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Introduction

Dynamic Vibration Neutralizers, more often and imeotly
(Crede, 1965) called Dynamic Vibration AbsorbersVi) are
mechanical devices to be attached to another maztaystem, or
structure, called the primary system, with the psgof reducing or
controlling vibrations and sound radiation from faues and
structural panels. Although conceptually incorrergdition has
adopted the name Dynamic Vibration Absorber asdstah The
phenomenon runs in parallel with the naraadom variable also
adopted by tradition, but which is not a variaki@ld it is rather a
function. Only for this reason is the name absonsed in this
paper.

Since absorbers were first used to reduce rollimgions of
ships (Den Hartog, 1956), many publications on shbject have
steadily come to light, demonstrating their effig in mitigating
vibrations and sound radiation in many structureg machines.

With modern technology of viscoelastic materialbjah makes
it possible to tailor a particular product to meedesign
specifications, vibration absorbers are easy toemakd apply to
almost any complex structure.

In recent times, a great deal of effort has beamedo extend
and generalize the theory of vibration absorbepgliad to more
complex structures than the single degree of freededamped
one, tackled by Ormondroyd and Den Hartog (1928).

Single degree of freedom vibration absorbers agplie
particular positions of uniform beams, with partiouboundary
conditions, has been studied (Jacquot, 1978; CamdirOzguven,
1986). Also mass distributed absorbers have beealyzad
(Manikahally and Crocker, 1991; Esmailzadeh andli,JJ41998).
Simply supported uniform thin plates have also bemrsidered as a
primary system (Broch, 1946; Snowdon, 1975; Korersawd
Reznikov, 1993).

In the work of Espindola and Silva (1992), a gehtreory for
the optimum design of absorber systems, when appiiea most
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generic structure of any shape, with any amountdistibution of
damping, was derived. That theory has been apphiedscoelastic
absorbers of various types (Espindola and Silva218reitas and
Espindola, 1993). Also mass distributed, viscomlasandwich
absorbers have been considered by Floody et 07§20

The theory is based on the concept of equivalenergdized
quantities for the absorbers, introduced by thst fauthor of this
paper. With this concept, it is possible to writenth the equations
of motion of the composite system (primary plusoabers) in terms
of the generalized coordinates (degrees of freedqrgviously
chosen to describe the configuration space of tiragpy system
alone. That occurs in spite of the fact that thegosite system has
additional degrees of freedom, introduced by tteched absorbers.

This fact was crucial in the development of theotlgeas it
allows a coordinate transformation using the madatrix of the
primary system, which is invariant during the opgation process.
With this transformation, it is possible to obtdie modal space of
the composite system, without having to solve aglereigenvalue
problem for the whole composite system at each ctéipe iterative
process, which could make it computationally vezavy indeed.

In the modal space of the composite structures fiassible to
retain only a few modal equations, encompassing lthed of
frequencies of interest. If coupling is not consédkin between
these equations (which is far from realistic), thise absorber
system can be designed to be optimum for a paaticulode in
parallel with Den Hartog’s simple optimization meth

If, on the other hand, a set of coupled modal egnatis
retained, covering a particular frequency bandnthenonlinear
optimization (or better, a hybrid genetic algorithon-linear)
technique can be used to design the absorber systbmoptimum
(in a certain sense) over that frequency band (HEsp& and
Bavastri, 1995, 1997a, 1997b; Bavastri et al., 1998

In recent years, the concept of fractional denxathas been
applied to the construction of parametric models Viscoelastic
materials (Bagley and Torvik, 1979; Bagley and Tiqn1986;
Torvik and Bagley, 1987; Pritz, 1996; Liebst andrvikh 1996;
Rossikhin and Shitikova, 1998; Espindola et alg2&Espindola et
al., 2005).

ABCM



Design of Optimum System of Viscoelastic Vibration Absorbers with a ...

This paper reviews an important step to the optinagsign of
an absorber system: the design process is caniefbioa particular
set of fractional parameters that models an availaiscoelastic
material. In the end, the anti natural frequenoiethe absorbers are
given together with their values of mass. With eéhesrameters at
hand, it is a matter of conceiving a spatial phgiseonstruction for
the neutralizers.

A common feature of previous research and pubtioatheaded
by the first author was the use of an objectivecfiom in which the
excitations (inputs) and their points of applicatiere known.
This, of course, poses some practical difficultidgen it is almost
impossible to know where the excitations are andtvtheir time
history is. So, a new objective function is defirtegtein, based on
the Frobenius norm of a square matrix. A practiesample is
presented and discussed.

