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Design of Optimum System of 
Viscoelastic Vibration Absorbers with 
a Frobenius Norm Objective Function 
Vibration absorbers, also called vibration neutralizers, are mechanical systems to be 
attached to another mechanical system, or structure, called the primary system, with the 
purpose of reducing vibration and sound radiation. The simplest form of a vibration 
absorber is that of a single degree of freedom system, where the “spring” is made of a 
viscoelastic material, perhaps with some metallic inserts. This paper sets out to describe 
how to design a best possible system of viscoelastic vibration absorbers for an available 
viscoelastic material, known by its four fractional parameter model, by using a novel 
objective function, defined through a Frobenius norm. A real example is presented and 
discussed. 
Keywords: vibration absorber, vibration neutralizer, viscoelastic material, vibration 
abatement, vibration control 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
1Dynamic Vibration Neutralizers, more often and incorrectly 

(Crede, 1965) called Dynamic Vibration Absorbers (DVA) are 
mechanical devices to be attached to another mechanical system, or 
structure, called the primary system, with the purpose of reducing or 
controlling vibrations and sound radiation from surfaces and 
structural panels. Although conceptually incorrect, tradition has 
adopted the name Dynamic Vibration Absorber as standard. The 
phenomenon runs in parallel with the name random variable, also 
adopted by tradition, but which is not a variable at all: it is rather a 
function. Only for this reason is the name absorber used in this 
paper. 

Since absorbers were first used to reduce rolling motions of 
ships (Den Hartog, 1956), many publications on the subject have 
steadily come to light, demonstrating their efficiency in mitigating 
vibrations and sound radiation in many structures and machines.  

With modern technology of viscoelastic materials, which makes 
it possible to tailor a particular product to meet design 
specifications, vibration absorbers are easy to make and apply to 
almost any complex structure. 

In recent times, a great deal of effort has been done to extend 
and generalize the theory of vibration absorbers, applied to more 
complex structures than the single degree of freedom undamped 
one, tackled by Ormondroyd and Den Hartog (1928). 

Single degree of freedom vibration absorbers applied to 
particular positions of uniform beams, with particular boundary 
conditions, has been studied (Jacquot, 1978; Candir and Ozguven, 
1986). Also mass distributed absorbers have been analyzed 
(Manikahally and Crocker, 1991; Esmailzadeh and Jalili, 1998). 
Simply supported uniform thin plates have also been considered as a 
primary system (Broch, 1946; Snowdon, 1975; Korenev and 
Reznikov, 1993). 

In the work of Espíndola and Silva (1992), a general theory for 
the optimum design of absorber systems, when applied to a most 
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generic structure of any shape, with any amount and distribution of 
damping, was derived. That theory has been applied to viscoelastic 
absorbers of various types (Espíndola and Silva, 1992; Freitas and 
Espíndola, 1993). Also mass distributed, viscoelastic sandwich 
absorbers have been considered by Floody et al. (2007).  

The theory is based on the concept of equivalent generalized 
quantities for the absorbers, introduced by the first author of this 
paper. With this concept, it is possible to write down the equations 
of motion of the composite system (primary plus absorbers) in terms 
of the generalized coordinates (degrees of freedom), previously 
chosen to describe the configuration space of the primary system 
alone. That occurs in spite of the fact that the composite system has 
additional degrees of freedom, introduced by the attached absorbers.  

This fact was crucial in the development of the theory as it 
allows a coordinate transformation using the modal matrix of the 
primary system, which is invariant during the optimization process. 
With this transformation, it is possible to obtain the modal space of 
the composite system, without having to solve a complex eigenvalue 
problem for the whole composite system at each step of the iterative 
process, which could make it computationally very heavy indeed.   

In the modal space of the composite structure, it is possible to 
retain only a few modal equations, encompassing the band of 
frequencies of interest. If coupling is not considered in between 
these equations (which is far from realistic), then the absorber 
system can be designed to be optimum for a particular mode in 
parallel with Den Hartog’s simple optimization method.  

If, on the other hand, a set of coupled modal equations is 
retained, covering a particular frequency band, then a nonlinear 
optimization (or better, a hybrid genetic algorithm/non-linear) 
technique can be used to design the absorber system to be optimum 
(in a certain sense) over that frequency band (Espíndola and 
Bavastri, 1995, 1997a, 1997b; Bavastri et al., 1998). 

In recent years, the concept of fractional derivative has been 
applied to the construction of parametric models for viscoelastic 
materials (Bagley and Torvik, 1979; Bagley and Torvik, 1986; 
Torvik and Bagley, 1987; Pritz, 1996; Liebst and Torvik, 1996; 
Rossikhin and Shitikova, 1998; Espíndola et al., 2004; Espíndola et 
al., 2005). 
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This paper reviews an important step to the optimum design of 
an absorber system: the design process is carried out for a particular 
set of fractional parameters that models an available viscoelastic 
material. In the end, the anti natural frequencies of the absorbers are 
given together with their values of mass. With these parameters at 
hand, it is a matter of conceiving a spatial physical construction for 
the neutralizers. 

A common feature of previous research and publications headed 
by the first author was the use of an objective function in which the 
excitations (inputs) and their points of application were known. 
This, of course, poses some practical difficulties when it is almost 
impossible to know where the excitations are and what their time 
history is. So, a new objective function is defined herein, based on 
the Frobenius norm of a square matrix. A practical example is 
presented and discussed. 

Constitutive Equations for Viscoelastic Materials in 
Fractional Derivates 

Since the absorbers to be discussed here are of a viscoelastic 
nature, it seems adequate, from a pedagogical point of view, to 
provide a simple introduction to this class of materials modelling via 
fractional derivatives. 

Consider, for simplicity, a one dimensional stress field acting in 
a piece of viscoelastic material. Hooke’s law,( ) ( )σ t E t= ε  valid for 

elastic solids, is then substituted by a constitutive equation in 
differential operators, when the viscoelastic solid is looked upon: 

 

( ) ( ) ( ) ( )
m nM N

m 0 nm n
m=1 n=1

d d
σ t + b σ t = E ε t + E ε t

dt dt
      ∑ ∑  (1) 

 
where ( )tσ  is the stress at time t, ( )tε  is the corresponding strain, 

mb ,m 1, M= , 0E  and nE ,n 1, N=  are constants in time. The 

numbers n, m, M and N are all integers. 
Alternatively, the relation between ( )tσ  and ( )tε  can be written 

in terms of a hereditary integral operator: 
 

( ) ( ) ( )t

-

dε t
σ t = E t -τ dε

dε∞
∫ , (2) 

 
where E(t) in Eq. (2) is the so called relaxation function. 

