋅⋅⋅=  βΓθ TTT3 ;  

ΓΓ &&
13 BB ⋅⋅=  Γθ TT  ; θθ &&

23 BB ⋅=  θT  

 
The expressions to calculate the velocities and accelerations of 

the piston ( Bx& , Bx&& ) and the connecting rod (α& ,α&& ) are obtained by 
differentiating the constraint equation for each case respectively, 
Eq. (6-11). 

Case (I): 

- Velocities: 
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- Accelerations: 
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Case (II): 

- Velocities:  
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- Accelerations: 
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Case (III): 

- Velocities 
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-  Accelerations: 
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where: 

 

Cpc xch)sccs(rw &&&& +−+−= ΓΓθΓθθΓΓ1  (12) 
 

Cppc

cc

ycch)sshccsr(

)ssscc(r)sscsc(rw
&&&

&&

++−+

−+−=

ΓββΓβθΓβΓ

θΓβθβθθβθΓββ2  (13) 

 

Ccp

cccpc

xclscrch

ccrssr)ccrsh(csrw

&&&&&&&

&&&&&&

+−−−

−+−+−=

ααθΓθΓΓ

θΓθθΓΓθθΓΓΓθΓΓ
2

2
2

3 2  (14) 

 

Cc

cpc

cpc

ccppc

pccc

ysl)ssscc(r

scsr)schcccr(

)ssccs(r)sshccsr(

)cscrssrcch()cshcssr(

)cshcssrscr()csssc(rw

&&&&&

&&&&

&&&&

&&&

&&

++−+

−−+

+−−+

+−++−

++−+−=

ααθΓβθβθ

θΓβΓθΓβθΓβΓβ

θΓβθββθΓβθΓβΓ

θΓβθβΓββΓβθΓβΓ

ΓβθΓβθββθΓβθβθ

2

2

22
4

22

2
 (15) 

In Eq.(12-15):  
 

θθ sins = ;  θθ cosc = ;  αα sins = ;  αα cosc = ;  
ββ sins = ;  ββ cosc = ;  ΓΓ sins = ;  ΓΓ cosc = . 

(d)  Equations of Motion. 

The equations of motion for each body and for the case (III) are 
given by Eq. (16-20). Since the piston is not the focus of the present 
analysis, it should be noticed that in the modelling of the piston the 
friction forces are not included. 

Crank 

{ }T       cccAIcIcI y,xmm &&&&=⇒⋅=∑ faf  (16) 
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where, 
 

AIAB fTTTf ⋅⋅⋅=  βΓθ3
;  { }T      zB ,, τ003 =τ ; { }T      003 ,,eccmCB =−r  

Connecting Rod 
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where,  
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AIAB fTf  ⋅= α4
;   BIBB aTa  ⋅= α4

;   { }T      00 ,,BxBI &&=a  

Piston 

pINIBIBIpBI m fffaf ++=⋅=∑   (20) 
 

where, 
 

{ }T      00 ,,AP pgpI ⋅=f  
 
For each case the equations of motion may be written in a matrix 

form as in Eq. (21), where the vector b  contains the main unknowns 
(i.e., reaction forces, reaction moments and accelerations). This 
matrix system is fully described for each case in the appendices A, 
B and C respectively. For the case (III), where the flexibility of the 
shaft is included, the matrix system of Eq. (21) has to be coupled to 
the motion equations of the rotor obtained via a finite elements 
formulation, which is presented in the next sections. 

 
cbA =⋅     (21) 

 
 