Constitutive Equations for Viscoelastic Materials n
Fractional Derivates

Since the absorbers to be discussed here are iscaelastic
nature, it seems adequate, from a pedagogical mdintew, to
provide a simple introduction to this class of miale modelling via
fractional derivatives.

Consider, for simplicity, a one dimensional stréskl acting in
a piece of viscoelastic material. Hooke's Ia\(ut,) = Eg(t) valid for

elastic solids, is then substituted by a constieutequation in
differential operators, when the viscoelastic sditboked upon:

m

Lo an(t)+n§=15nd;[a(t)] @

M
G(t) + Z b,
m=1
where O'(t) is the stress at time g,(t) is the corresponding strain,
b,,m=1,M, E, and E,,n=1 N are constants in time. The

numbers n, m, M and N are all integers.
Alternatively, the relation betwees(t) and g(t) can be written

in terms of a hereditary integral operator:

@)

- (1 &)

-00

where E(t) in Eq. (2) is the so called relaxationdtion.

A counterpart to Eqg. (1), which may be understos aa
generalization of it, can be written in terms ofidative operators
of fractional orders (Torvik & Bagley, 1987):

o(t)+ nibm D [o(t)] = Ege(t) ni:lEnD“" [e(1)] (3)

In the above equatioptn [G(t)] and pf [s(t)] are derivatives

of fractional orders3,, anda,,, respectively.

One possible definition of a fractional order dative is that of
Riemann-Liouville:

1

D[f(t) ] (4)

dt
Ly

where a is the fractional order of the derivative an@) is the
gamma function.
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Although definition (4) looks somehow impressivets i
representation in the Laplace and Fourier domaitievis the well
know pattern of derivative of integer order:

L{pe[f(t) ==L [f()]=5F(9)
F{o[f(1)]} = (io)'F [f(1)]=(i2)f(e)

In Egs. (5) and (6)L. stands for the Laplace operatbrfor the
Fourier operator, s is the Laplace variable &ds the circular
frequency.f(s) andf(g) are the Laplace and Fourier transforms of

®)

6

f(t), respectively. The letter i stands for the complaxmber
i =(0,1).

Given the above, Eq. (3) can easily be represeitiethe
frequency domain by the use of (6):

ENORE RN FAET ORI
m=1 n=1
From this expression, one may write:
N
3 E,+Y E,(iQ)™
o)1) 55 @
:(2) 1+ b, (iQ)"
m=1

Expression (8) gives the definition of the so ahlleomplex
modulus of viscoelasticity, which is, obviously, fanction of
frequency. It is also a function of temperaturacsithe parameters
in (8) are, experience shows, sensitive to tempegain different
degrees.

Being complex,Ec(Q) can be written as

E.(Q) = E(Q)+iE'(Q) ©)
or
E. (@) = E(0)[1+n(2)], (10)
wheren(Q) = E'(Q)/E(Q) .
E(@) is known as the storage modulus of the

viscoelastic material whereag'(g) is the loss modulus

associated with the ability of the material in @ssing
vibration energy from withinn(g) is the so called loss factor

of the material and, |ikQ§'(Q), is a measure of the ability of

the material in dissipating strain energy into heat
E(Q)

Obviously, an expression similar to (8) can be temtin terms
of integer order derivatives, by Fourier transfargnboth members
of Eq. (1). Although the differences between the axpressions are
apparently of semantic nature, they are extreméfferdnt in
practice. In fact, the mathematical formulatiorterms of fractional
derivatives bears intimate relation with moleculaheories
concerning the viscoelastic behaviour of the matdi8agley and
Torvik, 1983; Bagley and Torvik, 1986).

It should be noticed, and this is of paramount irtguace, that
the fractional derivative at, depends on the time history eft)
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over all t0(=,t s while the integer derivative at, is a local

property depending on the behaviour of the function a
neighbourhood oft, only. This outstanding property of the

fractional derivative offers an explanation for sitability for
modelling the viscoelastic behaviour.

Quite the reverse, the model based on integer ateevatives
gives very poor results, even if a much larger nendf parameters
are used (Pritz, 1996). Moreover, the model baseexpression (8)
is causal (Bagley and Torvik, 1986; Gaul et al91;%and Rutmann,
1995).