A counterpart to Eq. (1), which may be understood as a 
generalization of it, can be written in terms of derivative operators 
of fractional orders (Torvik & Bagley, 1987): 

 

( ) ( ) ( ) ( )m n

M N
β α

m 0 n
m=1 n=1

σ t + b D σ t = E ε t + E D ε t      ∑ ∑  (3) 

 
In the above equation ( )mD tβ  σ 

 and ( )nD tα  ε 
 are derivatives 

of fractional orders mβ  and nα , respectively. 

One possible definition of a fractional order derivative is that of 
Riemann-Liouville: 

 

( ) ( )
( )

( )

t
α

α
0

f τ1 d
D f t = dτ

Γ 1-α dt t - τ
   ∫ , (4) 

 
where α  is the fractional order of the derivative and Γ(•) is the 
gamma function.  

Although definition (4) looks somehow impressive, its 
representation in the Laplace and Fourier domains follows the well 
know pattern of derivative of integer order: 

( ){ } ( ) ( )α α αD f t = s f t = s f s      
%L L  (5) 

 

( ){ } ( ) ( ) ( ) ( )α ααD f t = iΩ f t = iΩ f Ω      
%F F  (6) 

 
In Eqs. (5) and (6), L stands for the Laplace operator, F for the 

Fourier operator, s is the Laplace variable and Ω is the circular 
frequency. ( )f s%  and ( )f Ω%  are the Laplace and Fourier transforms of 

( )f t , respectively. The letter i stands for the complex number 

i (0,1).=   

Given the above, Eq. (3) can easily be represented in the 
frequency domain by the use of (6): 

 

( ) ( ) ( ) ( )m n
M N

β α

m 0 n
m=1 n=1

1+ b iΩ σ Ω = E + E iΩ ε Ω
   
   
   
∑ ∑ %%  (7) 

 
From this expression, one may write: 
 

( ) ( )
( )

( )

( )

n

m

N
α

0 n
n=1

c M
β

m
m=1

E + E iΩ
σ Ω

E Ω = =
ε Ω

1+ b iΩ

∑

∑

%

%

 (8) 

 
Expression (8) gives the definition of the so called complex 

modulus of viscoelasticity, which is, obviously, a function of 
frequency. It is also a function of temperature, since the parameters 
in (8) are, experience shows, sensitive to temperature in different 
degrees. 

Being complex, ( )cE Ω  can be written as 

 

( ) ( ) ( )cE Ω = E Ω + iE Ω′  (9) 

 
or 
 

( ) ( ) ( )cE Ω = E Ω 1+ iη Ω ,    (10) 

 

where ( ) ( ) ( )η Ω = E Ω /E Ω′ . 

 

( )E Ω  is known as the storage modulus of the 

viscoelastic material whereas ( )E′ Ω  is the loss modulus 

associated with the ability of the material in dissipating 
vibration energy from within. ( )η Ω  is the so called loss factor 

of the material and, like ( )E′ Ω , is a measure of the ability of 

the material in dissipating strain energy into heat. 
( )E Ω   

Obviously, an expression similar to (8) can be written in terms 
of integer order derivatives, by Fourier transforming both members 
of Eq. (1). Although the differences between the two expressions are 
apparently of semantic nature, they are extremely different in 
practice. In fact, the mathematical formulation in terms of fractional 
derivatives bears intimate relation with molecular theories 
concerning the viscoelastic behaviour of the material (Bagley and 
Torvik, 1983; Bagley and Torvik, 1986).  

It should be noticed, and this is of paramount importance, that 
the fractional derivative at 0t  depends on the time history of f (t)  
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over all ( 0t , t∈ −∞  , while the integer derivative at 0t  is a local 

property depending on the behaviour of the function in a 
neighbourhood of 

0t  only. This outstanding property of the 

fractional derivative offers an explanation for its suitability for 
modelling the viscoelastic behaviour.  

Quite the reverse, the model based on integer order derivatives 
gives very poor results, even if a much larger number of parameters 
are used (Pritz, 1996). Moreover, the model based on expression (8) 
is causal (Bagley and Torvik, 1986; Gaul et al., 1991; and Rutmann, 
1995). 

In this paper, a four parameter model, based on the concept of 
fractional derivative, is used to model the viscoelastic material used 
for the optimum design of vibration absorbers. This model can be 
written as (see expression (8)): 

 

( ) ( )
( )

0 1
c

1

E i E
E

1 i b

α

α

+ Ω
Ω =

+ Ω
 (11) 

 
In Eq. (11), M = N = 1 and 1 1α = α = β = β . In analogy to Eqs. 

(8) and (11), a model for the shear modulus is: 
 

( ) ( )
( )

0 1
c

1

G i G
G

1 i b

α

α

+ Ω
Ω =

+ Ω
 , (12) 

 
or equivalently: 

 

( ) ( )
( )

0
c

G ib G
G

1 ib

α
∞

α

+ Ω
Ω =

+ Ω
, (13) 

 
where 1/

1b b α=  and 1 1G G / b∞ = . 

 
Eq. (13) defines ( )cG Ω  in terms of four fractional parameters: 

0G , G∞ , b and α . Parameter b has dimension of time and is called 

the relaxation constant of the material. It is the most sensitive 
parameter to temperature. 0G  and G∞  are the low and high 

frequency asymptotes, respectively. 

A Review of Some Basic Concepts about Viscoelastic 
Absorbers 

The expression primary system, or primary structure, stands for 
the system, or structure, prior to the attachment of the set of 
absorbers. The primary structure, or primary system, considered in 
this paper may be of any shape, no matter how irregular or complex 
it is. Also, it may be inherently damped, the damping being here 
considered viscous. 

