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In-plane Strain Measurement by 
Digital Image Correlation 
This paper presents a “fast and simple” (FAS) detection algorithm based on the digital 
image correlation for measurement of the surface deformation of planar objects.  The 
proposed algorithm uses only fine search at the pixel level resolution and surface fitting for 
sub-pixel level.  Two different specimens are investigated to explore the feasibility of this 
proposed algorithm.  The displacements calculated by the FAS algorithm are compared 
with the ones obtained from Newton-Raphson method (N-R) and Enhanced Sequential 
Similarity Detection Algorithm (ESSDA).  The results show that the experimental data are 
in good agreement with the theoretical solution.  The proposed algorithm is found to be 
much faster than Newton-Raphson method with inferior, yet reasonable, accuracy for 
displacement and strain evaluation in the cases of uniaxial tension and disk under 
diametrical compression tests. 
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Introduction 

The measurement of displacements and displacement gradients 
(strains) has always been an important topic in the evaluation of 
material properties, such as material strengths or fracture parameters 
and in experimental stress analysis.  Optical techniques such as 
moiré interferometry (Post, 1983), holography (Fottenburg,,1969) 
and speckle inteferometry (Wang, Chen and Chiang, 1993) have 
been proven to be matured techniques to analyze macroscopic 
parameters and are being applied successfully in many different 
applications.  However, all the interferometric techniques have 
stringent requirements for system’s stability.  Moreover, the 
processing of fringe patterns is laborious and time-consuming.  This 
technical difficulty has raised many researchers’ attention and 
computerized procedures (Bastawros and Voloshin, 1990) have 
been developed to automate the processing of the data from the 
fringe patterns.1 

In the last decade, a non-contacting optical technique, digital 
image correlation, has been developed by Sutton et al. (1983, 1986, 
1988, 1991) and Bruck, et al. (1989).  It was applied to 
measurement of displacements and strains.  The applications include 
microscopic strain measurements in electronic packaging (Lu, 
1998), strain fields in polyurethane foam plastic materials and 
evaluation of their mechanical properties (Zhang, Zhang and Cheng, 
1999), and evaluation of thermal strain in the solder joints (Lu, Yeh 
and Wyatt, 1998).  This methodology was even used for in situ 
evaluation of the state of conservation of mural frescoes (Spagnolo, 
et al., 1997). This computer vision technique has the advantages of a 
simple system and direct sensing and thus avoids the laborious 
interpretation of interferometric fringes.  The technique utilizes two 
similarly speckled images, which were captured by a solid state 
video camera, to represent the states of the object before and after 
deformation. By utilizing the concept of digitalization, one can 
characterize the image by the patterns of different levels of light 
intensity.  Both of the digitized images are then correlated by an 
algorithm, based on their mutual correlation coefficient or other 
statistical functions, to find out the subtle differences between them. 

The core of digital image correlation in this application depends 
on the ability to recognize two nearly similar, yet different, image 
patterns.  Nevertheless, one could always use brute force (blanket 
method) to correlate both images grid by grid to their desired 
accuracy (Cardenas-Garcia, Yao and Zheng, 1993), but the 
consumption of CPU time would be enormous and impractical.  
Therefore, an efficient method to optimize the algorithm is needed 
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to carry out the image correlation.  A decade ago, an improved 
algorithm, Newton-Raphson method with partial differential 
correction, was used and it was shown that the computation of 
correlation has been drastically decreased in comparison with the 
coarse-fine search algorithm (Bruck, et al., 1989).  Their 
methodology assumes that the local deformation is uniform and 
therefore the local deformation could be represented by two 
displacements and four displacement gradients, or so called direct 
strains. The Newton-Raphson method can provide fast convergence 
in searching for the local minimum with high accuracy, but the 
displacement gradients (direct strains), found in the best-matching 
pattern, are still shown to have a large variability (Bruck, et al., 
1989).  Therefore it was suggested that the strains derived from 
displacement functions should be more accurate than direct strains. 
Their work showed that an accuracy of ±0.05 pixel in two-
dimensional displacement measurements could be achieved if one 
uses an 8-bit digitizer.  A further improvement could be achieved if 
a 12-bit digitization is used (Sutton et al., 1988). 

In spite of the great improvement in the convergence speed, the 
Newton-Raphson method with partial differential correction still 
suffers from significant consumption of computation time in 
detecting the local minimum.  A simple search algorithm, which 
will allow approach of digital image correlation more applicable for 
practical use, is proposed here.  The proposed algorithm uses fine 
search (pixel by pixel) on the pixel level with fixed area.  The 
location of the local minimum on sub-pixel level is then decided 
based on the fitting surface to the range of discrete pixels 
surrounding the solution on the pixel level.  The accuracy of 
experimental results from this proposed algorithm may not to be 
superior to the Newton-Raphson method with partial differential 
correction.  However, the experimental results show that the 
detection speed is increased sufficiently while the degradation in 
accuracy was acceptable for practical use. 