In this paper, a four parameter model, based orconeept of
fractional derivative, is used to model the vises&t material used
for the optimum design of vibration absorbers. Timsdel can be
written as (see expression (8)):

1+(iQ)" b,

(11)

In Eq. (11), M=N =1 anth =qa, =B, =p. In analogy to Egs.
(8) and (11), a model for the shear modulus is:

G, +(iQ)* G
G.(Q)= Lll , (12)
1+(iQ)" by
or equivalently:
G, (Q) = m , (13)

1+(ibQ)*
wherep=p/* andG,, =G, /b,

Eq. (13) definech(Q) in terms of four fractional parameters:
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described by the;, generalized coordinate. The index j may be
]

omitted when unnecessary, for ease understandigg.1Fshows a
structure of general shape with some absorbershaitkto it.

The idea behind the attachment of a set of neménaion a
primary structure is to reduce its responses toattteon of input
forces, or input displacements. How to design sactset of
absorbers to achieve the best possible vibraticateatent for a
particular material, given in advance, is descrilvethe sequel.

Primary
Structure

Neutralizer Mass

Ma

<—=— Neutralizer
| Viscoelastic Spring

Z
Primary /1/

Structure

(b)

Figure 1. (a) Primary structure with absorbers attached to it. (b) A
particular absorber.

Gy G,,» b anda . Parameter b has dimension of time and is called

the relaxation constant of the material. It is tmest sensitive
parameter to temperatureg, and g, are the low and high

frequency asymptotes, respectively.

A Review of Some Basic Concepts about Viscoelastic
Absorbers

The expressioprimary systemor primary structure stands for
the system, or structure, prior to the attachmethe set of
absorbers. The primary structure, or primary systeonsidered in
this paper may be of any shape, no matter howttaegr complex
it is. Also, it may be inherently damped, the damgpbeing here
considered viscous.

The absorbers to be attached to the primary streictre single
degree of freedom systems, the mass of each orbkeaof being
My, i=1p; where p is the number of absorbers. The “sprirafs”

the single degree of freedom absorbers are madheaniscoelastic
material, perhaps with some metallic inserts. Tihréng stiffness is
denoted byk(Q),j=1,p, and is referred to a particular temperature

Note that each stiffness, or spring constant, igumaction of
frequencyQ and of a complex nature (i.e., is given by a caxpl
number), since the elastic modulus of a viscoelastaterial is
frequency dependent and complex. Each absorbesiated with
a particular generalized coordinate of the configjon space of the
primary system, where it is attached to. In thiywthe |" absorber
is attached at the point of the primary structurevbich motion is

212/ Vol. XXXI, No. 3, July-September 2009

Review of Generalized Quantities for an Absorber

For completeness, and ease reading of the pajeiefareview
of the concept of generalized quantities for a $&mpibration
neutralizer, or absorber, is presented here (sp@sla and Silva,
1992).

The simple absorber (the one degree of freedonmriaégchas a
single lump of mass (ghconnected to the primary structure through
a resilient device (a “spring”, see Fig. 2), assdnas having a
viscoelastic nature, witbomplex stiffnesk,(Q) equal to (Espindola,
1995):

(14)

ka=9G.(Q)=9G(Q)[1+in(2)]
The base plate in Fig. 2 is assumed massless snatilysis,
with no loss of generality. In the above expressigp(g) is the

complex shear modulus of the viscoelastic matefalQ) is the
dynamic shear modulug(Q) is the loss factor of such materifl,

is the circular frequency andl is a geometric factor, depending on
the shape and metallic inserts of the viscoelagtitng.

According to the fractional derivative model withouf
parameters, the complex shear modulus is givergir(B). Besides
the frequency, the complex shear modulus also dbpen
significantly on temperature. This dependence i$ explicitly
shown in any expression in this paper.

ABCM



Design of Optimum System of Viscoelastic Vibration Absorbers with a ...

g

><] sc.

I F(Q)

Figure 2. Scheme of a simple (single degree of freedom) absorber.

QLY

1t

In Fig. 2, QQ) and FQ) stand for the Fourier Transforms of the

basis displacement q(t) and the applied force fégpectively. This
applied force is a result of the interaction betw#ee absorber and
the point of the primary structure where it is elttad.