The absorbers to be attached to the primary structure are single 
degree of freedom systems, the mass of each one of them being 

ajm , j 1,p= , where p is the number of absorbers. The “springs” of 

the single degree of freedom absorbers are made with a viscoelastic 
material, perhaps with some metallic inserts. The spring stiffness is 
denoted by 

ajk ( ), j 1,pΩ = , and is referred to a particular temperature. 

Note that each stiffness, or spring constant, is a function of 
frequency Ω  and of a complex nature (i.e., is given by a complex 
number), since the elastic modulus of a viscoelastic material is 
frequency dependent and complex. Each absorber is associated with 
a particular generalized coordinate of the configuration space of the 
primary system, where it is attached to. In this way, the jth absorber 
is attached at the point of the primary structure of which motion is 

described by the 
jkq  generalized coordinate. The index j may be 

omitted when unnecessary, for ease understanding. Fig. 1 shows a 
structure of general shape with some absorbers attached to it. 

The idea behind the attachment of a set of neutralizers on a 
primary structure is to reduce its responses to the action of input 
forces, or input displacements. How to design such a set of 
absorbers to achieve the best possible vibration abatement for a 
particular material, given in advance, is described in the sequel. 

 
 

 
(a) 

 

 
(b) 

 

Figure 1. (a) Primary structure with absorbers attached to it. (b) A 
particular absorber.  

 

Review of Generalized Quantities for an Absorber 

For completeness, and ease reading of the paper, a brief review 
of the concept of generalized quantities for a simple vibration 
neutralizer, or absorber, is presented here (see Espíndola and Silva, 
1992). 

The simple absorber (the one degree of freedom absorber) has a 
single lump of mass (ma) connected to the primary structure through 
a resilient device (a “spring”, see Fig. 2), assumed as having a 
viscoelastic nature, with complex stiffness ka(Ω) equal to (Espíndola, 
1995): 

 

( ) ( ) ( )a ck = G Ω = G Ω 1+ iη Ω ϑ ϑ    (14) 

 
The base plate in Fig. 2 is assumed massless in this analysis, 

with no loss of generality. In the above expression, ( )cG Ω  is the 

complex shear modulus of the viscoelastic material, G (Ω) is the 
dynamic shear modulus, η(Ω) is the loss factor of such material, Ω 
is the circular frequency and ϑ is a geometric factor, depending on 
the shape and metallic inserts of the viscoelastic spring.   

According to the fractional derivative model with four 
parameters, the complex shear modulus is given in Eq. (13). Besides 
the frequency, the complex shear modulus also depends 
significantly on temperature. This dependence is not explicitly 
shown in any expression in this paper.  
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Figure 2. Scheme of a simple (single degree of freedom) absorber. 

 
 
In Fig. 2, Q(Ω) and F(Ω) stand for the Fourier Transforms of the 

basis displacement q(t) and the applied force f(t), respectively. This 
applied force is a result of the interaction between the absorber and 
the point of the primary structure where it is attached. 

It is a simple matter to verify that the interaction force F(Ω) at 
the attachment (massless) plate “feels” the neutralizer as a dynamic 
stiffness given by: 

 

( ) ( )
( ) ( )

2
a

a 2
a

m G Ω 1+ iη ΩF( )
k ( ) = =

Q( ) m G Ω 1+ iη Ω

 Ω ϑΩ  Ω
Ω  Ω − ϑ  

 (15) 

 
The anti-resonant frequency of the simple absorber is defined as 

the one that, in the absence of damping (( ) 0η =Ω ), makes the 

denominator of Eq. (15) equal to zero: 
 

2
a a a= G( ) mΩ ϑ Ω  (16) 

 
In Eq. (16), Ωa stands for the anti-resonant frequency of the 

absorber. In that equation, aG( )ϑ Ω  is the stiffness of the viscoelastic 

spring at the anti-resonant frequency Ωa. Note also that Eq. (16) is a 
transcendental equation for the anti-resonant frequency of the 
absorber.  

Since it is possible to write [ ]c a aG ( ) G( )r ( ) 1 ( )Ω = Ω Ω + η Ω , 

Eq.(15) can be rewritten as: 
 

22 2 2 2
a a a a a a2

a a

3 2
a a

a

k m
D( )

i m
D( )

r ( ) r ( ) r ( ) ( )
( )

r ( ) ( )
(17)

+
= − Ω

Ω

Ω
+ Ω

Ω

   Ω Ω − Ω Ω Ω Ω Ω η Ω   Ω +

Ω Ω η Ω

 

 
where a ar ( ) G( ) G( )Ω = Ω Ω  and   

 

( ) ( ) ( ) ( )
2 22 2 2

a a a aD r - r   Ω = Ω Ω Ω + η Ω Ω Ω   
. 

 
Now imagine a single degree of freedom system in which a 

mass m is connected to a fixed reference (“earth”) through a viscous 
dashpot of constant c. If a force f(t) is applied to the mass, this mass 
will respond with displacement x(t). The ratio between the input 
force and output motion, in the frequency domain, will be 

( ) ( ) ( ) 2k F / X m i cΩ = Ω Ω = −Ω + Ω . If this equation is now 

compared with Eq. (17), one can see that the primary structure 
“sees” the absorber at the point of attachment as a mass 

em ( )Ω  

connected to a viscous dashpot of constant 
ec ( )Ω , the other end of 

this dashpot being connected to the “earth”. 
 
Figure 3 shows this interpretation. These two quantities are 

called here equivalent generalized mass and equivalent generalized 
viscous damping constant for the particular absorber. Dividing out 

both numerator and denominator of Eq. (17) by 4
aΩ , the equivalent 

quantities for the absorber can be written as: 
 

3
a a

e a a 2 22
a a a

c m
r ( ) ( )

( )
r ( ) r ( ) ( )

=
Ω η Ω ε

Ω Ω
 ε − Ω + Ω η Ω   

 (18) 

 
and 

 

{ }2 2
a a a

e a 2 22
a a a

m m
r ( ) r ( ) 1 ( )

( )
r ( ) r ( ) ( )

=
 Ω Ω + η Ω − ε Ω

 ε − Ω + Ω η Ω   

 (19) 

 
where a aε = Ω Ω . 