Nomenclature 

A(i,j), B(i,j)  = light intensity at location i,j 
B, a, r = matrixes in equation (4) 
i,j = location in the reference image 
i*,j* = location in the deformed image 
f(x,y) = fitting surface 
m,n = subset size in pixels 
p = nearest location 
r(i,j) = mutual cross coefficient 
u, v = the displacement of the pixel 
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Digital Image Correlation 

Digital image correlation is an application based on the 
comparison of two images acquired at different states, one before 
deformation and the other one after.  These two images are referred 
as reference and deformed images in the scope of this paper.  After 
acquisition by a CCD camera, these images are digitized and stored 
in a computer hard disk for analyses.  Two subsets are chosen 
respectively from the reference and deformed images for 
correlation.  The algorithm of correlation, detecting the local 
displacements u and v by comparing the two image subsets, is as 
follows.  

The interested point in the reference image is characterized by a 
rectangular subset, an (n x m) pixel area.  The corresponding subset, 
also an (n x m) pixel area, in the deformed image is estimated at a 
certain location with a specified range.  A fine search routine, pixel 
by pixel, is performed within the specified range in the deformed 
image.  The nearest location p at the pixel level, as shown in Fig.1, 
is selected based on the occurrence of the best-matched pattern 
(Press, et al., 1992), which has the minimum value of mutual cross 
coefficient r(i,j). 
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p is the nearest location at pixel level to the true solution (u,v).
 2..9 are locations of the 8 neighboring pixels   

Figure 1. Pixel level solution (p) and its neighbors. 
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where A(i , j) is the gray level at the location of (i , j) in the 
reference image A, 

  B(i* , j*) represents the gray level at the location of (i* , j*) 
in the deformed image B. 

The relationship between (i , j) and (i* , j*) could be described 
as follows. 

 
v j  * j u ,  i  * i +=+=  (2) 

 
where u, v represent the displacement of the pixel of (i , j) in the 
horizontal and vertical directions, respectively. 
The next step is to decide the exact values of u and v.  The selected 
most nearest location p and its eight neighboring pixel locations will 
constitute a fitting surface that can be represented by a two 
dimensional quadratic function f(x,y). 

 

6543
2

2
2

1 ayaxaxyayaxa)y,x(f +++++=  (3) 
 

It is assumed that the displacements u and v could be defined based 
on the location of the minimum value of the fitting surface.  Thus, to 
find the values of u and v requires solving a set of nine linear 
equations, 
 

raB =⋅  (4) 
 
where B is a 9x6 matrix, consisting of the evaluation of each term in 
function f(x,y), 
a is a 6x1 vector, representing the unknown coefficients a1..a6, 
r is a 9x1 vector consisting of the evaluation of r(i , j) at the 
locations as described in Figure 1.  Since the number of unknowns is 
less than the number of the equations, one is expected to find the 
least-squares solution to this overdetermined set of linear equations.  
This equation set is solved by using a numeric technique SVD 
(Press, et al., 1992), singular value decomposition, to decompose the 
matrix B.  The evaluations of u and v can be obtained by solving the 
following linear equations, 
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The displacement fields of u and v can then be determined 

simply by substituting different r vector into the above iterating 
process. 

Experimental Validation 

In order to create a characteristic pattern on the specimen 
surface, the specimen was sprayed by a white paint to obtain a white 
background. Black speckles were then deposited on the white 
surface by randomly spraying the black paint on the background.  
The testing specimen then was installed into a loading frame and 
speckle patterns were acquired at various loading conditions.  In 
order to verify the validity range of the proposed numerical 
algorithm for digital image correlation, three basic tests: inherent 
error estimation, translation and rotation, were performed. 

Inherent errors 

The first experiment, static error estimation, was designed to 
evaluate the inherent errors incurred by signal and lighting variation.  
The reference and deformed images are acquired at a static state 
without external loading or movement.  An averaging technique is 
applied to the correlation process.  This averaging procedure was to 
divide the sum of n (≤ 50) multiple images by n.  The time of 
averaging an image 50 times is about five seconds. The detected 
errors are calculated by (δx2 + δy2)1/2, where δx and δy are the 
detection error in the horizontal and vertical directions, respectively.  
Experimental results show that the inherent errors are not decreased 
by increasing the number of averaging times, as shown in Fig. 2.  
The comparison between no averaging and averaged 50 times is 
presented in the Table 1. 
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Figure 2. Inherent error versus number of averages in FAS algorithm. 
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Table 1. Inherent errors due to the signal and lighting variation. 

