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Geometrically Nonlinear Static and 
Dynamic Analysis of Composite 
Laminates Shells With a Triangular 
Finite Element 
Geometrically nonlinear static and dynamic behaviour of laminate composite shells are 
analyzed in this work using the Finite Element Method (FEM). Triangular elements with 
three nodes and six degrees of freedom per node (three displacement and three rotation 
components) are used. For static analysis the nonlinear equilibrium equations are solved 
using the Generalized Displacement Control Method (GDCM) while the dynamic solution 
is performed using the classical Newmark Method with an Updated Lagrangean 
Formulation (ULF). The system of equations is solved using the Gradient Cojugate 
Method (GCM) and in nonlinear cases with finite rotations and displacements an iterative-
incremental scheme is employed. Numerical examples are presented and compared with 
results obtained by other authors with different kind of elements and different schemes. 
Keywords: geometrically nonlinear analysis, laminate composite, static and dynamic 
analysis of shells 

Introduction 
1It is well known that laminate composite materials are 

nowadays commonly used in the aeronautical, aerospace, naval and 
other industries mainly because their attractive properties as 
compared to isotropic materials, such as higher stiffness/weight, 
higher strength, higher damping and good properties related to 
thermal or acoustic isolation, among others. 

A triangular finite element (GPL-T9) presented previously by 
Zhang, Lu and Kuang (1998) and by Teixeira (2001) for isotropic 
materials was extended to geometrically nonlinear shell analyses.   

It was considered the Classical Lamination Theory (CLT) given 
by Jones (1999), where the complete laminate, having several 
layers, is analyzed as an equivalent material with only one layer. 

To analyze geometrically nonlinear static problems the 
Generalized Displacement Control Method (Yang and Shieh, 1990) 
was used because it is suitable for problems with multiple critical 
points. 

For geometrically nonlinear dynamic problems the Newmark’s 
Method and an Updated Lagrangean Formulation (Bathe, 1996) 
were employed. 

The system of equations was solved using a Pre-conditioned 
Gradient Conjugate Method and an incremental/iterative scheme 
(Teixeira, 2001). 

Several examples are analyzed and compared with results 
obtained by other authors, showing that this element, where its mass 
and stiffness matrices can be implemented analytically, is able to 
solve structures involving thin plates and shells of composite 
materials very efficiently. 

Nomenclature 

A  =element area, m2 (in2) 
a  =coefficients of Newmark’s method 
B  =strain-displacement matrix 
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C  =damping matrix 
D  =material properties matrix 
E =elastic moduli N/m2 (lb/in2) 
e  =linear strain m/m (in/in) 
F =nodal vector of internal forces, N (lb) 
f =forces, N (lb) 
G =shear modulus, N/m2 (lb/in2) 
h =thickness, m (in) 
H =interpolation functions 
K =stiffness matrix 
L =area coordinates 
M =nodal vector of bending internal forces 
Mm =mass matrix 
MN =nodal vector of bending-membrane coupling internal force 
N =nodal vector of membrane internal forces 
NM =nodal vector of membrane-bending coupling internal force 
Q =elastic constants 
ℜ =external forces, N (lb) 
R =nodal vector of external loads 
r  =transformation matrix 
S  =second Piola-Kirchhoff stress tensor, N/m2 (lb/in2) 
T  =membrane internal forces,  N (lb) 
t  =time, s (s) 
u  =displacement, m (in) 
V  =domain (volume), m3 (in3) 
w  =vertical displacement, m (in) 
X  =deformation gradient 
x  =cartesian coordinate 
y  =cartesian coordinate 
z  = cartesian coordinate 

Greek Symbols 

α =coefficient of Newmark’s method 
γ = angle between xg and xl, rad (rad) 
∆ =increment 
δ =coefficient of Newmark’s method 
ε =Green-Lagrange strain tensor, m/m (in/in) 
η =nonlinear strain m/m (in/in) 
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Θ =rotations 
θ =angle between xg and 1, rad (rad) 
Λ =matrix of cosines 
λ =cosine of angles between local and global coordinate 

systems  
ν =Poisson coefficient 
ρ =specific mass, kg/m3 (lb.s2/in4) 
τ =Cauchy stress tensor, N/m2 (lb/in2) 

Subscripts 

b relative to the bending 
bm relative to the bending-membrane coupling 
g relative to the global 
i,j,m index  
k relative to the layer 
L linear 
l relative to the local 
m relative to the membrane 
mb relative to the membrane-bending coupling 
NL nonlinear 
r,s index 
x relative to x coordinate 
y relative to y coordinate 
z relative to z coordinate 
γ relative to the γ  angle 

Superscripts 

B relative to the body 
e relative to the element 
i iteration 
k relative to the layer 
n number of layers 
S relative to the surface 
T transpose 
t indicate a configuration at time t
t+∆t indicate a configuration at time t+∆t  
_ relative to the global coordinate system 
.. indicate a second derivative in time