It is a simple matter to verify that the interactiforce FQ) at
the attachment (massless) plate “feels” the nemérahs a dynamic
stiffness given by:

FQ) __ma2*96(0)[1+in(0)]

= (15)
QQ) m,0*-9G(Q)[1+in(Q)]

Ka(Q) =

The anti-resonant frequency of the simple absabdefined as
the one that, in the absence of dampinggf=0), makes the

denominator of Eq. (15) equal to zero:

Q% =9G(@Q,)/m, (16)

In Eq. (16),Q, stands for the anti-resonant frequency of th

absorber. In that equationi(Q,) is the stiffness of the viscoelastic

spring at the anti-resonant frequerfzy Note also that Eq. (16) is a
transcendental equation for the anti-resonant faqu of the
absorber.

Since it is possible to writeG (Q) = G(Q,)r,@)[1+n Q)

Eq.(15) can be rewritten as:

[eZr,(@)-0a%]a% @) +[a @)
D(Q) *

ka(Q) =-0%m,

Q% 2r (Q)n(Q)
D(Q)

+iQm 17)

a

wherer,(Q) =G(Q)/G(Q,) and

o(0) =[0ir,(2)-2°T +[n (2)0ir(a)]"

Now imagine a single degree of freedom system inickvta
mass m is connected to a fixed reference (“eattirugh a viscous
dashpot of constant c. If a force f(t) is appliedhe mass, this mass
will respond with displacement x(t). The ratio betm the input
force and output motion, in the frequency domainil e
k(Q):F(Q)/x(Q):—Q2m+ch. If this equation is now
compared with Eq. (17), one can see that the pyinsénucture
“sees” the absorber at the point of attachment asaas m,(Q)

connected to a viscous dashpot of constaqt), the other end of
this dashpot being connected to the “earth”.

Figure 3 shows this interpretation. These two dtiast are

called hereequivalent generalized maasdequivalent generalized
viscous damping constafdr the particular absorber. Dividing out

J. of the Braz. Soc. of Mech. Sci. & Eng.
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both numerator and denominator of Eq. (17)d#y theequivalent
quantitiesfor the absorber can be written as:

Ce(Q) =mQ ra(Qz)r](Q)si (18)
[&2-r@] +[r@n@F
and
Q){r,(Q)|1+n?(Q) | - €2
oy - @1 @] 19

[e2-r@] +[r(@n@F
whereg, =Q/Q, .

It is a simple task to lift the hypothesis of masslbase plate for
the absorber and consider its mass in Eq. (17).

Now, it has been proved that both schemes shovi#igin3 are
dynamically equivalent (Espindola and Silva, 19@2he sense that
the stiffness “felt” by the primary system is tren® in both cases.
The primary system “feels” the absorber as a masgQ),

dependent on frequency, attached to it along a rgéped
coordinate q(t), and a viscous dashpot (even ifdamping is of
viscoelastic nature) of constag{(Q) (also dependent on frequency)

linked to earth (a fixed reference). The dynami€she resultant
system (primary + absorbers) can then be formuletéerms of the
original physical generalized coordinates alonewhfch QQ), in
gig. 3, is a representative coordinate), althoughrtew system has
now additional degrees of freedom (one for eaclordes). This is a
fundamental property of the concept of equivaleenegalized
quantities for the absorbers.

X
f(n) L2 L2l LS
N B @
Q) Q)
D sc» = m,(Q) 1

Primary system
Prim ary system

Figure 3. Equivalent systems.

The Response of the Compound System

It can now be concluded from the previous discusgand
Fig. 3 helps this interpretation) that a lineausture modelled
with many degree of freedom will have its damping anass
matrices modified (see below) by the attachmerthefabsorbers,
but not their size. If the primary system has bemrelled as an n
degree of freedom structure, both damping and messces will
still be of order nxn after the attachment of the absorbers, in
spite of the fact that p (p absorbers) new degoédseedom have
been added to it. As for the stiffness matrixeitnains unchanged
after the attachment of the absorbers. Notice Hud. (18) and
(19) contain all the parameters of the fractioriat@elastic model.
So, if such p absorbers with equivalent generalizedsses
Mgy (Q), Mgz @), ..., Mg, Q) and equivalent damping constants

Ce1(@),Ce2@),., G, @ ) @re attached to the n degree of freedom

July-September 2009, Vol. XXXI, No. 3/213
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primary system along the generalized coordin@ﬁeglk ,,,,, q the Now, in Eq.(20), apply the following transformation
1 2 P

equations of motion can be written, in the freqyeth@main, as: Q(Q) :(I)P(Q) (25)