Deformation 
Parameters 

u 
(pixel) 

v 
(pixel) ∂u/∂x ∂u/∂y ∂v/∂y ∂v/∂x 

Both images with 
no averaging 

0.00518 
±0.0017 

-0.00496 
±0.00124 

0.000543 
±0.000433 

-0.000277 
±0.000306 

0.000596 
±0.000261 

-0.000160 
±0.000208 

Both images 
averaged 50 times  

0.002257 
±0.001449 

-0.006464 
±0.000519 

0.000482 
±0.000720 

0.000396 
±0.000252 

0.000297 
±0.000399 

-0.000095 
±0.000167 

Translation Test 

The second experiment, translation test, was designed to 
evaluate the accuracy of a rigid body translation. The specimen with 
speckled pattern was translated at an increment of 0.005 mm.  The 
resolution of this optical setup was 0.069 mm/pixel, which means 
that each increment was about 0.072 pixel.  Experimental results, as 
shown in Fig. 3, show that the predicted displacements are in good 
agreement with the actual translation. 
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Figure 3. Experimental results for the translation tests (an increment of 
0.072 pixel). 

In-Plane Rotation Test 

Since the algorithm proposed here matches the images with the 
fixed rectangular areas, the influence of in-plane rotation is 
predicted to be significant.  The specimen with speckled pattern was 
rotated about the z-axis at an increment of 1° until 10° angle was 
reached.  Experimental results show that the prediction of rotation 
angle is valid until the actual rotation is more than 7°, as shown in 
Fig. 4.  At this orientation, the specified area starts to lose its 
perceptiveness and the search wanders off, which results in 
detection of the wrong displacements.  This is clearly seen from the 
plots of the correlation profiles for the case of one (Fig. 5a) and 
eight (Fig. 5b) degrees of the sample rotation. It could be easily 
observed that at the eight degrees of rotation there is no obvious 
peak in the correlation profile when comparing to the correlation 
profile corresponding to one degree of rotation. 
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Figure 4. Experimental results for the rotation tests. 

 

 
(a) 

 
(b) 

Figure 5. Effect of the image rotation on the correlation function.               
a) rotation of one degree; b) rotation of eight degrees. 
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Tension Test 

An aluminum plate was machined to a dog-bone like specimen 
for a uniform uniaxial tension test.  The length of the specimen was 
115 mm with a cross sectional area of 28 mm2.  Three strain gages 
were mounted on one side of the specimen and placed at angles of 
00, 450 and 900 with respect to the loading axis.  Each one of the 
three strain gages was arranged in a quarter Wheatstone bridge, 
respectively, so that an early detection of misalignment between the 
specimen direction and the loading axis could be detected by 
monitoring the shear strain γ at the gage location. 

 

45 0 902γ ε ε ε= − −  (6) 
 
In the case of the pure axial loading the shear strain should be 

zero. 
On the other side of the specimen was painted randomly to yield 

a speckled pattern.  The specimen was installed into an INSTRON, 
model 1011.  During the loading history the speckled pattern and the 
readings of strain gages were recorded.  Two conspicuous makers, 
along the loading axis, on the speckled surface were also recorded in 
the images during the test.  The initial distance between these two 
makers was about 400 pixels long so it was possible to estimate the 
average strain in the specimen by measuring the relative difference 
in their positions.  Newton-Raphson method and FAS algorithm 
were applied to correlate five discrete image subsets from the 
reference and deformed image.  The linear regression approach was 
used to smooth the measured data.  The experimental results are 
illustrated in Fig. 6. 
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Figure 6.  Aluminum specimen under axial load.  Longitudinal strains by 
FAS algorithm, Newton-Raphson method, relative makers’ position and 
strain gages are shown vs. applied stresses. 

Compression test 

A circular disk made from Plexiglas was installed into an 
INSTRON and diametrical compression was applied to it as shown 
in Fig. 7.  The speckle images at different loading stages were 
recorded.  The random speckle pattern as it was recorded before the 
application of the load is shown in Fig. 8.  Three different 
algorithms were used to calculate the strains: Newton-Raphson 
method, ESSDA (Umezaki, Shimamoto and Watanabe, 1993) and 
FAS method for comparison.  Since the computational results from 
ESSDA showed large inconsistency, therefore only the results of 
Newton-Raphson and FAS are compared with theoretical solutions 
(Mal and Singh, 1991).  The experimental results for εx, εy, γxy and 
the corresponding theoretical solution are illustrated in Figs. 9, 10 
and 11.  Relatively large deviation of the calculated strain εx (Fig. 9) 
from the theoretical predictions at about 10 mm from the disk center 

may be attributed to the speckle quality and size distribution at this 
particular location.  The computation time for each algorithm is 
listed in Table 2.  It should be noted that those times show only 
relative performance of one algorithm versus another and not an 
absolute time, which may be dependent on the number of factors, 
like programming efficiency, use of language, etc. 