 
It is a simple task to lift the hypothesis of massless base plate for 

the absorber and consider its mass in Eq. (17). 
Now, it has been proved that both schemes shown in Fig. 3 are 

dynamically equivalent (Espíndola and Silva, 1992) in the sense that 
the stiffness “felt” by the primary system is the same in both cases.  
The primary system “feels” the absorber as a mass em ( )Ω , 

dependent on frequency, attached to it along a generalized 
coordinate q(t), and a viscous dashpot (even if the damping is of 
viscoelastic nature) of constant ec ( )Ω  (also dependent on frequency) 

linked to earth (a fixed reference). The dynamics of the resultant 
system (primary + absorbers) can then be formulated in terms of the 
original physical generalized coordinates alone (of which Q(Ω), in 
Fig. 3, is a representative coordinate), although the new system has 
now additional degrees of freedom (one for each absorber). This is a 
fundamental property of the concept of equivalent generalized 
quantities for the absorbers. 

 

 
Figure 3. Equivalent systems. 

 

The Response of the Compound System 

It can now be concluded from the previous discussion (and 
Fig. 3 helps this interpretation) that a linear structure modelled 
with many degree of freedom will have its damping and mass 
matrices modified (see below) by the attachment of the absorbers, 
but not their size. If the primary system has been modelled as an n 
degree of freedom structure, both damping and mass matrices will 
still be of order n n×  after the attachment of the absorbers, in 
spite of the fact that p (p absorbers) new degrees of freedom have 
been added to it. As for the stiffness matrix, it remains unchanged 
after the attachment of the absorbers. Notice that Eqs. (18) and 
(19) contain all the parameters of the fractional viscoelastic model. 
So, if such p absorbers with equivalent generalized masses 

e1 e2 epm ( ),m ( ),...,m ( )Ω Ω Ω  and equivalent damping constants 

e1 e2 epc ( ),c ( ),...,c ( )Ω Ω Ω  are attached to the n degree of freedom 
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primary system along the generalized coordinates 
1 2 pk k kq ,q ,...,q , the 

equations of motion can be written, in the frequency domain, as: 
 

2 i ( ) ( ) Ω + Ω +
 
− Ω = ΩM C K Q F%%  (20) 

 

where M%  and C%  are the modified mass and damping matrices, 
given by: 

 

;

e1

ep

e1

ep

=

= + = +

0

c ( )

= + = + ( )

c ( )

0

0

m ( )

( )

m ( )

0

 
 Ω
 
  Ω
 Ω 
 
 

 
 Ω
 
  Ω
 Ω 
 
 

%O

O

%
A

A

M

M M M

C C C C

 (21) 

 
where C and M  are the ordinary viscous damping and mass matrices 
of the primary system, respectively. Matrices M A(Ω) and CA(Ω) are 
diagonal and complex. Notice that the entry ( )j jk , k  is ( )ejm Ω  in 

( )ΩAM  and ( )ejc Ω  in ( )ΩAC  , j = 1,  p. Notice also that a particular 

generalized quantity is given by (see Eq. (18) and Eq. (19)): 
 

3
aj aj

ej aj aj 2 22
aj aj aj

c m
r ( ) ( )

( ) , j 1, p
r ( ) r ( ) ( )

=
Ω η Ω ε

Ω Ω =
   ε − Ω + Ω η Ω  

 (22) 

 

{ }2 2
aj aj aj

ej aj 2 22
aj aj aj

m m
r ( ) r ( ) 1 ( )

( ) , j 1,p
r ( ) r ( ) ( )

=
 Ω Ω + η Ω − ε Ω =

   ε − Ω + Ω η Ω  

 (23) 

 
where the index j stands for the jth neutralizer. Note also that 

aj ajε = Ω Ω and aj ajr ( ) G( ) G( )Ω = Ω Ω , where 
ajΩ  is the anti-

resonant frequency of the jth absorber. 
 

The anti resonant frequencies of the absorbers will be given by 
the equation below: 

 

2
aj

j a j

a j
; j = 1, p

G ( )

m

ϑ Ω
Ω =  (24) 

 
Now solve the following eigenvalue problem K φφφφ = Ω2 M φφφφ, 

involving the ordinary mass and stiffness matrices of the primary 
system, and define the modal matrix 

1 2 mr r r = φ φ φ Φ L , 

containing only m eigenvectors 
kr

φ , k = 1, m. It is assumed that the 

corresponding band 
1 mr r, Ω Ω 

 covers all the frequencies where the 

vibrations are to be abated and that m << n. Note that n m×∈ ℜΦ . 
Assume that all the eigenvectors are orthonormalized so that 

=T
mΦ MΦ I  and 

m=T
Φ KΦ ϒϒϒϒ , where 

 

( )m1 2

2 2 2
m r r rdiag Ω Ω Ω= Lϒϒϒϒ .  

 
 

Now, in Eq.(20), apply the following transformation: 
 

( ) ( )Ω = ΩQ ΦP  (25) 

 
If Eq. (25) is taken into Eq. (20), and this pre-multiplied by T

Φ , 
one gets, assuming proportional damping in the primary system: 

 

{ } ( ) ( )2
m-Ω (Ω) + iΩ + (Ω) + Ω = Ω 

 
%% T

A m AM Γ C P Φ Fϒϒϒϒ  (26) 

 
where 

 

( )
( )

( ) ( )

( ) ( )

1 2 m

1 1 2 2 3 3

m

m

2 2 2
r r r

r r r r r r

Ω Ω Ω ;    

2ξ Ω 2ξ Ω 2ξ Ω  ;

;     

diag

diag

=

Ω = Ω

Ω + Ω

=

=

%

%

L

L

A A

A A

T
m

T

M I M

C Φ C

Φ Φ

Φ

Γ

ϒϒϒϒ

 (27) 

 
Above, 

kr
, k 1, mΩ =  are undamped natural frequencies of the 

primary structure and 
kr
, k=1,mξ  are the corresponding modal 

damping ratios. Eq. (26) represents a small system of m << n 
equations and can be solved directly for any frequency with use of 
Eqs. (22) and (23). But this may not be the best way to follow, since 
matrices ( )ΩAM% and ( )ΩAC%  are not diagonal. Instead, a more robust 

approach will be offered. Eq. (26) can be written in the following 
augmented way: 
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 (28) 

 
or 

 

( ) ( ) ( )iΩ Ω + Ω = ΩΑY BY G% %%  (29) 

 
where 
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( ) ( ) ( );    

i

   Ω Ω   Ω = Ω =   Ω Ω      

TP Φ F
Y G

P 0
% . 