The Incremental Equilibrium Equation 

Starting from the principle of virtual work, the incremental 
equilibrium equation for geometrically nonlinear static problems, 
using an Updated Lagrangean Formulation, is given by: 

t t t
t ij t ij ij t ijt tV V

S dV dV∆ δ ∆ε τ δ ∆η+ =∫ ∫   

( )t t t t
ij t ijtV

e dV i, j 1,2,3 .∆ τ δ ∆+ − =∫ℜℜℜℜ  (1) 

where t ijS∆  are the increments of the second Piola-Kirchhoff stress 

tensor components referred to the configuration at time t, t ijδ ∆ε
are the increments of the virtual Green-Lagrange strain tensor 
components referred to the configurations at time t (these 
increments of the virtual strain components are decomposed in the 
sum of increments of linear strain components t ijeδ ∆  and nonlinear 

strain components t ijδ ∆η ), t
ijτ  are the cartesian components of the 

Cauchy stress tensor at time t, and t t∆+ ℜℜℜℜ  are components of the 
external forces at time t t∆+  given by: 

t t t t B t t t t S S t t
i i i it t t tV A

f u dV f u dA∆ ∆ ∆ ∆ ∆
∆ ∆δ δ+ + + + +

+ += +∫ ∫ℜℜℜℜ

(2) 

with B
if  and S

if  being the components of the body force and the 

surface force, respectively; and iuδ  the components of virtual 

displacement vector at time t t∆+ . In Eq.(1) and Eq.(2) V and A
indicate, respectively, the domain and its boundary. 

It is worthwhile to remember that the second Piola-Kirchhoff 
stress tensor components at time t t∆+  referred to their 
configurations at time t are given by: 

t t t t t t t t t
t ij ij t ij t t t i ,k kl t t j ,lS S det x x∆ ∆ ∆

∆ ∆τ ∆ τ+ + +
+ += + = X

( i, j ,k ,l 1,2,3 )=  (3) 

where t t
tdet ∆+ X is the determinant of the deformation gradient and 

t
t i

t t i ,k t t
k

x
x

x
∆ ∆+ +

∂
=

∂
;   

t t
t t i

t ij t
j

x
X

x

∆
∆

+
+ ∂=

∂
. (4) 

On the other hand, the components of the Green-Lagrange strain 
tensor in terms of displacement components ( u ) at time t t∆+ , 
referred to the configuration at time t, are given by: 

( ) ( ) ( )t t t t t t t t t t
t ij t i , j t j ,i t k ,i t k , j

1
u u u u i, j ,k 1,2,3 .

2
∆ ∆ ∆ ∆ ∆ε+ + + + + = + + =  

(5) 

Equation (5) may be also written as follows: 

( )t t
t ij t ij t ij t ije i, j 1,2,3∆ ε ∆ε ∆ ∆η+ = = + =  (6) 

with the linear and nonlinear terms given, respectively, by: 

( )t ij t i , j t j ,i
1

e u u
2

∆ ∆ ∆= +    and    t ij t k ,i t k , j
1

u u
2

∆η ∆ ∆=

( )i, j 1,2,3 .=   (7) 

Linearizing the first term of the left hand side in Eq.(1), one 
obtains: 

t t t t t
t ijrs t rs t ij ij t ijt tV V
D e e dV dV ∆∆ δ ∆ τ δ ∆η ++ = ℜ∫ ∫   

( )t t
ij t ijtV

e dV i, j ,r ,s 1,2,3 .τ δ ∆− =∫  (8) 

where the incremental constitutive relation was used and being 

t ijrsD  the components of the fourth order constitutive tensor 

containing material properties. 
For dynamic problems it is necessary to add an inertia force to 

the equilibrium equation of motion, which may be written as 
follows: 

t t t t t t t t t t t t
i i t ij t ijt t t tV V

u u dV S dV∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ρ δ δ ε+ + + + + +

+ ++ =∫ ∫&&   

t t∆+ ℜℜℜℜ       ( )i, j 1,2,3=   (9) 
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where iu&&  indicates de second derivative of the displacement 

components with respect to time and t t∆ ρ+  is the specific mass at 
time t t∆+ . 

The Triangular Finite Element for Thin Plates and Shells  

Assuming the Kirchhoff theory, incremental displacement 
components may be expressed as follows: 

( )z
i i ,iu u w z i 1,2∆ ∆= − =       and     zw w∆ ∆=  (10) 

where i 1,2=  represent directions corresponding to the local axis x

and y, respectively; iu∆  are displacement components in the mid 

plane; w and w∆  are the vertical displacement and its respective 
increment; z is the coordinate value in the perpendicular direction to 
the mid plane, which is taken as the reference plane. 
Substituting Eq.(10) in Eq.(7), it is obtained: 

( )z
ij i , j j ,i ,ij

1
e u u w z

2
∆ ∆ ∆ ∆= + −    and 

( )z
ij k ,i k , j ,i , j

1
u u w w

2
∆η ∆ ∆ ∆ ∆= +    ( )i, j ,k 1,2= . (11) 

A typical triangular element with membrane and bending 
degrees of freedom, including drilling, is presented in Fig. 1. 