 

 
Figure 7.  Plexiglas disk under diametrical compression. 

 

 
 
 
 

Figure 8.  Random speckle pattern applied to the disk. 
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Figure 9. Strain ∂∂u/∂∂x along the line ab at a circular disk subjected to 3910 
N. 
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Figure 10. Strain ∂∂v/∂∂y along the line ab at a circular disk subjected to 
3910 N. 
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Figure 11 Strain (∂∂u/∂∂y + ∂∂v/∂∂x) along the line ab at a circular disk 
subjected to 3910 N. 

 

Table 2. The CPU consumption for each algorithm is measured on a PC 
System with an Intel Pentium II 300 MHz processor.  The consumed time 
for N-R algorithm is computed based on an average of 9 iterations for 
each point. 

A 14  x 14 area Newton-Raphson ESSDA FAS 
CPU (second) 600 1.54 1.5 

Speckle Size 

The average size of speckles and its distribution in the random 
pattern plays an important role in these similarity-searching 
algorithms.  It was found, through testing that the speckles should be 
two to three pixels in size, when imaged by the video camera, in 
order to achieve satisfactory correlation results by using the coarse-
fine search method (Bruck et al., 1989).  Nevertheless, the influence 
of the average speckle size is expected to be more significant in the 
FAS algorithm because it lacks the ability to adjust the 
dimensionality or shape of the target window with respect to the 
corresponding deformation.  Therefore an investigation of strains 
against different speckle sizes was performed.  Figure 12 shows the 
calculated result of a normal strain εx with respect to different 
average speckle sizes in the uniaxial tension test.  The variety in 
average speckle size was obtained by equally resizing both 
dimensions of the original pattern of the acquired image, either by 
dezooming or zooming.  The bicubic interpolation process was 
adapted for zooming the pattern, while the averaging method was 
used for dezooming.  The average speckle size was sampled from 
each image and calculated using digital image processing 
procedures (Matrox Image Processing, 1997).  The speckle size 
analysis was performed by binarizing the images, based on their 
thresholds, and then measuring and averaging speckle diameters at 
various cross-sections.   

The study of the effects of the speckle size on the measured 
strain was performed for two normal strain values: 0.046 and 
0.0029. The sample from the above describes tensile test was used 
for this analysis.  The sample was loaded until the desired normal 
strain was achieved, as measured by the strain gages.  The strain 
was calculated at five randomly selected locations near the center of 
the sample.  The average of these five values is shown in Fig. 12 ( 
solid line) for the range of speckle sizes (2-14 pixels).  It is found 
that, at a mean strain of 0.046, the calculated strain starts to deviate 
from the applied strain when the average speckle size is greater than 
ten pixels.  A similar investigation was performed for a mean strain 
of 0.0029 and the results are shown in Fig. 13.  The deviation of 
data from mean strain happens when the average speckle size is less 
than two pixels.  These results indicate that the appropriate speckle 
size in the uniaxial tensile test should fall between two and ten 
pixels for accurate measurement of the normal strain in the range of 
0.0029 to 0.046. 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15

speckle size (pixel)

εx

mean strain

FAS

 
Figure 12.  Strain εx measured by FAS with respect to different speckle 
sizes in uniaxial tension test. 
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Figure 13. Strain εεx measured by FAS with respect to different speckle 
sizes in uniaxial tension test. 

 
However, presence of the shear strain will lead to the distortion 

of the target window and, therefore, could put stricter requirements 
on the validity of the average speckle size.  The effect of the average 
speckle size on the calculated strains, in a disk subjected to 
diametrical compression test, is shown in Figs. 14, 15 and 16.  It is 
found from this analysis that to achieve a reasonable correlation 
results the average speckle diameter should be four to seven pixels. 
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Figure 14. Strain εεx measured by FAS with respect to different speckle 
sizes (in pixels) in diametrical compression test. 

 

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0 5 10 15 20

location (mm)

y

Theory

FAS(2.5)

FAS(4)

FAS(5)

FAS(7)

FAS(10)

FAS(15)

 
Figure 15. Strain εεy measured by FAS with respect to different speckle 
sizes (in pixels) in diametrical compression test. 
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Figure 16. Strain γγxy measured by FAS with respect to different speckle 
sizes (in pixels) in diametrical compression test. 