 
The second set of equations in Eq. (28) is, in fact, an identity. Note 

that Ã, B% ∈ 2m×2m  and Y(Ω), 
~
G    (Ω)∈ 2m×1. Note also that a time 

domain version of Eq. (29), say ( ) ( ) ( )t t t+ =% %&Ay By g , where 

( ) ( )( )1t −= Ωy YF  and ( ) ( )( )1t −= Ω%g GF , cannot be written 

simply because both matrices A%  and B% are functions of frequency. 
This mixing of time and frequency domains would generate a set of 
non equations (Crandall, 1970). 
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It is not difficult to show that matrix B%  is positive definite. 
Consider the following eigenvalue problem, for a particular value of 
frequencyΩ : 

 

θ = λ θB Α%%  (30) 
 

and define the following modal matrix [ ]1 2 2m= θ θ θΘ L  and 

diagonal spectral matrix ( )1 2 2mdiag= λ λ λ2mΛ L . Assume that 

the eigenvectors are orthonormalized such that =T
2mΘ AΘ I%  and 

=T
2mΘ ΒΘ Λ%  and make the following transformation: 

 

( ) ( )Ω = ΩY ΘZ  (31) 

 
This transformation is possible because the columns of Θ  are 

linearly independent, which makes this matrix non-singular. In fact, 
the inverse of  Θ  is 1 T− =Θ Θ A% . 

Substituting for ( )ΩY  into Eq. (29) and pre-multiplying by TΘ , 

one have: 
 

( ) ( ) ( )TiΩ + Ω = Ω2m 2mI Λ Z Θ G  (32) 

 
Solving Eq. (32) for ( )ΩZ , substituting  the result into Eq. (31) 

and remembering that ( ) ( ) ( ) T
i Ω = Ω Ω Ω Y P P , one can get: 

 

( ) [ ]( ) [ ] ( )T1
11 12 i

−Ω = Ω + ΩT
2m 2m 11 12P Θ Θ I Λ Θ Θ Φ F  (33) 

 
Taking this result to expression 25, the following is obtained: 
 

( ) ( ) ( )1 Ti
−Ω = Ω + Ω2m 2mQ Ψ I Λ Ψ F  (34) 

 
where [ ]= 11 12Ψ Φ Θ Θ  and [ ]11 12Θ Θ  is the upper half of the 

matrix Θ . The matrix  
 

( ) ( ) 1 Ti
−Ω = Ω +2m 2mΑ Ψ I Λ Ψ  (35) 

 
is the so called receptance matrix and is a model of the compound 
system in the frequency domain. Note that A(Ω)∈ n×n. Having the 
receptance matrix for any frequency, the response at that frequency 
can be computed by: 

 

( ) ( ) ( )Ω = Ω ΩQ Α F  (36) 

 
The ths  column of the receptance matrix ( )ΩA  is given by the 

expression (37): 
 

( )
2m

sj
s j

jj 1 i=

ψ
α Ω = ψ

Ω + λ∑  (37) 

 
It is assumed that a convenient viscoelastic material is available, 

its four fractional parameters are known from experiment, and that 
all the absorbers are to be constructed with that same material. Since 
a modal model of the primary structure must also be known for the 
design process, it is assumed that the number and place of 
attachment of the absorbers have been decided beforehand. The 
obvious places of attachment for the absorbers are the points of 
maximum displacement in each mode within the band of interest. 
An absorber placed at a nodal line of a mode will be completely 
inefficient in reducing vibration at that particular mode. 

The receptance matrix relates the vector of excitations to the 
vector of displacement responses, all in the frequency domain.  

The relation between the vector of excitations and the vector of 
velocity responses is given by the so called mobility matrix 

( ) ( )= iΩ ΩΩ ΑM , and if acceleration responses are considered, the 

inertance matrix is called upon: 
 

( ) ( ) ( )2 iΩ = −Ω Ω = Ω ΩAI M . 

 
So, assuming p absorbers attached to the primary structure, the 

theory described above tells how to compute the response of the 
compound system. But the problem at hand is the reverse: having a 
primary system strongly responding to input excitations, how to 
design a set of dynamic absorbers so as to mitigate the vibrations to 
acceptable levels.  

Specification of Absorbers Masses 

For primary systems with only one degree of freedom, the 
recommended ratio between the absorber mass (ma) and primary 
structure mass (ms) by Den Hartog (1956) is µ = ma /ms = 0.1 to 
0.25. The use of the modal mass ratio concept has been proposed by 
Espíndola and Silva (1992) for a system of multiple degrees of 
freedom as: 

 

i j

j

j

p
2

ai k s
i 1

s
s

m

, j 1,d
m

=
φ

µ = =
∑

 (38) 

 

where aim  is the mass of the ith absorber and d is the number of 

modes taken inside the band of frequencies (d is, in general, smaller 
than m, the number of eigenvectors kept from problem 2φ = Ω φK M ). 

The symbol 
jsm  stands for the th

js  modal mass of the primary 

system, which, in case of orthonormalization of eigenvectors, is 
equal to one. The quantity 

i jk sφ represents the element of Φ lying in 

the th
ik  line and th

js  column. The numbers 
ik , i 1,p=  are of the 

coordinates ikq , where the p absorbers are fixed to the primary 

structure. So, given 
jsµ , one for each of the modes of interest, a set 

of equations is established and aim , i = 1, p are computed by SVD 

decomposition of the system matrix associated with Eq. (38). The 
matrix of the system shown in Eq. (38) is of order d p× . Note that 
the number of modes to be controlled (d) inside the band of 

eigenvectors in n m×∈ ℜΦ  may be smaller, equal to or greater than 
the number of absorbers (p) attached to the primary system. This 
means that the system of Eq. (38) may be underdetermined, over 
determined or determined. 

The arguments leading to Eq. (38) are too lengthy and can be 
found in Espíndola and Silva, 1992.  

Optimization for a Frequency Range 

In what follows, it is assumed that a particular material is at 
hand, given by its four fractional parameters {α, b, G0, G∞}. In a 
different approach, the material (i.e., the four parameters) is 
searched for in the process of designing an optimum system of 
viscoelastic absorbers (see Espíndola and Cruz, 2005).  