Figure 1. Triangular element with membrane and bending degrees of 
freedom. 

Membrane displacement components field may be interpolated 
with respect to nodal membrane displacement components as 
follows: 

x e
m m

y

u

u

 
= 

  
H u (12) 

where the vector of membrane nodal displacement components and 
the corresponding interpolation functions are given, respectively, by 
(Zhang, Lu and Kuang, 1998; Teixeira, 2001): 

Te
mi xi yi ziu u Θ =  u ;     

i u i
mi

i v i

L 0 H

0 L H

Θ

Θ

 
=  
  

H  (13) 

being 

( )u i m j j mi

1
H L b L b L

2Θ = −    and   ( )v i m j j mi

1
H L c L c L

2Θ = −  (14) 

i j mb y y= −    and   i m jc x x= − ,   i 1, j 2, m 3= = =  (15) 

with iL  representing area coordinates and denoting by ix  and iy

the nodal coordinates. By cycling i j m→ → , shape functions for 

i 2,3=  can be obtained. The area coordinates are defined by: 

( ) ( )i j m m j j m m j
1

L x y x y x y y y x x
2A

 = − + − + −   (16) 

being A  the triangular element area, given by: 

( )i j j i
1

A b c b c
2

= −          ( )i, j 1,2,3= .  (17) 

The displacement component, perpendicular to the element mid 
plane, may be interpolated with respect to the bending nodal 
displacement components as follows (Zhang, Lu and Kuang, 1998; 
Teixeira, 2001): 

e
b bw = H u (18) 

where the vector of bending nodal displacement components and 
corresponding interpolation functions are given, respectively, by: 

Te
bi i xi yiw Θ Θ =  u ; ( )bi i xi yiH H H i 1,2,3 = = H  (19) 

being: 

( ) ( )i i i j j m mH L 2F 1 r F 1 r F= − + − + +  (20) 

( )xi m i j j m i j m i
1

H b L L b L L b b F
2
= − − + − +

( ) ( )j j m j m m j mr b b F r b b F + + −   (21) 

( )yi m i j j m i j m i
1

H c L L c L L c c F
2
= − − + − +   

( ) ( )j j m j m m j mr c c F r c c F + + −   (22) 

1
x1u

y1u
z1Θ

z

y

3

z3Θ
y3u

x3u

x
x2u
y2uz2Θ

2membrane degrees of freedom 

1
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y1Θ
1w

z
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3
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y2Θ2w

2

1 2l −
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1 3l −
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and 

( )i i i i
1

F L L L 1
2

 = − − 
 

;    ( )2 2
i i m i j2

j m

1
r l l

l
− −

−
= −

( )i, j ,m 1,2,3= (23) 

with: 

( )
1

2 2 2
i j i j i jl x y− − −= + ,    i j i jx x x− = −    and   i j i jy y y− = −  (24) 

Increments of linear strain components given in Eq.(11) are 
separated in membrane and bending strain components and they 
may be expressed in terms of displacement components. Thus, it is 
obtained: 

x x,x
e

m y y,y m m

xy x,y y,x

e u

e u

u u

∆ ∆
∆ ∆ ∆ ∆

∆γ ∆ ∆

   
   

= = =   
   

+      

e B u ;    

x ,xx
e

b y ,yy b b

xy ,xy

w

w

2 w

∆κ ∆
∆ ∆κ ∆ ∆

∆κ ∆

   
   

= = − =   
   
      

e B u  (25) 

where the strain-displacement matrices ( B ) are: 

( )
( )

( ) ( )

i i m j j m

m i i m j j mi

i i i m i m j i j i j m

2b 0 b b L b L

1
0 2c c c L c L

4 A
2c 2b c b b c L c b b c L

 −
 
 = − 
 

+ − +  

B    

( )i, j ,m 1,2,3= (26) 

( )
i ,xx xi,xx yi ,xx

b i,yy xi,yy yi,yyi

i ,xy xi ,xy yi,xy

H H H

H H H i 1,2,3

2H 2H 2H

 
 

= = 
 
  

B  (27) 

with A being the element area; ib  and ic  are defined in Eq.(15), 

while iL  is an area coordinate. iH , xiH  and yiH  are given by 

Eq.(20), Eq.(21) and Eq.(22), respectively. 
The element described in this section is a conforming element 

with the compatibility conditions being satisfied in each node and in 
each element side (see Teixeira, 2001). Using the drilling degree of 
freedom, numerical accuracy is improved and singularity of the 
stiffness matrix is avoided for coplanar elements. The total stiffness 
matrix for each element is obtained by superposition of the 
membrane and bending matrices.