—O2 S - 20
[ @M HIQC +K ]Q(Q) F(©) (20) If Eqg. (25) is taken into Eq. (20), and this prehiplied by @7,
_ ~ one gets, assuming proportional damping in the gmyrsystem:
where M and C are the modified mass and damping matrices,

given by: {-0?m,@+ia[r, +C,@]+Y,|P(2)=®"F(0) (26)
0 here
whner
cel(Q)
C=c+ =C+Cy (@) 1 = Y, =diag(of of - af):
Cep(Q)
0 (21) r, =dag(2s, 0, 2,9, - 2¢,0.); 27)
0
M, (Q)=I,+®™, (Q);
M.,(@Q) A (Q) =1, +@'m , (Q)
=M+ =M +M 4 (Q) ¢, (@)=0'c, ()@

Mep(Q)
0 Above, Q, .k=1m are undamped natural frequencies of the

primary structure andgrk,kzl,m are the corresponding modal

whereC andM are the ordinary viscous damping and mass matricegmping ratios. Eq. (26) represents a small sysdénm << n
of the primary system, respectively. Matri¢dg(Q) andCa(Q) are  equations and can be solved directly for any fraquevith use of
diagonal and complex. Notice that the enfgy k) is my(q) In  Egs. (22) and (23). But this may not be the best twdollow, since

Ma(@) andc, (Q) in C,(@) ,j=1, p. Notice also that a particular matricesm, (@)and €, (@) are not diagonal. Instead, a more robust

approach will be offered. Eq. (26) can be writtanthie following

generalized quantity is given by (see Eq. (18) Bqd(19)): augmented way:

04(Q) = myQ : I’aj(Qz)n(Q)Saj _.i=1p (22) o &, (Q)+Fm MA(Q) P(Q) .
(e ra(@ ] +[ra@n(@] 2N @) o |lior() o8
Yo O P(Q) @TF(Q)}
(O ri(Q)[1+n%(Q) | -€5 - =
- Faj ){ra,( )2[ +n°( )] ea'l,jﬂ,p (23) ’{ 0 —MA(Q)HiQP(Q)} { 0
(&4 -r(@] +[ra(@n(@]
or
where the index j stands for th& peutralizer. Note also that Q&Y (Q)+I§Y(Q)=G(Q) (29)

gaj:Q/Qaj and raj(Q):G(Q)/G(Qaj), where Q, is the anti-
resonant frequency of th8 absorber.

where
The anti resonant frequencies of the absorbersheilgiven by = ~
the equation below: A= CA~(Q)+Fm Ma (Q) :
M, (Q) 0
az =200, -y 24)
maj é - Y'm . 0 .
0 -M,(Q))
Now solve the following eigenvalue problekip = Q> M@,
involving the ordinary mass and stiffness matrioéshe primary p(Q) . (I)TF(Q)
system, and define the modal matrig =[<Pr1 ¢, - ‘Prm}’ Y(Q):{iQP(Q)}; (Q)={ 0 }

containing only m eigenvectorg , k = 1, m. It is assumed that the
k

corresponding bandg, o, 7 covers all the frequencies where theThe second set of equations in Eg. (28) is, in @ctdentity. Note
1 m

thatA, B OC*™*™ andY(Q), G (Q)OC?*™. Note also that a time

vibrations are to be abated and that m << n. Nwed oo™, domain version of Eq. (29), sa&y(t)+|§y(t) =g(t) _where

Assume that all the eigenvectors are orthonormdlige that

oM@ =1, ando'K® =Y, , where y(t)=F -1(y(Q)) and g(t) =F ’1(C-‘,(Q)) , cannot be written
simply because both matricés and B are functions of frequency.
Y= diag(Q fl Q ,22 e Q fm ) . This mixing of time and frequency domains would grate a set of

non equationgCrandall, 1970).

214 / Vol. XXXI, No. 3, July-September 2009 ABCM



Design of Optimum System of Viscoelastic Vibration Absorbers with a ...

It is not difficult to show that matrix8 is positive definite.
Consider the following eigenvalue problem, for atigalar value of
frequencyQ :

BO=\A8 (30)

and define the following modal matri@:[g1 8, 92m] and

diagonal spectral matriz(g2m :diag()\l Ay o ;\Zm). Assume that

the eigenvectors are orthonormalized such ®&ae =1,, and
@'BO = A,,, and make the following transformation:
Y(Q)=0z(Q) (31)

This transformation is possible because the coluaine are
linearly independent, which makes this matrix nomgslar. In fact,
the inverse ofe is®@*=0@'A .