Assume that the input force vector F(Ω) is unknown, that is, one 
does not know where the forces are applied and what their time 
histories are. It is, nevertheless, of interest to modify the anti-
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resonant frequencies ajΩ , j = 1, p in such a way that a norm of P(Ω)  

becomes a minimum. In such manner the response given by Eq. (34) 
is also minimized. Define x as a vector of anti-resonant frequencies: 

 
T

apa1 a2 
 

= Ω Ω Ωx L  (39) 

 
From Eq. (33), one has 
 

( ) ( )TΩ = ΩP VΦ F  (40) 

 

where ( ) 1 Ti
−= Ω +2m 2mV Ψ I Λ Ψ , for simplicity. 

 
Since the Frobenius norm of a matrix is a consistent one, the 

following expression is valid: 
 
|| P(Ω)||2 = || VΦΦΦΦT F(Ω) ||F  ≤ || V ΦΦΦΦT ||F  || F(Ω) ||F  ≤ 

 
                                                 ≤ || V ||F  || ΦΦΦΦT ||F  || F (Ω) ||2. 
 
Since T

F
Φ  is a positive constant number and ||F(Ω)||2  is fixed 

for every frequency, minimizing ||P(Ω)||2 means minimizing ||V||F, 
for each and every frequency. So, take the following objective 
function: 

 

( ) ( )
maxmin F

f max ,
Ω ≤Ω≤Ω

= Ωx V x  (41) 

 
and minimize it. Note that V(Ω, x) is precisely the matrix 

( ) 1 Ti
−= Ω +2m 2mV Ψ I Λ Ψ  with Ω and x in evidence. Remember also 

that x in Eq. (41) is the vector defined in Eq. (39). 
As always, the better the information at hand, the better the 

results will be. One should expect then that the results obtained 
using this definition of objective function (where no information 
about the input vector is used) are more conservative than those 
obtained by using the previous one in Espíndola and Cruz (2005). 
This is a price to be paid for our ignorance. The advantage of this 
present objective function is that it ignores the input excitation, 
which may be crucial in certain applications. 

After a minimization procedure of f(x), the p anti-resonant 
frequencies 

a1 a2 ap,Ω Ω ΩL  for the p respective absorbers are known. 

Since 
a jm , j = 1, p were given as input parameters, the ϑj, j = 1, p  

parameters of the viscoelastic element can be computed at each 
frequency 

ajΩ , j = 1, p,  from Eq. (24). This is only a geometric factor. 

It is now left to the designer to give shape and size to the absorbers, so 
as to meet these anti-resonant frequencies and geometric factors.  

For a uniform viscoelastic pad working in compression, it can be 
shown that 

 

( )23 1+βS A
=

e
ϑ  (42) 

 
where A is the one side load carrying area, e is the thickness, and β 
is a factor equal to 2 for circular and square pads, and approximately 
2 for moderately rectangular pads. S is the so called shape factor and 
is defined as the ratio of the one side load carrying area to the free 
surface area. For a symmetric arrangement of viscoelastic shear 
elements, like the one shown in Fig. 4, an approximate expression 
for the geometric factor is: 

 
 
 

( )n e i

, 0 2
e

r / r
ϑ < ϕ ≤ πϕ=

l

, (43) 

 

where e is the thickness of the viscoelastic elements, er  and ir  are 

the external and internal radius, respectively, ϕ  is the sum of all 

angles, in radians, comprised by the viscoelastic sectors and 
n ( )⋅l  

stands for the natural logarithm function.  
 
 

 
 
Figure 4. Sketch of a simple viscoelastic vibration absorber working in 
shear. The internal cylinder is to be fixed on the primary structure. The 
external cylinder stands for the mass ma. 

 
 
In the design practice, it may be convenient to make equal the 

resilient parts of all the absorbers. This calls for choosing the most 
significant (in a certain sense) of the form factors ϑj,  j = 1, p (say 
ϑl

), and then computing again the absorber’s masses: 
 

aj
aj 2

aj

G( )
m , j 1, p

( )

ϑ Ω
= =

Ω
l . (44) 

 
A possible criterion is to specify ϑl

 as the rms value of all ϑj,  

j = 1, p.  
Making the resilient parts equal for all the absorbers may signify 

an important saving in money (for instance, in moulding and curing 
dies). This is clearly an approximation, often dictated by economy. 
The final result must then be checked. Simple as it is, this last 
approach may give excellent results as shown in Espíndola and 
Bavastri (1995, 1997a, 1997b and 2003). 

Absorbers working in shear are in general very small in size (a 
few grams to few kilograms) and are normally designed to be 
applied to vibrating light surfaces (such as machine casings) to 
reduce vibration response and noise radiated from them. 

Those working in compression are normally bigger and heavier 
(a few hundredths kilograms) and are used to reduce vibration 
responses of heavy machinery. An interesting example of design 
and application of absorbers working in compression can be found 
in Espíndola et al. (2008). 
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Example: Reduction of Vibration in an Automobile Door 

An automobile door, and in fact any car body panel, is an 
example of a vibrating structure where the exciting energy may 
come in through several points and yet none of them are quite 
distinct and clear to be considered in an analysis as an input point. 

To properly design a system of vibration absorbers, a modal 
model of the primary system must be available. In the present case, 
this model was constructed both by finite element technique and by 
experimental identification. The finite element model was carried 
out with the purpose of finding the three best possible places for 
shaker excitation in the experimental identification work as well as 
the points for the application of absorbers. Also, a comparison with 
experimental natural frequencies was welcome. But no updating 
technique was used nor felt necessary in this work.  

The finite element model consisted of 1106 shell elements 
divided in a quite fine mesh with 1374 nodes. The band of 
frequencies here considered ranged from 200 Hz to 1800 Hz. 
Twenty-five modes of vibration were found in this band of 
frequency. 