The Updated Lagrangean Formulation  

The incremental equation corresponding to the principle of 
virtual work in an Updated Lagrangean Formulation (ULF) was 
presented in Eq.(8). This expression may be written in a compact 
form as follows: 

1 2 3 4I I I I+ = − (28) 

1I  is given by 

t
1 t ijrs t rs t ijtV

I D e e dV∆ δ ∆= =∫
T t T t
m m m m mb bt tA A

dA dAδ∆ ∆ δ∆ ∆+ +∫ ∫e D e e D e

T t T t
b bm m b b bt tA A

dA dAδ∆ ∆ δ∆ ∆+∫ ∫e D e e D e  (29) 

where mD  and bD  are the constitutive matrices for the membrane 

and bending effects, whereas mb bm=D D  represents the constitutive 

matrix which results from membrane-bending coupling effect. 
These constitutive matrices, referred to the element local coordinate 
system, are defined by (Jones, 1999; Stegmann and Lind, 2001): 

( )T
m mij ij

D D i, j 1,2,6 ;γ γ= =r r   (30) 

( )T
mb bm mbij ij ij

D D D i, j 1,2,6 ;γ γ= = =r r  (31) 

( )T
b bij ij

D D i, j 1,2,6 ;γ γ= =r r  (32)   

with γr  being the rotation matrix from the global to the local 

coordinate system, which is defined by: 

2 2

2 2

2 2

cos sen cos sen

sen cos cos sen .

2cos sen 2cos sen cos sen

γ

γ γ γ γ

γ γ γ γ

γ γ γ γ γ γ

 
 
 = −
 
 − − 

r  (33) 

In Eq.(33), γ  is the angle formed by the global axis gx  and the 

local axis lx , as indicated in Fig. 2,  where the fibers reference 

system is also shown. 
In Eq.(30), Eq.(31) and Eq.(32), components of constitutive 

matrices are given by: 

( ) ( ) ( )
n

k
m k k 1ijij

k 1

D Q z z i, j 1,2,6−
=

= − =∑  (34) 

( ) ( ) ( )
n

k 2 2
mb bm k k 1ijij ij

k 1

1
D D Q z z i, j 1,2,6

2 −
=

= = − =∑  (35) 

( ) ( ) ( )
n

k 3 3
b k k 1ijij

k 1

1
D Q z z i, j 1,2,6

3 −
=

= − =∑  (36) 

where n  is the number of layers; k 1z −  and kz  are the coordinates 

normal to the lower and upper surfaces of layer k; ( )k
ijQ  are elastics 

constants of the layer k in the global coordinates system (see Fig. 2) 
defined by the following expressions: 

( ) ( ) ( ) ( ) ( )k k k k k4 2 2 4
k k k k11 11 12 66 22Q Q cos 2 Q Q sin cos Q sinθ θ θ θ = + + + 

 
 (37) 

( ) ( ) ( ) ( ) ( )k k k k k 2 2
k k12 21 11 22 66Q Q Q Q 4Q sin cosθ θ = = + − + 

 
     

( ) ( )k 4 4
k k12Q sin cosθ θ+  (38) 
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( ) ( ) ( ) ( )k k k k4 2 2
k k k22 11 12 66Q Q sin 2 Q 2Q sin cosθ θ θ = + + + 

 
( )k 4

k22Q cos θ (39) 

( ) ( ) ( ) ( ) ( )k k k k k 3
k k16 61 11 12 66Q Q Q Q 2Q sin cosθ θ = = − − + 

 
( ) ( ) ( )k k k 3

k k12 22 66Q Q 2Q sin cosθ θ − + 
 

 (40) 

( ) ( ) ( ) ( ) ( )k k k k k 3
k k26 62 11 12 66Q Q Q Q Q sin cosθ θ = = − − + 

 
( ) ( ) ( )k k k 3

k k12 22 66Q Q 2Q sin cosθ θ − + 
 

 (41) 

( ) ( ) ( ) ( ) ( )k k k k k 2 2
k k66 11 22 12 66Q Q Q 2Q 2Q sin cosθ θ = + − − + 

 
   

( ) ( )k 4 4
k k66Q sin cosθ θ+  (42) 

being kθ  the angle formed by the global axis gx  and the fibers 

local axis 1, as its is shown in Fig. 2. 

Figure 2. Global, local and fiber coordinates systems.

ijQ  are elastic constants in the layer k in the fibers coordinates 

system and are defined by the following  expressions (Jones, 1999): 

( )
( )

( ) ( )

k
k 1

11 k k
12 21

E
Q

1 ν ν
=

−
 (43) 

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )

k k k k
k 12 2 21 1

12 k k k k
12 21 12 21

E E
Q

1 1

ν ν

ν ν ν ν
= =

− −
 (44) 

( )
( )

( ) ( )

k
k 2

22 k k
12 21

E
Q

1 ν ν
=

−
 (45) 

( ) ( )k k
66 12Q G= (46) 

where ( )k
1E  and ( )k

2E  are the elastic moduli of the layer k in the 

direction of the axis 1 and axis 2, respectively; ( )k
12G  is the shear 

modulus in the plane 1-2 of the layer k in the fiber coordinates 

system; ( )k
ijν  is the Poisson coefficient defined as the relation 

between the strain in the transversal direction j and the axial strain 
in the direction i, considering the fiber coordinates system. 