Modelling of the Rotor 

For the case (III), the main shaft of the compressor is considered 
as a simply rotating beam, supported by the upper and lower 
bearings, as illustrated in Fig. 1. The shaft is modelled as a flexible 
body using a finite elements formulation for a rotor bearing system, 
which includes gyroscopic and rotatory inertia effects (Nelson and 
McVaugh, 1976). Considering that the main focus of this study is 
on the lower mode shapes, the use of this formulation is 
appropriated to this case and only few finite elements have been 
used to model the rotor. The global equation of motion can be 
written as in Eq. (22), where, M , K , G  are the mass, stiffness and 
gyroscopic matrices respectively, and f  is the vector of loads on the 
rotor, which includes: static preload forces (

plI f ), unbalance rotor 

forces ( ubI f ) and the hydrodynamic bearing forces ( bI f ). Based on 
the fluid film theory, the bearing forces are calculated by using 
analytical solutions of the Reynolds equation. These forces depend 
on the linear displacements and velocities of the nodes that in the 
finite element model represent the journal bearings centre.  
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44 344 21
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qKqGfqM
ˆ

⋅−⋅−=⋅  (22) 

Fluid Film Forces 

The governing equation for the pressure distribution of the oil 
film in dynamically loaded journal bearings is given by Eq. (23). 
This equation is obtained from the general formulation of the 
Reynolds equation (Hamrock, 1991). In this equation, φ&  is the 
rotational speed of the journal centre about the bearing centre and 
ε  is the relative eccentricity. 
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The main geometric parameters and reference frames used to 

describe a journal bearing are shown in Fig. 3. The fluid film 
thickness around the bearing circumference can be calculated by 
using the expression: )cos(ch bb ϕε+= 1 , where ϕ  is the angle 
measured from the location of the maximum film thickness. In 
dynamically loaded bearings, the eccentricity and attitude angle 
will vary through the loading cycle. Therefore, the fluid film 
pressure distribution at any eccentricity ratio may be determined 
only if the normal squeeze velocity (ε& ) and the rotational 
velocities ( Ω ,φ& ) are known for the same eccentricity ratio. 
Complete solutions of Eq. (23) may be obtained numerically, and 
solutions for limited cases may be also obtained analytically. 

 

 
Figure 3. Journal bearing geometry. 

 
In this work, analytical solutions for the short-width bearing 

(SJB) and infinitely-long-width bearing (LJB) theories have been 
used. The short-journal-bearing theory assumes that the variation of 
pressure is more significant in the axial direction than in the 
circumferential direction, and therefore the first term on the left side 
of Eq. (23) can be neglected. In contrast, for an infinitely long-
width-journal-bearing, the pressure in the axial direction is assumed 
to be constant, and therefore the side-leakage term, i.e., the second 
term on the left side of Eq. (23) can be neglected. Thus, the 
modified Reynolds equation for each case can be integrated twice 
and analytical expressions for the pressure distribution can be 
found. Assuming that the bearing is well aligned and the viscosity 
of the lubricant keeps constant, the pressure distribution for a SJB 
and a LJB is given by Eq. (24-25). 
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The journal bearing forces are calculated by integrating the 

pressure distribution. If the pressure is integrated over all the fluid 
film around the bearing (i.e, πϕ 20 ≤≤ ), the analytical solution is 
known as a full Sommerfeld solution. However, if the analysis is 
limited to the convergent film (i.e., πϕ ≤≤0 ), the analytical solution 
is known as a half Sommerfeld solution. Because in real bearings 
pressures lower than the ambient’s are rarely found, and using the 
last approach more realistic predictions may be obtained (Hamrock, 
1991). Thus, the analytical expressions to calculate the bearing 
forces in ξ , η  coordinates, using the half Sommerfeld conditions 
for the SJB and LJB approaches respectively, are given by Eq. (26-
29). A detailed procedure to obtain these expressions is included in 
the reference (Frêne, 1990). 

� Hydrodynamic fluid film forces: Short-journal-bearing 
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� Hydrodynamic fluid film forces: Infinitely-long-journal-bearing 
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In order to describe the fluid film forces in the inertial reference 

frame, the transformation given by Eq. (30) is used, where the 
attitude angle )t(φ  is the angle measured between the X-axis and 
the location of the minimum oil film thickness. For the case (II), the 
bearing forces XF  and YF  are coupled directly to the vector c  of  
Eq. (21), whereas, for the case (III), they correspond to the 
components of the vector bI f  of  Eq. (22). 
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Numerical Implementation 