Substituting fOI’Y(Q) into Eq. (29) and pre-multiplying b,
one have:

(iQlm +A5n)Z(Q) =0"G(Q) (32

Solving Eq. (32) forz(Q), substituting the result into Eq. (31)
and remembering tha,t(Q) :I:P(Q) iQP(Q)]T, one can get:

P(Q) =[O ©)(iQm+Asm) [0, 0] ®'F(Q) (33)

Taking this result to expression 25, the followiagbtained:

Q(Q) =¥ (IQl m +Asm)  ¥TF(Q) (34)

where \Ilz(p[(.)11 @12] and [(5)11 (5)12] is the upper half of the
matrix @ . The matrix

A(Q) =¥ (iQ oy + Ag) W7 (35)

is the so called receptance matrix and is a mofitieocompound
system in the frequency domain. Note tA£0)0C™". Having the
receptance matrix for any frequency, the respohsieaa frequency
can be computed by:

(36)

The s column of the receptance matrjsx(g) is given by the
expression (37):

2m

as(Q) =2 w;

=

llej
iIQ+A;

(37)

It is assumed that a convenient viscoelastic nateriavailable,
its four fractional parameters are known from ekpent, and that
all the absorbers are to be constructed with #waesmaterial. Since
a modal model of the primary structure must alsdr@wvn for the
design process, it is assumed that the number dade pof
attachment of the absorbers have been decidedebefod. The
obvious places of attachment for the absorbersttaepoints of
maximum displacement in each mode within the bahthterest.
An absorber placed at a nodal line of a mode wélldompletely
inefficient in reducing vibration at that particulaode.

J. of the Braz. Soc. of Mech. Sci. & Eng.
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The receptance matrix relates the vector of exoitatto the
vector of displacement responses, all in the fraquelomain.

The relation between the vector of excitations tredvector of
velocity responses is given by the so called migbilinatrix
M (Q) = iQA(Q), and if acceleration responses are considered, the

inertance matrix is called upon:

I (Q)

So, assuming p absorbers attached to the primargtste, the
theory described above tells how to compute theamse of the
compound system. But the problem at hand is thersev having a
primary system strongly responding to input exitst, how to
design a set of dynamic absorbers so as to mitthateibrations to
acceptable levels.

=-Q°A(Q)=iam (Q).

Specification of Absorbers Masses

For primary systems with only one degree of freeddne
recommended ratio between the absorber mags dnd primary
structure mass (@nby Den Hartog (1956) it = m, /m; = 0.1 to
0.25. The use of the modal mass ratio concept éas proposed by
Espindola and Silva (1992) for a system of multiglegrees of
freedom as:

i mai(piis]

qu = = ’ J :17 d (38)
Si

where m,; is the mass of thé"iabsorber and d is the number of

modes taken inside the band of frequencies (thigeneral, smaller
than m, the number of eigenvectors kept from prbigy= oM ¢).

The symbol _ stands for theS}h modal mass of the primary
)

system, which, in case of orthonormalization ofeeigectors, is
equal to one. The quantimsl represents the element a@flying in

the ki line and sgh column. The numberg,,i=1,p are of the
coordinatesd., , where the p absorbers are fixed to the primary
structure. So, givemsj, one for each of the modes of interest, a set

of equations is established amdl;, i = 1, p are computed by SVD

decomposition of the system matrix associated W&igh (38). The
matrix of the system shown in Eq. (38) is of order p. Note that
the number of modes to be controlled (d) inside Haend of

eigenvectors in® 00™™ may be smaller, equal to or greater than
the number of absorbers (p) attached to the prirsgsyem. This
means that the system of Eq. (38) may be underdeted, over
determined or determined.

The arguments leading to Eq. (38) are too lengtity @an be
found in Espindola and Silva, 1992.

Optimization for a Frequency Range

In what follows, it is assumed that a particulartenal is at
hand, given by its four fractional parameters p, G, G.}. In a
different approach, the material (i.e., the fourrgpeeters) is
searched for in the process of designing an optinsystem of
viscoelastic absorbers (see Espindola and Cru%)200

Assume that the input force vect(Q) is unknown, that is, one
does not know where the forces are applied and wieit time
histories are. It is, nevertheless, of interestntodify the anti-
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resonant frequencieQ 1, p in such a way that a normR{f2) 9= de

L0<¢<2m (43)

. J =
aj
becomes a minimum. In such manner the responsa biw&q. (34) £ (re/ri)
is also minimized. Defing as a vector of anti-resonant frequencies:
where e is the thickness of the viscoelastic eléspep and I; are

T_
X _[Qal Qap - Qap:| (39) the external and internal radius, respectivajy,is the sum of all
angles, in radians, comprised by the viscoelagtatoss ande (1

From Eq. (33), one has stands for the natural logarithm function.