The experimental identification technique was carried out in the 
same frequency band above quoted with a sampling frequency of 
5000 Hz. To keep the white noise excitation within that band of 
frequencies, a digital filter FIR was designed with 60 dB rejection 
on both sides of the passing band. Eighty-two points of 
measurements, some of them coinciding with nodes of the finite 
element mesh, were selected together with three points of excitation, 
all of them shown in Fig. 5b. The excitation points are shown there 
as 

1 2 3f ,  f ,  f . The set up for experimental identification is shown in 

Fig. 5a. After acquiring all the FRFs, a global modal analysis was 
carried out. 

The knowledge of the modal damping ratios of the primary 
structure is vital to a realistic evaluation of the efficacy of a 
damping treatment or of any other technique for reduction of 
structural resonant vibration response. That is why a modal 
experimental identification technique is so crucial. As is well 
known, no finite element technique can provide information on the 
inherent damping of the primary structure. The loss factors of the 25 
modes within the frequency band were identified and they ranged 
from 0.00170 to 0.00610, which means a very low damped structure 
indeed. The identified natural frequencies were in very close 
agreement with those found by finite element technique. 

Having identified the natural frequencies and modal damping 
within the band of interest, the ground was then prepared for the 
design of the four absorbers, according to the explanation given 
before. These had the form given in Fig. 4. They were fixed at 
points number 27, 45, 58 and 65, in Fig. 5b. They had all the same 
mass of 0.128 grams and resonant frequency 

af 1239Hz= . Note that 

the mass of the absorbers is, in fact, a sort of average, as well as the 
frequency. It is done so for economic reasons in the process of 
absorbers production. The optimization process for the design of the 
absorber used a hybrid technique (genetic algorithm and David-
Fletcher-Powell non-linear optimization approach; further details 
can be found in Bavastri et al., 1998). 

Figure 6 shows the average reduction, in dB, of the vibration 
response over a band of frequencies ranging from 200 Hz to 1800 Hz. 

The four vibration absorbers were attached to the door at points 
corresponding to the largest amplitudes at that range of frequencies. 
The attachment of the four absorbers implied an increase in the mass 
of the door of 3.8%. The band of frequencies above was selected 
taking into account that the human ear is most sensitive at 
frequencies around 1 kHz. 

 

 
(a) 

 

 
(b) 

 

Figure 5. (a) Set up for modal analysis of an automobile door. (b) View of 
an automobile door. 

 
 
It can be seen in Fig. 6 an average reduction of 10 dB, which is a 

lot. Taking the average over all the averages, one for each frequency 
response, it was noted that a figure of about 10 dB reduction was 
typical of this particular treatment. 

The standard practice in the automotive industry is to reduce 
vibration of automobile panels by sticking damping tapes 
(deadeners, in the jargon of automotive industry) on to them. A test 
was carried out with the door, object of this paper, with and without 
the original damping tape. The corresponding frequency response to 
Fig. 6, presented in Fig.7, shows vibration abatement due to the tape 
of just one dB, over the above frequency range. In a higher 
frequency range, the damping tape treatment is likely to be 
improved by, say, 2 to 3 dB. Also, in higher frequency ranges, the 
vibration absorber will be much more efficient. 
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Figure 6. Vibration reduction shown by one of the frequency response 
functions. 
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Figure 7. Vibration reduction due to the original tape treatment on a car 
door. 

 
 
In fact, a 10 dB reduction in such panels is quite a lot. Perhaps 

one would be content with a much smaller reduction, which would 
mean still much lighter dynamic vibration absorbers.  

This discussion shows how powerful vibration absorbers are in 
mitigating structural vibration in structural panels. This also shows 
the great potential of viscoelastic vibration absorbers in reducing 
sound radiation from structural panels.  

Conclusions 

A brief, but adequate, account of the theory of fractional 
derivative models for viscoelastic materials has been provided in 
this paper, both for completeness and pedagogical reasons. 

The general theory for the design of systems of viscoelastic 
vibration absorbers, developed by the authors over many years, has 
been reviewed, also with the purpose of clarity and ease reading. It 
assumes that a particular viscoelastic material is available 
beforehand and known by its four fractional parameters, identified 
experimentally. It also assumes that a modal model, albeit 
incomplete, of the primary system is identified. 

The experimental identification of a modal model of the primary 
system is of absolute necessity, for it is rather important that the 

modal damping ratios are known with great accuracy. As it is well 
known, finite element techniques are unable to provide such modal 
damping ratios. Failure to identify the modal damping ratios 
accurately make it difficult, if not impossible, to draw a realistic 
assessment of the set of viscoelastic absorbers in vibration and 
radiated noise abatement. 

A novel objective function, based on a Frobenius norm, has 
been introduced here. This norm allows for the design of a system of 
viscoelastic vibration absorbers without knowledge of the set of 
exciting forces and their application points. 

The theory, together with this new objective function, has been 
applied to an automobile door, with remarkable results as compared 
to those obtained with damping tape. 

References 

Bagley, R. L. and Torvik, P. J., 1979, “A generalized derivative model 
for an elastomer damper”. The Shock and Vibration Bulletin, Vol. 49, No. 2, 
pp. 135-143. 

Bagley, R. L. and Torvik, P. J., 1983, “Fractional calculus – a different 
approach to the analysis of viscoelastically damped structures”. IAAA 
Journal, Vol. 21, No. 5, pp. 741-748. 

Bagley, R. L.and Torvik, P. J., 1986, “On the fractional calculus model 
of viscoelastic behaviour”. Journal of Reology. Vol. 30, pp. 133-155. 

Bavastri, C. A., Espíndola, J. J. and Teixeira, P. H., 1998, “A hybrid 
algorithm to compute the optimal parameters of a system of viscoelastic 
vibration neutralisers in a frequency band”. Proceedings of MOVIC’98, 
Zurich, Switzerland, pp. 577-582. 

Broch, J. E., 1946, “A note on the damped vibration absorber”. Journal 
of Applied Mechanics, Trans. ASME. Vol. 68, pp. A284-. 

Candir, B. and Ozguven H. N., 1986, “Dynamic vibration absorbers for 
reducing resonance amplitudes of hysterically damped beam”. Proc. of the 4th 
International Modal Analysis Conference, Los Angeles, USA, pp. 1628-1635. 

Crandall, S. H., 1970, “The role of damping in vibration theory”. Journal 
of Sound and Vibration, Vol. 11, No. 1, pp. 3-18. 