The equations of motion that describe the dynamics of the 
system together with the FEM model of the shaft and the analytical 
expressions for the fluid film forces yield to a system of high 
complexity and non-linearity. A flowchart, with the main steps 
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involved in the numerical algorithm implemented to solve the 
system of equations, is shown in Fig. 4. In this case, a Newmark 
implicit method combined with a predictor-corrector approach has 
been used (Garcia, 1994). The simulation procedure is summarized 
in the following four main steps: 

 
 

Plot Results

Numerical Integration

No

YesYes

No

Yes

Global Matrix System

Input Data
- Geometrical and

physical parameters

ti+1 = ti + ∆t

t < tfinal

Use a smaller ∆t
and start againε < 1

Updating 
- Eccentricity,  ε

- Attitude angle,  φ

Updating
- Displacements

- Velocities

FEM  Module
Rotor: [M],[K],[D]

MBD Module
-Constrain equations
- Motion equations

Initial Conditions,  t = t0
- Displacements

-Velocities

FFF  Module
-Journal bearing forces

 
Figure 4. Flow chart of the computer code. 

 
 
a)  Input data and starting values. In this part, the geometrical 

and physical parameters must be given, i.e., dimensions, rotational 
speed, mass, inertia, preloads, etc. Starting values, such as initial 
displacements and velocities of the journal bearings centre, should 
be also given. 

 

b) Pre-processing. This part includes the generation of 
structural matrices of the multibody model (MBD module) and the 
matrices of the flexible rotor (FEM module). Initial fluid film forces 
can be computed within the FFF module, based on the given initial 
conditions.  

 

c)  Numerical computation. This is the main core of the code, 
which includes the coupling of matrices, the computation of the 
journal bearing forces at each time step and the numerical solution 
of the global system. For the cases (I) and (II), the global systems of 
equations to be numerically solved are included in appendixes A 
and B respectively. However, for the case (III), the system of 
equations shown in appendix C must be coupled to the equations of 
the rotor. In order to couple the MBD matrix system given by Eq. (21) 
to the equations of the flexible rotor given by Eq. (22), the matrix M  
(size ndofndof × ) is coupled to the matrix A  (size 1616× ) in the 
degrees of freedom related to the linear and angular accelerations of 
the crank centre ( 1q&& , 2q&& , 3q&& , 4q&& ), obtaining the global mass matrix 

M~  (size 12+ndof ). Similarly, the vector f̂ , which is the resultant 
right hand side vector of Eq. (22), is coupled to the vector c  of 
Eq. (21). Thus, the global matrix system for case (III) can be 
written as in Eq. (31). 

 
cbM ~~~                   =⋅  (31) 

 

 
 

where,  
 

{ }Tαθ &&&&&& ,x,,f,f,f,f,N,N,f,f,f BzCzAyAxAzyzByBxB=b  ; 

{ }Tndofq,...,q,q &&&&&&&& 21=q  
 
When the system of Eq. (31) is initially solved, the initial forces 

and accelerations ( 0b~ ) are calculated from the initial conditions, 
computing: 

0
1

0 tt
~~ cM ⋅− . Using the Newmark implicit method, the 

iterative equations are given by Eq. (32-34).  
 

{ } 1
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111 +
−
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&&  (32) 

 
[ ( ) ]11 1 ++ +−+= itititit qˆqˆtqq &&&&&&    γγ∆  (33) 

 

[ ( ) ]1

2

1 221
2 ++ +−++= ititititit qˆqˆtqtqq &&&&&     ββ∆∆  (34) 

 
To compute 

1+itq&& , the elements of the vector 
1

~
+it

c  must be 

estimated in advance, which implies to calculate first the journal 
bearing forces bf  at the time 1+it . Since the bearing forces depend 
on the instantaneous position and velocities of the journal centre, the 
Heun's explicit method is used to predict initial guesses for 0

1+it
q&  

and 0
1+it

q . Then, using Eq. (32-34) 1
1+it

q&&  can be calculated, as well 

as new estimated values for 1
1+it

q&  and 1
1+it

q  respectively. These new 

estimated values are used to update the journal bearing forces and 
then, using again Eq. (32) a new estimate for 2