The nonlinear term 2I  is defined by the following expressions: 

t t T t t
2 ij t ij G Gt tV A

I dV dAτ δ ∆η δ∆η ∆η= =∫ ∫ T  (47) 

where tT  contains the membrane internal forces and it is given by: 

t t
xx xyt t t

m m m mb b b t t
yx yy

T T

T T

 
 = + =
 
 

T D B u D B u  (48) 

with 

,x e
G G b

,x

w

w

∆
∆η ∆

∆
 

= = 
 

G u   and  
i ,x xi,x yi ,x

G
i,y xi,y yi,y

H H H
.

H H H

 
=  
  

G  (49) 

The internal work due to the external forces at time t t∆+ , 3I , 

is given by: 

t t t t B t t t t S S t t
3 i i i it t t tV A

I f u dV f u dA∆ ∆ ∆ ∆ ∆
∆ ∆δ δ+ + + + +

+ += = +∫ ∫ℜℜℜℜ

(50) 

Finally, the virtual work due to internal forces at time t, 4I , is 

defined by: 

t t
4 ij t ijtV

I e dVτ δ ∆= =∫   

T t t T t t
m m bt tA A

dA dAδ∆ δ∆+ +∫ ∫e N e NM

T t t T t t
m b bt tA A

dA dAδ∆ δ∆+∫ ∫e MN e M  (51) 

where t
mN , t

bM , t NM  (and t MN ) are nodal vectors of internal 

forces corresponding to membrane, bending and membrane-bending 
coupling effects, respectively. These vectors are given by: 

Tt t t t t
m m m m xx yy xyN N N = =  N D B u  (52) 

Tt t t t t
mb b b xx yy xyNM NM NM = =  NM D B u  (53) 

Tt t t t t
bm m m xx yy xyMN MN MN = =  MN D B u  (54) 

Tt t t t t
b b b b xx yy xyM M M = =  M D B u . (55) 

The Finite Element Incremental Equilibrium Equations 
for Static Problems 

In static linear problem analysis, only the linear part of the 
stiffness matrix must be considered, and the finite element 
discretization at the element level leads to the following incremental 
matrix equation: 

θθθθk

γγγγ

xl 

1

xg

yg 

yl 
2
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t t t
m mb m m m

t t tbm b b b b

∆

∆
∆
∆

+

+

 −     =    
−      

K K u R F

K K u R F
  or t t t∆∆ += −LK u R F  (56) 

where the linear stiffness matrix, LK , taking into account 

membrane ( mK ), bending ( bK ) and membrane-bending coupling 

effects ( T
bm mb=K K ), are given by: 

T t
m m m mt A

dA= ∫K B D B ;    T t
mb m mb bt A

dA= ∫K B D B ; 

T t
bm b bm mt A

dA= ∫K B D B ;    T t
b b b bt A

dA= ∫K B D B . (57) 

The nodal vectors of external loads referred to membrane and 
bending effects, respectively, are defined by the following 
expressions: 

t t
xt t T t

m m t tt A y

R
dA

R

∆
∆

∆

+
+

+

 
 =
  

∫R N   and  

t t T t t t
b b zt A

R dA∆ ∆+ += ∫R N . (58) 

Equation (56) is obtained at time t t∆+ . 
Finally, the equivalent nodal vectors due to internal forces at 

time t corresponding to membrane and bending effects, respectively, 
taking into account membrane-bending coupling, are given by: 

t T t t T t t
m m m mt tA A

dA dA= +∫ ∫F B N B NM   and  

t T t t T t t
b b b bt tA A

dA dA= +∫ ∫F B M B MN . (59) 

To calculate t
mN  and t MN , given by Eq.(52) and Eq.(54), 

respectively, the displacement components due to membrane effects, 

contained in vector t
mu  (at time t), are used. These displacement 

components are obtained performing the difference between the 
local coordinates at time t and at time 0 (Bathe and Ho, 1981). 

To calculate the bending moment components at time t, the 
following expression is used: 

t t t t t
b b b b b

∆ ∆ ∆+ += +M M D B u  (60) 

where t t
b

∆ ∆+ u  is the vector containing increments of displacement 

components due bending effects at time t t∆+ . 

The components of  t NM , defined in Eq.(53), are determined 

in the same form as t
bM . 

In a geometrically nonlinear static problem the nonlinear 

stiffness matrix t
NL

K  must be added to the linear part of the 

stiffness matrix 
L

K  in Eq.(56). Matrix t
NL

K is given by: 

t T t t
NL G Gt A

dA= ∫K G T G  (61) 

where: tT  and GG  are defined by Eq.(48) and Eq.(49), 

respectively. 