P(Q)=Ve'F(Q) (40)

where V = ¥ (iQl 5, + A, )T, for simplicity. 6“
Since the Frobenius norm of a matrix is a consistere, the m
following expression is valid: l l
A

IP@)IE= IV F(Q) [k < IV @[k IF(Q) [k < Val

<V IE 17 Ik IIF @) Ik i View B-B

Since H(DTHF is a positive constant number a{{l)|, is fixed | —— i 7 |
17

for every frequency, minimizingP{Q)|L means minimizing V|,
for each and every frequency. So, take the follgwabjective
function:

Cut A-A
f(x)=_ max (41)

Qin<Q<Qmax

V(Qx)

R = viscoelastic material ; V = void

s

and minimize it. Note thatv(Q, x) is precisely the matrix ) ) o o
V=W (01, + A,,) ¥ With O andx in evidence. Remember also G e ' Sinder vs to be fixed on the primary siructure. The
thatx in Eq. (41) is the vector defined in Eq. (39). external cylinder stands for the mass ma.

As always, the better the information at hand, ble¢ter the
results will be. One should expect then that thsulte obtained

using this definition of objective function (wher® information In the design practice, it may be convenient to enagual the
about the input vector is used) are more consewatian those resilient parts of all the absorbers. This calisdboosing the most
obtained by using the previous one in Espindola@ng (2005). significant (in a certain sense) of the form fastdy; j = 1, p (say

This is a price to be paid for our ignorance. Thgaatage of this ), and then computing again the absorber's masses:
present objective function is that it ignores tigut excitation,

which may be crucial in certain applications. 9,6(Q.)

After a minimization procedure of X, the p anti-resonant m, ="7;’ i=1, p- (44)
frequencieSQal, Q- Qy for the p respective absorbers are known. (Qaj)
Since my;» j = 1, p were given as input parameters,dyg = 1, p

A possible criterion is to specify, as thermsvalue of alld;,
parameters of the viscoelastic element can be cupat each i=1,p.

frequencyq , j =1, p, from Eq. (24). This is only a geomefactor. Making the resilient parts equal for all the abswstmay signify
It is now left to the designer to give shape amd # the absorbers, so an important saving in money (for instance, in nding and curing
as to meet these anti-resonant frequencies andegéofactors. dies). This is clearly an approximation, often afetl by economy.
For a uniform viscoelastic pad working in compressit can be The final result must then be checked. Simple ais,ithis last
shown that approach may give excellent results as shown ininfgta and
Bavastri (1995, 1997a, 1997b and 2003).

3(1+B52)A Absorbers working in shear are in general very bmasize (a
=\ - 7 (42) few grams to few kilograms) and are normally desdjrio be
€ applied to vibrating light surfaces (such as maghaasings) to

) . ) o reduce vibration response and noise radiated fhamt
where A is the one side load carrying area, easthiickness, anfi Those working in compression are normally bigget beavier

is a factor equal to 2 for circular and square padd approximately (a few hundredths kilograms) and are used to redeation
2 for moderately rectangular pads. S is the sedahape factor and responses of heavy machinery. An interesting exanopl design

is defined as the ratio of the one side load cagyrea to the free 5 application of absorbers working in compressian be found
surface area. For a symmetric arrangement of viaste shear Espindola et al. (2008).

elements, like the one shown in Fig. 4, an appratnexpression
for the geometric factor is:
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Example: Reduction of Vibration in an Automobile Door

An automobile door, and in fact any car body panmelan
example of a vibrating structure where the excitemergy may
come in through several points and yet none of tlaeen quite
distinct and clear to be considered in an anabsian input point.

To properly design a system of vibration absorbarsnodal
model of the primary system must be available hi present case,
this model was constructed both by finite elemeshhique and by
experimental identification. The finite element rebdvas carried
out with the purpose of finding the three best fidssplaces for
shaker excitation in the experimental identificatiwork as well as
the points for the application of absorbers. AB@omparison with
experimental natural frequencies was welcome. Butupdating
technique was used nor felt necessary in this work.