1+it
q&&  can be obtained, 

and so on until the difference of two consecutive values becomes 
smaller than the prescribed tolerance given. Additionally, the 
explicit Euler method of first order is used to estimate the crank 
angle 

itθ  and the instantaneous angular velocity.  
 

d) Post-processing. This part includes the generation of plots of 
journal bearing orbits, journal bearing forces, maximum oil film 
pressure, minimum fluid film thickness, reaction forces and reaction 
moments as a function of the time and the rotational crank angle 
during each cycle. 

(16 x 16)

(ndof  x ndof) 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

    

ˆ

      

  
   

 

f

c

q

b

M

A

&&



Modelling Hermetic Compressors Using Different Constraint Equations to … 

J. of the Braz. Soc. of Mech. Sci. & Eng.    Copyright © 2009 by ABCM January-March 2009, Vol. XXXI, No. 1 / 41 

Results and Discussion 

The system of equations described in the previous sections has 
been numerically solved for each one of the three approaches 
presented. Particularly, the numerical results have been analysed 
with focus on the behaviour of the main bearing of the crankshaft 
(upper journal bearing shown in Fig. 1. The main geometrical 
dimensions and physical properties of the reciprocating 
compressor used in this study are given in table 1. The gas 
pressure as a function of the crank angle is taken from Cho and 
Moon (2005) and it is shown in Fig. 5a. The variation of torque in 
function of the angular velocity for a hermetic compressor with 
similar characteristics to the one used in this work is taken from 
Rigola (2002) and it is shown in Fig. 5b.  

 
 

Table 1. Main geometrical and physical parameters. 

Radius crank-pin centre rc 7.5 mm 
Radius of bearings rb 8 mm 
Width of bearings lb 6 mm 
Journal clearance cb 15 µm 
Length crank pin hp 10 mm 
Distance between bearings L 80 mm 
Inertia of motor-rotor  Ix, Iy = 0.4x10-3 ; Iz = 0.1x10-2 kg.m2 
Diameter of piston Dp 23 mm (Ap = 415.5 mm2) 
Length of the piston lp 22 mm 
Mass of the piston mp 0.043 kg 
Lubricant viscosity µ 0.005 Pa.s 
Angular velocity Ω 312 rad/s (2980 rpm) 
Mass eccentricity of crank ec 5 mm 

 
 
 

 
(a) 

 
(b) 

Figure 5. (a) Curve of the gas pressure (Pg) as a function of the crankshaft 
angle. (b) Curve of the motor torque ( zτ ) as a function of the angular velocity. 

 
 
 

Results - Case (I) 

In this case, lateral displacements and tilting oscillations of the 
crank are neglected. Therefore, the hydrodynamic bearing forces are 
not calculated, but instead the reaction forces and the reaction 
moments at the centre of the crank are calculated. The reaction 
forces in the joint crank pin-connecting rod (fA) and in the joint 
piston-connecting rod (fB) are shown in Fig. 6. The plot of the 
reaction moments is shown in Fig. 7. The maximum forces are 
found close to the top dead centre and it can be seen clearly that the 
reaction forces in X-direction are dominated by the compression 
force coming from the piston and the inertial effects. 

 
 

 
(a) 

 

 
(b) 

Figure 6. Reaction forces. (a) Joint piston-connecting rod. (b) Joint crank-
connecting rod – case(I). 

 
 

 
Figure 7. Crank reaction moments – case (I). 

 

Results - Case (II) 

In this case, tilting oscillations of the crank are neglected and 
lateral displacements are allowed. The hydrodynamic journal forces 
for the upper bearing are computed using Eq. (26-27) and they are 
shown in Fig. 8. It can be seen from this figure that the upper 
bearing forces are similar to the reaction forces obtained for case (I), 
which is expected, due to the fact that the equilibrium conditions 
have to be always accomplished, even if the crank centre is allowed 
to have lateral oscillations.  
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Figure 8. Journal bearing forces – case (II). 