 
When speckle size is reduced to less than two pixels, its actual 

location and light intensity will have higher uncertainty than that for 
a speckle of larger size. The main reason is that the effect of a given 
speckle (its perceived location and brightness) will be different 
depending on its position.  Let us consider two extreme cases.  
When speckle center falls on the center of a pixel, it will be sensed 
by nine pixels, as schematically shown in the Fig. 17a, while when 
its center falls on the corner of a pixels – it will be sensed by only 
four pixels (Fig. 17b).  Thus, for a small speckle of only two pixels 
in diameter, it will lead to greater errors in the determination of the 
speckle location and average light intensity.  For the speckle of a 
larger size these errors will be minimized.  However, when speckle 
size becomes too large, the ability to accurately measure smaller 
strains will be diminished.  

 
 
 
 
 
 

 (a) (b) 

Figure 17.Schematic of the possible locations for the small speckle 
(dashed line) with respect to the pixel (solid line). (a) speckle center 
coincides with the pixel center. (b) speckle center coincides with the 
corner of the pixel. 

Discussion 

The area-based algorithm for digital image correlation, 
described in this work, is a technique utilizing the image pixel 
correspondence with fixed areas.  Since the specified area is fixed 
through out the correlation process, two important factors that will 
affect the correlation accuracy need to be noted.  Firstly, the 
quantity of geometric distortion within the target area in the 
deformed image must be small enough not to inhibit the matching of 
the speckled patterns.  Secondly, the magnitude of gray level 
variations within the specified area must be sufficiently large to 
provide the required characteristics for local similarity of the image 
parts.  The variation of gray levels could be increased by increasing 
the size of the specified area.  However, the effects of perspective 
geometric distortion could be minimized through smaller specified 
areas.  Therefore, the decision about the dimensionality of the 
specified area has to accommodate the consideration of these two 
conflicting factors.  Currently there is no systematic method to 
access this problem.  Hence the optimized dimensionality in this 
research was decided on a trial and error basis. 

In order to reduce the computational errors, most applications of 
digital image processing do perform an averaging of the images to 
filter out the optical noise and electrical signal variation.  However, 
from the experimental results of the inherent errors, based on 
different averaging number, it appears that the inherent errors are 
insensitive to the averaging method and the errors are kept at an 
approximate value of 0.005 pixel. 

The experimental data of baseline test for rigid body translation 
shows that the calculation of displacements could be as accurate as 
0.07 pixel in this optical setup.  The rotation test was used to 
evaluate the influence of ∂u/∂y and ∂v/∂x on correlation.  The 
experimental results show that the calculations for rotation are valid 
only until 7°.  However, with the combination of other 
deformations, ∂u/∂x and ∂v/∂y, the applicability of this algorithm 
could be affected significantly. 

In the uniaxial test for εx ranging from 0.0029 to 0.046 the 
average error, after smoothing, was found to be about 5.8%.  
However, in the diametrical compression test the average errors for 
strain measurement were found to be higher.  The local distortions 
and deviations in the speckle size were considered to be the major 
contributions to the measurement errors.  Significant deviation of 
the calculated strain εx (Fig. 9) from the theoretical predictions at 
about 10 mm from the disk center may be attributed to the speckle 
quality and size distribution at this location.  Nevertheless, the 
majority of measured strain values (εx, εy and γxy) show a reasonably 
good agreement with the theoretical predictions (Figs. 9, 10 and 11). 
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Conclusions 

This research presents an analysis of an area-based image 
matching technique under geometric distortion.  The translation and 
rotation baseline tests show the precision and limitations of this 
algorithm.  However, it should be noted that with the existence of 
large distortions, the specified area is liable to lose its 
perceptiveness in recognizing the target area.  In such case, the 
detection of displacements may wander off and hence the precision 
of this method would be reduced significantly. 

The inherent errors of using the proposed algorithm to correlate 
two speckled patterns were also analyzed.  The experimental data 
from the tensile test show good agreement with the readings of 
strain gages in the range from 0.0029 to 0.046.  This result indicates 
that for the uniform tension test, this method is a very convenient, 
fast, and efficient tool.  Less accuracy was achieved in a disk under 
diametrical compression test.  Therefore the proposed here approach 
may not be applicable when accurate data is required and the 
processing time is not a problem.  However, the facts that the errors 
are not sensitive to the averaging technique and the relatively small 
consumption of the computational time in detecting the 
displacements and strains suggest that this method has a potential 
for online quality analysis where time is of essence.  
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