The finite element model consisted of 1106 shedmants
divided in a quite fine mesh with 1374 nodes. Thend of
frequencies here considered ranged from 200 Hz &00 1Hz.
Twenty-five modes of vibration were found in thisard of
frequency.

The experimental identification technique was eatrout in the
same frequency band above quoted with a sampleguéncy of
5000 Hz. To keep the white noise excitation witklat band of
frequencies, a digital filter FIR was designed wiih dB rejection
on both sides of the passing band. Eighty-two oimf
measurements, some of them coinciding with nodesheffinite
element mesh, were selected together with thregtgpof excitation,
all of them shown in Fig. 5b. The excitation poiate shown there
asf, f, f,- The set up for experimental identification is whoin

Fig. 5a. After acquiring all the FRFs, a global mbenalysis was
carried out.

The knowledge of the modal damping ratios of thanpry
structure is vital to a realistic evaluation of tleéficacy of a
damping treatment or of any other technique foructidn of
structural resonant vibration response. That is whymodal
experimental identification technique is so crucidls is well
known, no finite element technique can provide iinfation on the
inherent damping of the primary structure. The fassors of the 25
modes within the frequency band were identified #mely ranged
from 0.00170 to 0.00610, which means a very low mgainstructure
indeed. The identified natural frequencies were very close
agreement with those found by finite element teghei

Having identified the natural frequencies and modamnping
within the band of interest, the ground was theeppred for the
design of the four absorbers, according to the anqgtion given
before. These had the form given in Fig. 4. Theyewiixed at
points number 27, 45, 58 and 65, in Fig. 5b. Thay &ll the same
mass of 0.128 grams and resonant frequgney23gHz. Note that

the mass of the absorbers is, in fact, a sort efeme, as well as the
frequency. It is done so for economic reasons m phocess of
absorbers production. The optimization processhferdesign of the
absorber used a hybrid technique (genetic algoritimd David-
Fletcher-Powell non-linear optimization approachrttier details
can be found in Bavastri et al., 1998).

Figure 6 shows the average reduction, in dB, of vibeation
response over a band of frequencies ranging frairH20to 1800 Hz.

The four vibration absorbers were attached to thar @t points
corresponding to the largest amplitudes at thagjeasf frequencies.
The attachment of the four absorbers implied arege in the mass
of the door of 3.8%. The band of frequencies abwas selected
taking into account that the human ear is most isemsat
frequencies around 1 kHz.

J. of the Braz. Soc. of Mech. Sci. & Eng.
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Figure 5. (a) Set up for modal analysis of an automobile door. (b) View of
an automobile door.

It can be seen in Fig. 6 an average reduction af®,0vhich is a
lot. Taking the average over all the averages,foneach frequency
response, it was noted that a figure of about 10retRiction was
typical of this particular treatment.

The standard practice in the automotive industryoigeduce
vibration of automobile panels by sticking dampirtigpes
(deadenersin the jargon of automotive industry) on to thehtest
was carried out with the door, object of this papeéth and without
the original damping tape. The corresponding fragyeesponse to
Fig. 6, presented in Fig.7, shows vibration abaterdee to the tape
of just one dB, over the above frequency range.alrigher
frequency range, the damping tape treatment islylike be
improved by, say, 2 to 3 dB. Also, in higher freqog ranges, the
vibration absorber will be much more efficient.
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Frec!uencyresp?nse functio‘n—MobiIity,‘Force atnoTieS—Resp‘onseatnode 65 modal damplng ratios are known with great accur&syit is well
known, finite element techniques are unable to ijde@wuch modal
7ol : damping ratios. Failure to identify the modal dangpiratios
accurately make it difficult, if not impossible, iraw a realistic
S A e TR ‘ assessment of the set of viscoelastic absorbengibiation and
o J“\‘ " \’ [P IRY 0 L T . radiated noise abatement.
T T, I v A novel objective function, based on a Frobeniusmmohas
S been introduced here. This norm allows for theglesif a system of
. viscoelastic vibration absorbers without knowledgethe set of
o exciting forces and their application points.
' I The theory, together with this new objective fuantihas been
‘ Y applied to an automobile door, with remarkable ltesas compared

1201 1

2001 fi |

1101

Average reduction over the band of frequencies: 10.238 [dB] “: to those obtained with damplng tape.
-130[- “: —
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