 
 
The orbit of the journal centre for the upper bearing using the 

SJB approach is shown in Fig. 9. The orbit obtained has a similar 
shape compared to predicted orbits of main bearings of internal 
combustion engines (Ritchie, 1975; Pal, 1988). The maximum fluid 
film pressure is computed for each crank angle during four cycles, 
as shown in Fig. 10. It can be observed that the highest values of 
hydrodynamic pressure in the bearings are found at each cycle 
around the top dead centre position of the piston, i.e., when the 
pressure in the cylinder is maximum. 

 
 

 
Figure 9. Orbit journal centre – case (II). 

 
 
 

 
Figure 10. Maximum fluid film pressure – case (II). 

 
 
 
 

Results - Case (III) 

In this case, lateral displacements and tilting oscillations of the 
crank are allowed. Therefore, the matrix system of equations of the 
multibody model is coupled to the equations of the finite elements 
formulation of the crankshaft. Considering that this study is more 
focused on the hydrodynamic behaviour of the journal bearings than 
in the dynamics of the crankshaft, only four finite elements were 
used for the calculations, which are enough to include the flexible 
supports (journal bearings), crank and rotor unbalance, and to 
describe the tilting oscillations of the crank. Moreover, the main 
interest is to cover frequency range from 0 to 5000 Hz. Using a 
linearized model for the journal bearings the first and second bending 
eigenfrequencies of the shaft are around 1050 Hz and 6810 Hz 
respectively. Following the flow chart of Fig. 4, the global system of 
equations was solved by using a time step of ∆t=1e-6s, in order to 
ensure convergence of the solution.  

The fluid film forces computed for the upper and lower bearings 
are shown in Fig. 11. It can be seen from this figure that the upper 
bearing forces are similar to the ones obtained for case (II), 
however, in this case, small transient oscillations occur during the 
first cycles of the crank rotation. The transient oscillations are more 
evident in the plot of the lower bearing forces, since the fluid film 
forces for this bearing are much lower compared to the upper 
bearing forces. During the numerical simulations, it was noticed that 
these oscillations are of numerical origin, caused by the initial 
conditions adopted. The transient response disappears after the first 
cycles and the system operates under steady-state conditions. 

 
 

 
(a) 

 

 
(b) 

Figure 11. Journal bearing forces. (a) Upper bearing, (b) Lower bearing – 
case (III). 

 
 
The minimum fluid film thickness for the upper bearing is 

plotted in Fig. 12a. It is observed in this figure that the lowest 
values of oil film thickness are found during the gas compression 
cycle, at approximately 65deg before the piston reaches the top dead 
centre (i.e., when deg115≈θ , deg475≈θ , deg835≈θ ,…). When 
the plot of minimum fluid film thickness is compared with the plot 
of maximum pressure, shown in Fig. 12b, it can be seen that the 
highest pressures values occur at approximately 30deg after the 
lowest fluid film thickness is reached during each cycle. 
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(a) 

 

 
(b) 

Figure 12. (a) Minimum fluid film thickness. (b) Maximum pressure – 
upper journal bearing – case(III). 

 
 
The effect of including the length of the crank pin (hp) on the 

behaviour of the upper bearing has been studied through the 
comparison of orbits and curves of the minimum fluid film 
thickness, obtained for two different values of hp. Figure 13a shows 
the journal orbits obtained for cases (II) and (III) using hp = 10mm 
and hp = 0. It is shown in the figure that the influence of the 
parameter hp in the orbits is more significant for case (III) than for 
case (II). This is explained by the fact that in the cases (I) and (II), 
tilting oscillations of the crank are not allowed, therefore, transversal 
moments over the crank due to the reaction force fA are equilibrated 
by the reaction moments MX and MY, as shown in Fig. 7. The 
influence of the parameter hp on the variation of the minimum 
fluid film thickness for case (III) can be observed in Fig. 13b. 
Despite the fact that the difference between the two plots does not 
seem to be significant, it is found that at some crank positions 
(e.g., when θ = 1180deg) the difference between the two film 
thicknesses may be as high as 18%. Therefore, in order to estimate 
more accurately the effect of the tilting oscillations of the crank on 
the behaviour of the bearings, it is relevant to include the 
parameter hp in the multibody model of the compressor.  