The incremental equilibrium equation, previously presented, is 
referred to each element local coordinates, and a transformation to a 
common global system is necessary in order to perform the 
assemblage procedure. Thus, considering the cosine of the angles 

formed by the local coordinates system ( l l lx , y , z ) and the global 

coordinates system ( g g gx , y , z ), they me be  given by (see Fig. 3):  

xx xy xz

yx yy yz

zx zy zz

λ λ λ
Λ λ λ λ

λ λ λ

 
 

=  
 
  

 (62) 

where: 

g g
2 1

xx
1 2

x x
;

l
λ

−

−
=   

g g
2 1

xy
1 2

y y
;

l
λ

−

−
=   

g g
2 1

xz
1 2

z z
;

l
λ

−

−
=   c

zx
x

;
2A

λ =

c
zy

y
;

2A
λ =      c

zz
z

;
2A

λ =      yx zy xz xy zz ;λ λ λ λ λ= −  (63) 

yy xx zz zx xz ;λ λ λ λ λ= −      yz zx xy xx zy ;λ λ λ λ λ= −

being:  

( ) ( ) ( )
1

2 2 2 2
1 2 2 1 2 1 2 1

g g g g g gl x x y y z z−
 

= − + − + − 
 

;  

( ) ( ) ( ) ( )g g g g g g g g
c 2 1 3 1 2 1 3 1x y y z z z z y y= − − − − − ; 

( ) ( ) ( ) ( )g g g g g g g g
c 2 1 3 1 2 1 3 1y x x z z z z x x= − − − − − ;  (64) 

( ) ( ) ( ) ( )g g g g g g g g
c 2 1 3 1 2 1 3 1z x x y y y y x x= − − − − − ; 

( )
1

2 2 2 2
c c c2A x y z= + + . 

and then the transformation matrix from the global to the local 
coordinates system is given by: 

0 0

0 0

0 0
−

 
 =  
  

r

g l r

r

r

r r

r

   and    
0

.
0

Λ
Λ

 
=  
 

rr  (65)

The global equilibrium equations, obtained assemblying all 
finite elements forming the mesh, are solved using the Generalized 
Displacement Control Method (GDCM) as proposed by Yang and 
Shieh (1990), which is suitable for highly nonlinear problems with 
multiple critical points. 

Figure 3. Local and global coordinate systems. 
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The Finite Element Incremental Equilibrium Equations 
for Dynamic Problems 

The dynamic incremental iterative equilibrium equation, using 
Newmark’s Method, is given by (Bathe, 1996): 

( ) ( ) ( )i 1 i i 1t tˆ ˆ∆∆− −+=K u R  (66) 

where the superposed index i is referred to the iteration number and 

( ) ( ) ( )i 1i 1t t t t t t
L 0 1 NL

ˆ a a∆ ∆ ∆ −−+ + += + + +K K Mm C K  (67) 

( ) ( ) ( ) ( )i 1 i 1 i 1 i 1t t t t t t t t t t∆ ∆ ∆ ∆ ∆− − − −+ + + + += + + −R R Mm u C u F&& &  (68) 

with 

( ) ( )i 1 i 1t t t t
0 2 3a a a∆ ∆− −+ = − −u u u u&& & &&  (69) 

( ) ( )i 1 i 1t t t t
1 4 5a a a∆ ∆− −+ = − −u u u u& & &&  (70) 

( ) ( )i 1 i 1t t t .∆ ∆− −+ = +u u u  (71) 

In Eq.(67), Eq.(69), Eq.(70) and Eq.(71) the coefficients are 
given by: 

0 2

1
a

tα∆
= ;  1a

t

δ
α∆

= ;  2
1

a
tα∆

= ;   

3
1

a 1
2α

= − ;  4a 1
δ
α

= − ;  5
t

a 2 ;
2 2

∆ δ = − 
 

 (72) 

where t∆  is the time step, while δ   and α  are two parameters 
fixed by the user. In Eq.(67) and Eq.(68) mM , C  and F  are the 
mass matrix, the damping matrix and the internal force vector, 
respectively. It was considered in this work  =C 0 . 

When the convergence of the iterative process is obtained, 
acceleration, velocity and displacement vectors are updated for a 
specific time step with the following expressions: 

t t t t
0 2 3a a a∆ ∆+ = + +u u u u&& & &&  (73) 

t t t t t
6 7a a∆+ = − +u u u u& && &  (74) 

t t t∆ ∆+ = +u u u (75) 

with 

( )6a t 1∆ δ= −   and  7a tδ∆= . (76) 

To solve the system of Eq.(66), the conjugate gradient method is 
used, which has less memory requirements with respect to direct 
methods. 