Crede, E. C. (1965). “Shock and Vibration Concepts in Engineering 
Design”. Prentice-Hall, Inc., Englewood Cliffs, NJ, pp. 121-. 

Den Hartog, J. P., 1956, “Mechanical Vibrations”. New York: McGraw-Hill. 
Esmailzadeh, E. and Jalili, N., 1998, “Optimum design of vibration 

absorbers for structurally damped Timoshenko beams”. ASME Journal of 
Vibration and Acoustics, Vol. 120, pp. 833-841. 

Espíndola, J. J., 1995, “Notes on viscoelastic damping” (in Portuguese). 
UFSC, Florianópolis, SC, Brazil. 

Espíndola, J. J. and Bavastri, C. A., 1995, “Reduction of vibrations in 
complex structures with viscoelastic neutralizer: a generalized approach”. 
Proceedings ASME Design Engineering Technical Conferences, Boston, 
USA, Vol. 3, Part C, 761-766. 

Espíndola, J. J. and Bavastri, C. A., 1997a, “Reduction of vibrations in 
complex structures with viscoelastic neutralizers: a generalized approach and a 
physical realization”. Proceedings ASME Design Engineering Technical 
Conferences, Sacramento, California, Paper DETC97/VIB-4187, in CD ROM. 

Espíndola, J. J. and Bavastri, C. A., 1997b, “Viscoelastic neutralisers in 
vibration abatement: a non-linear optimisation approach”. Journal of the 
Brazilian Society of Mechanical Sciences and Engineering. Vol. 19, No. 2, 
pp. 154-163. 

Espíndola, J. J. and Bavastri, C. A., 2003, “Modal reduction of 
vibrations by dynamic neutralizers in a frequency band”. In: VI Symposium 
on Dynamic Problems of Mechanics. Vol. 1, pp. 214-217.  

Espíndola, J. J., Bavastri, C. A. and Lopes, E. M., 2008, “Design of 
optimum systems of viscoelastic vibration absorbers for a given material 
based on the fractional calculus model”. Journal of Vibration and Control, 
Vol. 14, No. 9-10, pp. 1607-1630.  

Espíndola, J. J. and Silva, H. P., 1992, “Modal reduction of vibrations 
by dynamic neutralizers”, Proc. of the 10th International Modal Analysis 
Conference, San Diego, CA, USA: pp. 1367-1373. 

Espíndola, J. J., Silva Neto, J. M. and Lopes, E. M., 2004, “A new 
approach to viscoelastic material properties identification based on the 
fractional derivative model”. Proceedings of 1st FDA IFAC Workshop on 
Fractional Differentiation and its Application, Bordeaux, France, pp. 19-21. 

Espíndola, J. J., Silva Neto, J. M. and Lopes, E. M., 2005, “A 
generalized fractional derivative approach to viscoelastic material properties 
measurements”. Applied Mathematics and Computation, Vol. 164, No. 2, pp. 
493-506. 



Design of Optimum System of Viscoelastic Vibration Absorbers with a … 

J. of the Braz. Soc. of Mech. Sci. & Eng.    Copyright  2009 by ABCM July-September 2009, Vol. XXXI, No. 3 / 219 

Espíndola, J. J. and Cruz, G. A. M., 2005, “On the design of optimum 
systems of viscoelastic vibration neutralizers”. In: Modeling and control of 
autonomous decision support based systems. Hofer E. and Reithmeier (eds), 
pp. 49-64. 

Floody, S. E., Arenas, J. P., Espíndola, J. J., 2007, “Modelling metal-
elastomer composite structures using a finite-element-method approach”. 
Journal of Mechanical Engineering, Vol. 53, No. 2, pp. 66-77. 

Freitas, F. L. and Espíndola, J. J., 1993, “Vibration control of cantilever 
beams with beamlike dynamic vibration absorbers”. Proceedings of the 5th  
DINAME International Symposium on Dynamic Problems of Mechanics, 
Santa Catarina, Brazil, pp. 117-121. 

Gaul, L., Klein, P. and Kemple, S., 1991, “Damping description 
involving fractional operators”. Mechanical Systems and Signal Processing, 
Vol. 5, pp. 81 – 88. 

Jacquot, R. G., 1978, “Optimal dynamic vibration absorbers for 
Timoshenko beams”. M.Sc. Thesis in Mechanical Engineering, Sharif 
University of Technology, Tehran, Iran. 

Korenev, B. G. and Reznikov, L. M., 1993, “Dynamic Vibration 
Absorbers”. New York: John Wiley & Sons. 

Liebst, B. S. and Torvik, P. J., 1996, “Asymptotic approximations for 
systems incorporating fractional derivative damping”. Journal of Dynamic 
Systems, Measurement, and Control, Vol. 118, pp. 572-579. 

Manikahally, D. N. and Crocker, M. J., 1991, “Vibration absorbers for 
hysterically damped mass-loaded beams”. ASME Journal of Vibration and 
Acoustics, Vol. 113, pp. 116-122. 

Ormondroyd, J. and Den Hartog, J. P., 1928, “The theory of dynamic 
vibration absorber”. Journal of Applied Mechanics. Trans. ASME, Vol. 49, 
pp. A9-A22. 

Pritz, T., 1996, “Analysis of four- parameter fractional derivative model 
of real solid materials”. Journal of Sound and Vibration, Vol. 195, No. 1, pp. 
103-115 

Rossikhin, Y. A. and Shitikova, V., 1998, “Application of fractional 
calculus for analysis of nonlinear damped vibrations of suspension bridges”. 
Journal of Engineering Mechanics, Vol. 124, No. 9, pp. 1029-1036. 

Rutmann, R. S., 1995, “On physical interpretations of fractional 
integration and differentiation”. Theoretical and Mathematical Physics, Vol. 
105, No. 3, pp. 1509-1519. 

Snowdon, J. C., 1975, “Vibration of simply supported rectangular and square 
plats to which lumped masses and dynamic vibration absorbers are attached”. 
Journal of Acoustical Society of America, Vol. 57, No. 6, pp. 646-654. 

Torvik, P. J. and Bagley, R. L., 1987, “Fractional derivatives in the 
description of damping materials and phenomena”. In: The Role of Damping 
in Vibration and Noise Control, ASME DE-5, pp. 125-135. 

 