The difference between the maximum hydrodynamic pressures 
computed by using the SJB and LJB approaches respectively can be 
significant, as it can be seen in Fig. 14. Thus, in order to ensure a 
better estimation of the load carrying capacity, and taking into 
consideration that the bearings of the compressor used for this study 
are short (lb\rb = 0.75), all the results presented in this section were 
obtained by using the SJB approach. 

 
 
 

 
(a) 

 

 
(b) 

Figure 13. Effect of the crank pin length (hp). (a) Orbits. (b) Minimum fluid 
film thickness.  

 
 

 
Figure 14. Maximum fluid film pressure using the SJB and LJB approaches. 

 

Conclusions and Further Aspects 

Three different approaches for the modelling of a hermetic 
reciprocating compressor have been analysed in this work. It was 
found that when the lateral and tilting vibration of the crank are 
included in the model, more precise estimations of the minimum 
film thickness are obtained. However, no significant differences 
were found in the estimation of the hydrodynamic journal bearing 
forces and the fluid film pressures between the different cases 
studied. The maximum forces and the minimum film thickness are 
obtained when the piston is close to the top dead centre. 
Furthermore, a delay of approximately 30deg between the lowest 
value of the minimum oil film thickness and the maximum fluid 
film pressure at each cycle was found. The results showed that the 
nonlinear behaviour of the orbits increases due to the tilting 
oscillations of the crank, influenced by the length of the crank pin. 
The increase of the minimum fluid film thickness and the reduction 
of the bearing vibrations seem to be feasible by modifying the 
hydrodynamic lubrication conditions through the implementation of 
a controllable lubrication system based on the periodic behaviour of 
the bearing performance. In order to develop such a system, further 
work will be carried out.  
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Appendix A. 

Full Matrix of the Multibody Dynamic Model – Case (I):  [ ] { } { }IcIbI A =⋅  
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Appendix B 

Full Matrix of the Multibody Dynamic Model – Case (II):  [ ] { } { }IIcIIbII A =⋅  
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Appendix C 

Full Matrix of the Multibody Dynamic Model – Case (III): [ ] { } { }IIIcIIIbIII A =⋅  

 

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−ΓΓ

−
−

−

−

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

Γ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Γ−
Γ−−−

−
−

−
−Γ

Γ−Γ−Γ−−−
−

−
−

−
−

−−−

16

15

14

13

2

2

12111098

1
3

1
2

1
1

765

4

321

0
0

0

0

000000000
00000000000

000000001000000
000000000100000

100000000000
0011000000000

000000000
0000000110000000
000000000000
000000000000000
0000000010000100
000000001000010
00000000100001
0000000000010100
0000000000001010
000000000000001

C
C

C
C
cI
gm

gmr
gm

srm
crm

gm

AP

y
x

x

f
f
f
f
N
N
f
f
f

cIscICCCCC
sIccIrChrChrCh

m
m

CClcC
Clsscr

sIcsemsemIICCC

Isrmlcls
l

crm
srmm

m

zc

c

crcr

cr

crcr

crcr

p

pg

C

C

B

C

A

A

A

Z

Y

B

B

B

cc

cccpcpcp

c

c

c

cccccmc

crcrcr

crcr

crcrcr

p

Z

Z

Z

Y

X

Z

Y

X

YY

XX

ZZZ

Z

τβ

αα
αα

β

α

θ

θθ
θθ

α
αθ

β

ααα

α
α

&&

&

&

&&

&&

&&

&&

&&

&&

&&

 

 
 
 
 
 
 
 
 
 
 



Edgar A. Estupiñan and Ilmar F. Santos 

46 / Vol. XXXI, No. 1, January-March 2009 ABCM 

where: 
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