The consistent mass matrix for each element is given by: 

( ) ( )
n

k k T

A
k 1

h dAρ
=

=∑ ∫Mm H H  (77) 

where n is the number of layers, ( )kh  and ( )kρ  are the thickness 

and the specific mass of the layer k, respectively, and H  is defined 
by: 

( )
i u i

i v i

i xi yi

L 0 H 0 0 0

0 L H 0 0 0 i 1,2,3

0 0 0 H H H

Θ

Θ

 
 

= = 
 
  

H . (78) 

Numerical Applications 

Geometrically Nonlinear Static Analysis of a Hinged 

Cylindrical Laminated Shell With a Concentrate Load at its 

Central Point 

A hinged cylindrical laminate shell with a concentrated load at 
its central point is shown in Fig. 4. Its geometrical properties are: 
R (radius) 2.54 m= , b (length) 0.254 m= , h (total thickness) 

36.35x10 m−=  or 3h 12.70x10 m−= , ϕ  (angle) 0.1rad= . The 

load is applied at the shell center (point A) and is equal to 
P 3000.00 N= . Owing to symmetry, one quarter of the shell was 

modeled. The shell was analyzed for two different configurations: 
(a) with an isotropic material; (b) with a stacking sequence 

90 / 0 / 90   . For the isotropic case the material properties are: 

E (Young modulus) 3102.75 MPa= , G (shear modulus) 

1193.37 MPa=  and ν  (Poisson coefficient) 0.3= . For an 

orthotropic material the properties are: 1E 3300.00 MPa= , 

2E 1100.00 MPa= , 12G 660.00 MPa=  and 12 0.25ν = . For 

h 6.35 mm=  a mesh with 50 triangular elements (generated in 

5x5 25=  rectangular regions) and 36  nodes, and for 
h 12.70 mm=  a mesh with 32 triangular elements (generated in 

4x4 16=  rectangular regions) and 25  nodes were used. The 
boundary conditions are: x y zu 0.00Θ Θ= = =  on the line AB , 

x y x zu u w 0.00Θ Θ= = = = =  on the line CD  and 

y x zu 0.00Θ Θ= = =  on the line AD . 

Figure 4. Cylindrical shell subjected to a central pinched force. 

Results were compared with those obtained by Sze, Liu and Lo. 
(2004) using 16 x16 S4R  elements, with 289 nodes, contained in 
the software ABAQUS (Hibbit et al., 1998) when h 6.35 mm=  and 
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8x8 S4R elements, with 81 nodes, when h 12.70 mm= ; Sze, Liu 

and Lo (2004) show that with these meshes very accurate results are 
obtained. Results for load x displacement for the isotropic and the 
orthotropic case, respectively, are presented in Fig. 5 and Fig. 6. 

This problem, which is an interesting benchmark due to the 
snapping behavior of the structure, shows an excellent concordance 
with the results presented by Sze, Liu and Lo (2004), although in the 
present paper meshes are not so refined as in the reference. 
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Figure 5. Nonlinear response for the isotropic cylindrical shell. 
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Figure 6. Nonlinear response for the orthotropic cylindrical shell [90/0/90]. 

Geometrically Nonlinear Static Analysis of a Pinched 

Cylindrical Laminated Shell 

This application is similar to the example analyzed previously 
(Fig. 4) but now the stacking sequences are a cross ply 0 / 90 / 0  
and an angle ply 45 / 45−   . Two types of boundary conditions are 

considered: an hinged and a clamped shell. Geometrical and 
material properties are the same as in the first example, but only the 

case where h (total thickness) 312.70x10 m−=  is studied. For the 

hinged shell a load P 26.70 kN=  is applied at its center point, 

while for the clamped shell a load P 89.00 kN=  is applied. A mesh 

with 72  triangular elements (generated in 6 x6 36=  rectangular 
regions) and 49  nodes was used. 

Results are presented in Fig 7. and Fig 8. and compared with 
those obtained by Yeom and Lee (1989) and a good agreement was 
obtained. These authors used 36  degenerated solid elements with 
nine nodes and five degrees of freedom per node. In this case the 
total number of nodes is 85 . In the shell with hinged edges 
softening-stiffening responses with inflexion points are observed for 

both stacking sequences, but this behavior is modified when hinged 
edges are substituted by clamped edges. It may be observed that 
results obtained in this paper are very similar to those of the 
reference with a mesh where a bi-quadratic degenerated 
quadrilateral element using Lagrangean polynomials as shape 
functions were substituted by two triangles with three nodes. 

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

w (mm)

L
oa

d 
(k

N
)

Yeom and Lee (clamped) Present work (clamped)
Yeom and Lee (hinged) Present work (hinged)

Figure 7. Static response of a pinched cylindrical shell with a stacking 
sequence [0/90/0]. 
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Figure 8. Static response of a pinched cylindrical shell with a stacking 
sequence [45/-45]. 

Geometrically Nonlinear Dynamic Analysis of a Spherical 

Laminated Shell Under an External Uniform Pressure 

An hinged spherical laminate shell is presented in Fig. 9, where 

R (radius) 10.00 m= , h (total thickness) 310.00x10 m−= , b (length 

of the projected side) 1.00 m= . The stacking sequence is an angle 

ply 45 / 45−    and the material properties are: 1E 250.00GPa= , 

2E 10.00GPa= , 12G 5.00GPa= , 12 0.25ν =  and ρ (specific 

mass) 8 31.00x10 kg / m= .Only one quarter of the shell was 

modeled using a mesh with 32  triangular elements (generated in 
4x4 16=  rectangular regions) with 25  nodes, taking into account 
symmetry conditions. The following boundary conditions were 
prescribed: y x zu 0.00Θ Θ= = =  on the line AB , 

y x zu w 0.00Θ Θ= = = =  on the line BC , x y zu w 0.00Θ Θ= = = =

on the line CD  and x y zu 0.00Θ Θ= = =  on the line AD . The 

adopted time step and uniform pressure acting on the external 

surface were, respectively, 2t 3.00x10 s∆ −=  and q 2000.00 Pa= . 
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Figure 9. Hinged spherical shell subjected to a uniform external pressure. 

The dynamic response at the central point A  is shown in Fig. 
10 and it is compared with the result presented by To and Wang 
(1998), and a good concordance is observed. In the present work the 
same response were obtained with the consistent and the lumped 
mass matrix. 

To and Wang (1998) used the linear hybrid laminated composite 
triangular shell elements (HLCTS), with eighteen degrees of 
freedom and a first-order transverse shear deformation theory. These 
authors used a mesh with 36  triangular elements (generated 
dividing by four a region formed by 3x3 9=  rectangles) with 25
nodes. 

Teixeira (2001) used a modified consistent mass matrix taking 
into account only displacement degree of freedom, i. e. H  in 
Eq.(78) was substituted by: 

( )
i

i

i

L 0 0 0 0 0

0 L 0 0 0 0 i 1,2,3

0 0 L 0 0 0

 
 = = 
  

H . (79) 

In both cases, in this specific example, results are close to those 
obtained by To and Wang (1998). 
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Figure 10. Geometrically nonlinear dynamic response at the central point 
for the spherical shell. 

Geometrically Nonlinear Dynamic Analysis of a Cylindrical 

Laminated Shell Subjected to an Uniform Internal Pressure 

A cylindrical shell subjected to an uniform internal pressure is 
presented in Fig. 11, were the geometric properties are: 

R (radius) 2.54 m= , a (arc length) 0.508 m= , b (length) 

0.508 m= , h (total thickness) 31.27 x10 m−=  and ϕ (angle) 

0.10 rad= . Material properties are: 1E 137.90GPa= , 

2E 9.86 GPa= , 12G 5.24GPa= , 12 0.30ν =  and 

31562.20 kg / mρ = . Two stacking sequences were considered: (a) 

a symmetric stacking sequence with eight layers 0 / 45 / 90 / 45 s−  
and (b) a cross ply 0 / 90   . In both cases layers with the same 

thickness were adopted. It is considered that the shell boundary is 
clamped ( x y x y zu u w 0.00Θ Θ Θ= = = = = = ). The adopted time 

step and uniform internal pressure were, respectively, 
2t 5.00x10 ms∆ −=  and q 6895.00 Pa= . A mesh with 128

elements (generated in 8x8 64=  rectangular regions) was used. 

Figure 11. The cylindrical shell with uniform internal pressure. 

Results for the displacement component w  (in the direction of 
the axis gz ) are presented in Fig. 12 and Fig. 13 and comparison 

with those presented by To and Wang (1999) and Wu, Yang and 
Saigal (1987) are also shown. To and Wang (1999) used the HLCTS 
element while Wu, Yang and Saigal (1987) used a curved high-
order quadrilateral shell element. 

A good relatively agreement is observed, especially with respect 
to the response obtained by To and Wang (1999). These authors 
used a mesh with 36  triangular elements (originated dividing in 
four a region formed by 9  rectangles) with 25  nodes. Some 
differences may be observed with respect to the results (especially 
for amplitudes) presented by Wu, Yang and Saigal (1987). In this 
work a very refined mesh was used in order to confirm results 
obtained by To and Wang (1999) with respect to those presented by 
Wu, Yang and Saigal (1987). 
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Figure 12. Nonlinear dynamic response for the vertical displacement at 
point A of the cylindrical shell with eight layers [0/-45/90/45]s. 
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Figure 13. Nonlinear dynamic response for the vertical displacement at 
point A of the cylindrical shell with two layers [0/90]. 

Final Remarks 

An efficient triangular finite element for the geometrically 
nonlinear static and dynamic analysis of laminate shells was 
presented in this work. The mass and the nonlinear stiffness matrix 
may be explicitly implemented. Results of all the examples show a 
very good agreement with those presented by others authors using 
different types of elements and formulations. In most of the 
examples the meshes employed in this work are less refined with 
respect to those used in the corresponding references. 

By definition, stress components zzσ , xzτ  and yzτ  are 

considered with a null value in the Classical Lamination Theory. 

Actually these stress components are not null and they may assume 
important values in the layer interfaces causing delamination. 
Physically, one of the reasons of this failure mode is the fact that 

zzσ , xzτ  and yzτ  change significantly from one layer to the other 

due to the abrupt differences of elastic properties. Thus, this theory 
is not suitable to study delamination.  

In future works topics such as shells optimization analysis and 
shells with smart materials will be studied.
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